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Abstract 
This  paper addresses a number of issues concerning 
the integration of visual and physical constraints f o r  
the synthesis and execution of error-tolerant mo- 
t ion  strategies. Object features and their projections 
onto the image plane of a supervisory camera are 
used t o  define visual constraint surfaces. These vi- 
sual constraint surfaces can be directly used t o  en- 
force the following types of constrained motion: mo- 
t ion  terminated o n  contact with a visual constraint 
surface, mot ion  maintaining constant contact with 
a visual constraint surface, and motion that i s  si- 
multaneously constrained by both visual and phys- 
ical constraint surfaces. Existing preimage plan- 
ning techniques are extended f o r  synthesis of motion 
strategies that eaploit these types of motion. 

1 Introduction 
One of the primary reasons that robots have not yet seen 
widespr :ad use in manufacturing is their inability to op- 
erate SI ccessfully in the presence of uncertainty. This 
limitation is particularly severe given the many sources 
of uncertainty in a typical robotic work cell. These in- 
clude: limited sensing accuracy, errors in robot control, 
and discrepancies between the geometric object models 
and the physical objects (including the parts to be ma- 
nipulated and the robot itself). A great deal of robotics 
research has been devoted to discovering ways to  cope 
with these uncertainties. 

A number of planning systems have been developed 
that characterize uncertainty by systems of constrained 
variables [l, 9, 201. These planners must have an a priori 
knowledge of the effects of manipulations and sensing on 
uncertainty. An alternative is to  use feedback from sen- 
sors to  adapt execution to the actual state of the world 
that the robot encounters. To date, the most successful 
planning systems that use this approach comprise the 
preimagr planners 15, 4, 6, 141. Using guarded motions 
and compliance [15], assembly actions are made more 
robust by taking advantage of physical constraints im- 
posed on motion by the geometry of the objects in the 
work cell. 

One of the limitations of preimage planners derives 

from the local nature of force sensing. Since a force sen- 
sor only reports the forces and torques exerted on the 
gripper, the position of the manipulator is often ambigu- 
ous. This is the problem of goal recognizability [6]. The 
robot might know that it has made contact with some 
physical constraint surface, and yet not know which sur- 
face. 

Visual feedback presents a natural mechanism for re- 
solving such ambiguities. Some work has been done 
in the area of integrating vision with assembly robots 
(for example [16, IS]), but so far, none of this work has 
produced a unified formalism for creating uncertainty- 
tolerant motion plans that  use position, force and visual 
sensing. The main reason for this is a lack of any gen- 
eral formalism for applying visual sensing to motion con- 
trol problems. The work reported to date has focused 
on highly constrained problems (e.g. tracking welding 
seams [2, lo ] ) ,  or has imposed artificial limits on the 
number of degrees of freedom of the controlled motions 
[S, 191. As a consequence of this, no system has yet been 
developed that i; capable of planning motions using vi- 
sual feedback to com2ensate for uncertainties. That is, 
there are no visual analogues for the preimgae force- 
based planners. 

This paper introduces a formalism for using visual 
feedback in motion synthesis and control. The basic 
tool that  is used t o  exploit visual constraints is the visual 
constraint surface. Visual constraint surfaces, which will 
be introduced in Section 2, can be used to control motion 
in the following ways: 

Motion of the manipulator can be constrained to 
maintain contact with a visual constraint surface. 

Motion can be terminated on contact with a visual 
constraint surface. 

Visual constraint surfaces can be used in conjunction 
with physical constraint surfaces to force motion to- 
ward a goal corifiguration when this would not be pos- 
sible using physical constraint surfaces alone. 

2 Visual Constraint Surfaces 
As described above, preimage planners rely on compli- 
ant motions that are guided by physical constraints. 
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This section introduces visual constraint surfaces. These 
are virtual surfaces that do not correspond to any phys- 
ical surface in the work cell. For clarity, the following 
two simplifying assumptions are made. Image curves 
used to  form visual constraint surfaces will correspond 
to object features (e.g. edges) and not merely t o  oc- 
cluding contours of curved surfaces. Visual information 
is obtained from a single camera, positioned so that i t  
can observe the work cell without occlusion from the 
robot arm. These assumption will be relaxed shortly. 

Consider an edge of a particular object in the field 
of view. Let the geometry of the edge be defined by 
the parameterized curve X ( T ) .  Assume that the image 
plane is defined with origin at  ro and local coordinate 
system specified by the orthonormal vectors I, J.  The 
normal to the image plane is specified by K = I x J .  Let 
X ’ ( T )  represent the projection of X ( T )  onto the image 
plane. Then, for perspective projection: 

- d f ( X ( T )  - r o ) .  I 
( X ( T )  - ro)  . K - d f  
- d f  ( X ( T )  - ’0) . J 

( X ( T )  - ro) . K - d f  

Xi(.) = 

(1) x$(T) = I 
where d f  is the distance from the image plane to  the 
center of projection of the camera (i.e. the focal length 
of the lens). Note that X ~ ( T )  is the ratio of the focal 
length d j  to the perpendicular distance from the point 
X ( T )  to the center of projection. While X ; ( T )  is not 
required to express the image coordinates of a projected 
point, it can be used to construct the inverse mapping 
(i.e. the mapping from image coordinates to world co- 
ordinates). 

The curve X(7) and its projection, X ’ ( T ) ,  can be 1 sed 
to define a ruled surface [7]: 

S(7, A) = X(7) + A(X’(7) - X(7)) (2) 

Recall that a ruled surface is generated by a family 
of lines. For S(T, A), a particular generating line is ob- 
tained for each valid value of 7 .  Such a line will be re- 
ferred to as a generating line of s ( ~ ,  A), or simply a gen- 
erating line. For perspective projection, each generating 
line is a projection ray through the center of projection 
and the image plane point X’(7). Each ruled surface, 
S ~ ( T , A ) ,  that  can be constructed from an object edge 
and its corresponding image projection is a visual con- 
straint surface. Such a surface is a virtual rather than a 
physical surface. Fig. 1 illustrates such a surface. 

When an image curve does not correspond to  an ob- 
ject edge, it is typically the projection of the occlud- 
ing contour of the surface of a curved object (see, for 
example, [12]). The equation for this curve can be de- 
termined off-line, prior to  execution of planned motions. 
Therefore this does not impose any extra computational 
burden on the visual processing system. 

Figure 1: Ruled Surface S(T ,  A) formed using X ( T )  and 
X’(7) 

3 Motion Tangent to a Visual 
Constraint Surface 

The first way that visual constraint surfaces can be used 
t o  control robot motion is analogous to compliant mo- 
tions that rely on force feedback for servo control. In 
this case the motion “complies” to  the visual constraint 
surface in one of two ways. 
0 Type I Motion: The motion is constrained so that 

some fixed spatial relationship between the manipu- 
lator and S ( r ,  A) is maintained. 

0 Type I1 Motion: The motion is constrained so that 
the manipulator maintains some fixed spatial relation- 
ship to a specific generating line of s ( ~ ,  A). 
While it is possible t o  imagine many types of spatial 

relationship between the manipulator and the constraint 
surface, in order to  reduce the complexity of both the 
visual processing and the visual servo control, only re- 
lationships that maintain contact between some distin- 
guished point, @, and the visual constraint surface are 
considered. k can be a point on the manipulator, a point 
on the object in its grasp, or any point in space that 
has a fixed relationship to  the manipulator (for exam- 
ple, the center point between the two manipulator jaws). 
Therefore, P maintains contact with S(T,  A) for Type I 
motion, and with a specific generating line of S(T, A)  for 
type I1 motion. Type I motion constrains the manipu- 
lator to  move so that P projects onto X ’ ( T ) ,  while Type 
I1 motion constrains the manipulator to  move so that @ 
projects onto X’(q),  for some specific 71. 

As an example, suppose that a peg held in the robot’s 
gripper is positioned in Cartesian space so that some 
P lies on the surface S(T, A). P could be chosen as 
the mid-point on the visible portion of the curved edge 
at the bottom of the peg. Since @ lies on S ( T , A ) ,  the 
projection of P must be a point on the image plane curve 

There have been a number of efforts to  integrate vi- 
sual data directly into robot servo control. Khosla et al. 

X’(7). 
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use visual input to  generate a path in Cartesian space 
[lo]. This path (which corresponds to a weld seam) is 
used to  modify the trajectory of the manipulator in real 
time. Skaar, Brockman and Hanson report a system 
that updates the relationship between visual cues and 
manipulator joint coordinates in real time while track- 
ing an object in the scene [19]. In [21], a Jacobian matrix 
that relates differential changes in image features t o  dif- 
ferential changes in Cartesian space position is used in 
conjunction with an adaptive controller. In [8], a system 
is described that generates a smooth trajectory using a 
feature-based approach. Again, a Jacobian matrix re- 
lating image features to  positions in Cartesian space is 
used, but in this system visual data arrives a t  random 
times, and the trajectory is modified asynchronously. 

When using visual constraint surfaces, the observed 
image provides only one set of constraints on the ma- 
nipulator’s motion. The remaining constraints on mo- 
tion come from a commanded velocity (supplied by the 
planner). This is similar to motion a t  a commanded 
velocity that allows sliding on a physical constraint sur- 
face. Therefore, control of the manipulator’s motion 
must be derived from the robot’s position sensors in con- 
junction with the camera image. The visual servo aspect 
is viewed as providing correction to  the commanded ma- 
nipulator velocity. 

To incorporate this correction into the robot control 
system, a Jacobian matrix is used to derive an incremen- 
tal correction velocity. The nominal command velocity 
of the manipulator will be determined using standard 
methods (see [3] for example). The velocity correction 
will be applied in a direction perpendicular to  K .  There- 
fore, there are two degrees of freedom in the correction 
vector. These can be mapped to the two degrees of free- 
dom of a point moving in the ima5e plane. Thus, there 
is a generally nonsingular Jacobian matrix, Jv, which re- 
lates differential changes in the image plane projection 
of a point to  differential changes in its Cartesian posi- 
tion. For a point p i n  Cartesian space, and its projection 
p’, the relationship between I ;  (the Cartesian velocity) 
and I;’ (the image plane velocity) is given by: 

p‘ = J,p (3)  
The chpice of velocity correction is illustrated in Fig. 

2. When deriving the velocity correction, I;‘ is the im- 
age plane displacement between the projection of point 

and the desired projection of P.  In the figure, the 
projection of k is represented by p’, and the desired 
projection of @ is represented by 6’. The image plane 
correction displacement is represented by the vector z;’ 
in the figure. The Cartesian velociby correction is cho- 
sen to  be parallel to  the image plane. This correction is 
represented by the vector p in the figure. 

Once 5 has been determined (using p = J,-’z;’), the 
manipulator Jacobian, Jm, (that relates joint velocity 
to  Cartesian velocity) can be used to  calculate the cor- 
rection to the nominal trajectory in joint space. This is 
discussed in [8, lo]. 

Figure 2: This figure illustrates how the displacement 
between the ideal and actual projections of P onto the 
image plane map to  a correction displacement in the 
world frame. 

4 Visual Termination Conditions for 
Motions 

Guarded motions are motions that are executed a t  some 
chosen velocity until a terminating condition is satisfied. 
Termination conditions have been expressed in terms of 
force exerted on the manipulator, position sensing, and 
elapsed time 15, 4, 6, 141. 

To terminate motions based on visual cues, these cues 
must be extracted from visual data in real time. This 
prohibits the use of quantitative visual data derived us- 
ing numerical iterative processing techniques, and there- 
fore rules out precise estimation of position and orienta- 
tions of the manipulator as terminating ccnditions. An 
alternative is to  define qualitative visual cues that can 
be readily extracted from the visual data. 

For most configurations of the manipulator, small mo- 
tions wiLl not change the qualitative structure of the 
extracted edge image of the scene (which includes the 
manipulator and the objects in the work cell). Con- 
figurations for which this is not true define event sur- 
faces. These event surfaces are exactly the visual con- 
straint surfaces defined in Section 2. In other words, 
the qualitative structure of edge image of the scene only 
changes if the manipulator makes contact with a visual 
constraint surface. It should be noted that this is in 
many ways analogous to  the aspect graph used in com- 
puter vision [Ill. 

The utility of visual event surfaces for motion termi- 
nation is due to  two factors: the visual data (unlike force 
and position sensing) provides global information, and 
the visual information is not required to  be precise (since 
only qualitative information is used), thus sparing the 
computational burden associated with many computer 
vision tasks. 
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5 Goal Driven Servo Control Using 
Combined Visual and Force Feedback 

Vision and force feedback can be used simultaneously 
to constrain motion to progress toward some goal, when 
this would not be possible using either visual or force 
feedback individually. Consider the task of inserting a 
peg into a hole in a block. If the system relies on force 
controlled compliant motion, once contact has been es- 
tablished between the peg and the block’s surface, the 
motion of the manipulator can be constrained to  main- 
tain that contact. Unfortunately, force feedback alone 
cannot provide any information about the trajectory re- 
quired to  move the peg closer to the hole. This section 
briefly describes how visual constraint surfaces can be 
used to force the compliant motion to  make progress 
toward the goal. 

Consider the slightly simpler problem of moving the 
manipulator so that @ (some distinguished point on the 
manipulator) comes into contact with some point G on 
the surface of an object. Further, assume that @ is 
currently in contact with the object’s surface. Let the 
projections of @ and 6 onto the image plane be denoted 
by @’ and G’. Except for degenerate cases, the following 
is true: when contact is maintained between P and the 
object surface, compliant motions that cause the image 
plane distance between @’ and G‘ to decrease will cause 
@ to  converge to  G in Cartesian space. 

This can be seen using the following argument. Con- 
sider two concentric circles, C1 and Cz in the image 
plane, centered a t  G’, with C1 having the smaller ra- 
dius. For perspective projections, these circles and the 
vector from G’ to the center of projet tion define two 
concentric, conical visual constraint s irfaces, Si(7, A) 
and S ~ ( T ,  A). The intersections of S ~ ( T ,  A) and S ~ ( T ,  A) 
with the planar top surface of the object define two con- 
centric ellipses. When @’ moves from Cz to C1 in the 
image plane, it must be the case that I; has moved from 
S ~ ( T ,  A) to S1(7, A), and, due to the physical constraint 
of the compliant motion, to  the inner ellipse on the ob- 
ject surface. If this process is extended for image plane 
circles with successively smaller radii, P will eventually 
move onto a degenerate S(T,  A), which will be a single 
line through the points G and G I .  Note that it is not nec- 
essarily the case that the distance between @ and G will 
monotonically decrease as the distance between $‘ and 
2’ decreases, only that the position of will converge 
to G as the distance between @ I  and G’ is decreased. 

6 Motion Planning Using Visual 
Constraints 

This section considers the synthesis of motion plans that 
use both visual and physical constraints. This is done by 
extending the techniques used by the preimage motion 

planning formalism to exploit visual constraints. 
Since both motion tangent to  a visual constraint sur- 

face and motion terminated at a visual constraint sur- 
face are direct analogues to  force controlled motions (i.e. 
compliant and guarded motions), the preimage style of 
motion planning can be directly applied to these two 
types of visually constrained motions, provided visual 
constraint surfaces can be transformed into configura- 
tion space constraint surfaces. Since an algebraic de- 
scription of each visual constraint surface is known (this 
is simply S(T, A)), this can be done using existing tech- 
niques for constructing a configuration space from alge- 
braic descriptions of the obstacles in the work space (see 
[17, 131 for example). 

The general approach used by preimage planners to  
construct a motion strategy is to  use recursive back 
chaining to  compute preimages from the goal back to  
the initial configuration. A preimage of a goal is the 
set of points from which a commanded velocity is guar- 
anteed t o  terminate recognizably in the goal configura- 
tion. Recognizing that the goal configuration has been 
achieved is delegated to  a termination predicate. As 
described in [6], goal recognizability is often an elusive 
quality, due in part to the local nature of force sensing 
coupled with uncertainties in the exact position of the 
manipulator. 

For motions that terminate on contact with a visual 
constraint surface, goal recognizability is fairly straight- 
forward, since, as discussed in Section 4, the visual 
surface is defined in terms of observable visual events. 
Therefore, by definition of a visual constraint surface, 
contact between the manipulator and a visual constraint 
surface will always be a recognizable contact (i.e. the 
system will be able to determine both that the contact 
has been made, and with which visual constraint surface 
the contact has been made). 

Given that any contact with a visual constraint sur- 
face is recognizable, the remaining problem is to find 
the set of points from which a commanded velocity is 
guaranteed to  come into contact with a particular sur- 
face (i.e. a preimage of the surface). This can be ac- 
complished by using the negative velocity cone to back 
project constraints as discussed in [6]. Recognizing that 
a visual constraint surface is bounded by four curves, 
the preimage of the surface is bounded by the back- 
projections of the negative velocity cone from the set 
of points in these curves. (The four curves that bound 
a visual constraint surface are: the physical edge that 
generates the surface, the projection of the edge in the 
image plane, and two projection rays that are defined 
by the end points of the physical edge and their pro- 
jections onto the image plane.) The technique is the 
same as for physical constraint surfaces, an explanation 
of which can be found in [6]. 

Since there is no friction generated by a visual con- 
straint surface, the motion planner does not need to  con- 
sider sticking during a commanded motion along a vi- 
sual constraint surface. This greatly reduces the effect 
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of uncertainty in velocity control for motion planning 
using visual constraint surfaces. Further, since a visual 
constraint surface is not a physical surface, the planner 
also has the option of ignoring the surface. This is done 
by generating a commanded velocity that will intersect 
the surface and instructing the termination predicate to 
ignore the intersection when it occurs. 

Figure 3 shows a two-dimensional example of a three 
step plan that uses visual constraints to  move the config- 
uration from some uncertain initial configuration (rep- 
resented by an error ball) to  the indicated goal region 
in a two-dimensional configuration space. This exam- 
ple assumes frictionless contacts. The point is the 
measured initial configuration of the object to  be moved 
t o  the goal. Note that  the actual initial configuration of 
the object could correspond to any point in the error ball 
centered a t  The goal surface, marked G in the fig- 
ure, is the bottom surface of a hole in a block resting on 
the work table. Also shown in the figure are the image 
plane of the camera, and the error cone associated with 
a command velocity. 

The plan shown in this figure relies on the visual con- 
straint surface generated by point A and its projection 
onto the image plane (note that in the two-dimensional 
case, visual constraint surfaces are generated by points 
rather than by curves). The command velocity VI moves 
the object into contact with the surface using a visual 
termination condition, as  described in Section 4. Fol- 
lowing this contact, a Type I1 motion is used to  bring 
the object into the hole by executing command velocity 
v2. The motion of v2 is terminated upon physical con- 
tact with the side of the hole (using the force sensor). 
Finally, v3 moves the object into the goal region using 
physical compliance. This example illustrates how, by 
using both vis a1 and physical constraints, fairly simple 
plans can be ised to  achieve goals even in the pres- 
ence of significant uncertainty. Although this example 
problem could have been solved using only physical con- 
straints, i t  would have required a number of additional 
steps. In particular, given the uncertainties in position 
and control illustrated in the figure, a force-based strat- 
egy would require a t  least five steps, e.g. move to  the 
table; slide across the table to  make contact with the 
side of the block; slide upward along the side of the 
block; slide across the top the block and into the hole 
using a velocity directed to  the left and slightly down; 
move down the inside wall of the hole to the goal. 

In addition to  interleaving motions guided by physi- 
cal and visual constraints, i t  is possible to  use physical 
and visual constraints simultaneously, so that motion 
can be forced toward a goal configuration when phys- 
ical constraints alone would not be sufficient for this 
purpose. Formally, the combination of visual and phys- 
ical constraints has the effect of increasing the size of 
the preimage of the associated goal (that is, the set of 
points from which the commanded velocity is guaran- 
teed to terminate recognizably in the goal). Consider 
Fig. 4. The preimage of the goal (again, the goal G 

reloci ty 
"I)Ccrtalntv 

l G l  
Figure 3: This figure illustrates a three step motion 
strategy to move an object from any initial configura- 
tion within the error ball centered at  to the goal 
region (indicated by G) using a single visual constraint 
surface that is generated by the object vertex A and its 
projection onto the camera image plane. 

is the bottom surface of the hole), assuming the shown 
commanded velocity, is the region labeled P (again, fric- 
tionless contacts are assumed). When the planner con- 
siders visual constraints, the preimage is expanded to  
include all points on the surfaces SI and Sz, such that 
the points are within the field of view of the observing 
camera. The figure shows the two projection rays that 
bound the field of view of the camera, and the included 
portions of surfaces SI and Sa. I t  is not immediately ob- 
vious that S1 should b- included in this preimage, since 
a preimage is compute 1 relative to the commanded ve- 
locity, and for this example, the commanded velocity is 
away from the goal for points in region SI. However, as 
was described in Section 5 ,  by using visual servo control 
to reduce the image plane distance between the object 
and the goal, the velocity will be altered to force progress 
to the goal. 

7 Conclusions 
This paper has addressed issues related to the integra- 
tion of visual and physical constraints for the purpose of 
creating robust motion strategies that will succeed even 
when there is significant uncertainty in the world. The 
general problem has been divided into three subprob- 
lems: 
1. Defining a formal representation for the types of visual 

2. Defining a control mechanism that can be used to ex- 
ecute motions subject to visual constraints. 

3. Describing how the existing preimage approach to  mo- 
tion planning can be extended to exploit visual con- 
straints. 

constraints that  can be used in motion control. 
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G 

Figure 4: This figure illustrates how the preimage of 
the goal, G ,  is increased by combining visual constraints 
with the physical constraints. 

The research presented in this paper is still in its 
early stages. The mathematical preliminaries have been 
worked out, and an implementation is now in progress. 
The implementation includes control software to  gen- 
erate trajectory corrections in real time based on vi- 
sual feedback, and a configuration space preimage plan- 
ner that uses visual constraints as well as physical con- 
straints. The control software is being developed for use 
with a Unimation PUMA 560 robot. 
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