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Abstract 
In this paper we ecamine the search aspects of hierar- 

chical motion planning. All previous robot motion plan- 
ners based OR approximate cell decomposition ezibit re- 
dundancy between successive searches for a sequence of 
adjacent EMPTY cells. In this paper we present a search 
method that eliminates this redundancy. Our search 
method is founded on the ability to eflciently maintain a 
single-source shortest paths tree embedded in the connec- 
tivity graph that as subject t o  the dynamic modifications 
that result from incremental subdivision of cells. The 
convergence of our algorithm is  controlled b y  the vertex 
cost function, which relies on an estimate for the pro- 
portion of free space in a cell. The planner is fully 
implemented and we give empirical results to illustrate 
the performance improvements of the dynamic algorithm 
compared to  Dijkstra's algorithm. 

1 Introduction 
This paper addresses hierarchical motion planning us- 

ing approximate cell decomposition. We examine the 
problem of a polygonal robot amid polygonal obsta- 
cles in the plane. We reduce this problem to that of 
finding a path in the three dimensional configuration 
space of the robot, C = R2 x S'. All configurations 
q E C for which the robot intersects some obstacle be- 
long to the set of configuration space obstacles, denoted 
by CB. For all other configurations, the robot is in free 
space, denoted by Cfree .  A planning problem is spec- 
ified by an initial and a goal configuration, qjnjt and 
Qgoal respectively. A solution trajectory is a continuous 
mapping T : [0,1] -+ Cj,eel such that ~ ( 0 )  = qjnit and 

We use a hierarchical subdivision algorithm to par- 
tition C into rectangloid cells, K j  = [xi, $] x [&, ~] x 
[e:, e?] C R2 x S'. We denote a partition of C as P, 
and the subdivision of a cell K as P" following [8]. Each 
cell is labeled EMPTY, FULL, or MIXED depending on 
whether it is completely contained in Cjree, completely 
contained in CB, or not known to be completely con- 

+) = P g 0 5 f .  

tained in either Cjree or CB, respectively. The subdivi- 
sion algorithm is approximate because MIXED cells below 
some user-specified resolution are considered to be FULL 
[3,5,7,6,11, $1. We use the respresentation of CB from 
[9, 31 and the cell labeling algorithm given in [3]. 

A sequence of adjacent cells, ~ 1 ~ 2 .  . . K n l  is called a 
channel. A channel composed Of EMPTY and MIXED cells 
is termed an M-channel, and an M-channel that has only 
EMPTY cells is an Echannel. Let K i n i t  and ~~~~l denote 
those cells that contain qinjt and qgoaf respectively. Then 
the planning process consists of subdividing MIXED cells 
until an Echannel, K i n j t  . . . ~ g o 5 l  is found. Subdivision 
of cell K in Pi produces Pj+l as follows: Pi+l = (Pi - 
{ K } )  U 'P". A solution trajectory can be obtained from 
this E-channel subject to various criteria that we do not 
discuss here [3, 5 ,  7, 6 ,  81. 

To facilitate efficient search for an Echannel, we 
maintain the connectivity graph G(VIE) of P. Each 
vertex v E V has an associated non-FULL cell, n. An 
edge (vj,Vj) E E if and only if nj n ~j is a two di- 
mensional boundary area. The connectivity relation is 
non-reflexive and symmetric. 

Associated with each path in G is a channel in P. 
We refer to a path that corresponds to an M-channel 
(resp. Echannel) aa an M-path (resp. Epath). Let 
V j n i t  and Vgoal be the vertices associated with ninjt and 
Kgoal respectively. Planning is then reduced to searching 
Gj for an M-path and then selecting vertices on the M- 
path with MIXED cells to subdivide to obtain Gi+1. The 
traditional FindPath algorithm is shown below. 
procedure FindPath (qinit, qgo,r:config; &:graph) 
111 i 6 0 

a + an M-path from Vini t  to vgoal in Gi 
until ?r is an &path do 

select vertices {vi} C ?r 

subdivide cells { ~ j }  and construct Gj+l 
i t i + l  
?r t an M-path from V i n i t  to wgonl in Qi 

return a 
id 

'This work was supported by the National Science Foun- 
dation under grant number NSF-IRI-9110270 

In this paper we show how the performance of the 
traditional FindPath algorithm can be significantly im- 
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proved through the use of a single-source shortest paths 
tree (SP) to maintain potential solution paths at each 
iteration of the algorithm. Specifically, by dynamically 
maintaining SP, we reduce the search for an M-path 
in Line 7 to a local tree update. In contrast, previous 
implementations use a global search at each iteration. 

The remainder of the paper is organized as follows. 
In Section 2, we characterize the FindPath search space 
and present a more efficient search algorithm based on 
dynamically maintaining a single-source shortest paths 
tree. In Section 3 we introduce the terminology and 
concepts underlying our solution. Then in Section 4 we 
present a greedy solution to the dynamic single-source 
shortest paths problem. Section 5 reports empirical 
results showing the improvement of the dynamic algo- 
rithm over the traditional approach. Finally, Section 6 
gives our conclusions. 

2 FindPath Search 
The search for a collision-free path in C is carried out 

by finding an Echannel in a partition P of C. The search 
for an Echannel in P is equivalent to searching the cor- 
responding connectivity graph Q for an Epath  from Vinit 
to vgoal. The FindPath algorithm performs this search 
by finding a graph Gn that contains an Epath  from Vinit 
to vgoal .  The search for Gn begins with the initial con- 
nectivity graph GO and progresses by subdividing some 
MIXED cells in the underlying partition PO to obtain GI 
(thereby producing a more detailed representation of the 
underlying configuration space, C), and so on. 

Before we discuss in detail the search space of the 
FindPath algorithm, we present the basic terminology 
that will be used throughout this paper to discuss paths 
in graphs. 
Definition 1 The path cost of a path x is given by, 

pathcost(x) = { ,c"st(v' i f? r#  0 

Definition 2 Denote by IIg(u, U) the set of all simple 
paths in (i from U to  v .  
Definition 3 The least path cost from U to  v in Q i s  

given b y  min,Eng(u,v) pathcost(x). 
Definition 4 Denote by I I c ( u , v )  s IIg(u,v) the set 

of all simple least cost paths zn Q from U t o  U. 
Note that IIg(u, v )  = 0 if and only if IIc(u, v )  = 0. If 

there is any path x = (U .. . v )  then there is a least cost 
path; if there is no least cost path, then there can be no 
path at all. 

2.1 Finding a Solution Graph 
Assume that C is enclosed in a cell K O .  A given de- 

terministic subdivision algorithm uniquely partitions KO 

into subcells. We will restrict the problem by only 
allowing MIXED cells to be subdivided. 
Definition 5 Let AP be the space of all partitions that 
can be obtained by perfowning a sequence of subdivisions 
of MIXED cells. 

otherwise. 

Definition 6 Given two partitions, PI and Pz in dP, 
PI 5 Pz if and only i f  for all n1 E PI there exists some 
K Z  E PZ such that ~1 C nz. 

The 5 relation imposes a partial order on dP. Every 
pair of partitions has a greatest lower bound and a least 
upper bound in dP. Therefore dP is a lattice. For a 
given minimum resolution on the size of a cell, the lat- 
tice is finite. The least upper bound of the lattice is the 
initial partition PO that contains only one cell, K O ,  the 
initial unsubdivided cell that encloses C. The greatest 
lower bound of the lattice is the completely subdivided 
(to resolution) partition Poo. For every partition P E 
dP, there is a unique corresponding connectivity graph 
0. Thus the space of partitions dP defines a space of 
connectivity graphs which we denote by dQ. The bijec- 
tive map between dP and dG implies that dQ is also a 
lattice. 
Definition 7 A solution graph i s  any graph Q E d G  

that contains an E-path from Vinit t o  vgoal. Denote by 
SQ the set of all solution graphs. 

A sublattice is a subset of a lattice that is itself a 
lattice. If SG were a sublattice, we would want the 
FindPath algorithm to find the least upper bound of 
Sg as the solution graph. In general, the set SG does 
not form a sublattice of dQ because there may be mul- 
tiple incomparable solution graphs such that their least 
upper bound is not a solution graph. However, once an 
Epath  exists in Q, further subdivisions to MIXED cells 
in the underlying partition P do not affect the existence 
of that Epath.  We express this more formally in the 
following lemma. 

Lemma 1 Let $3 E SG, and let G = {Gi E dB I Pi 5 
P } .  Then G C 8 G . l  

Hill-climbing is well-suited for this search space be- 
cause A6 is a lattice and all subdivisions eventually 
lead to G,, which is a recognizable2 solution graph if 
SQ # 0 (since there are only EMPTY cells in Goo). Also, 
by Lemma 1, once a hill-climbing search is within SG, 
it can never leave SG. 

The search performed by the FindPath algorithm can 
be characterized by how it searches d G .  We have identi- 
fied three distinct heuristics in the FindPath algorithm 
as follows. 
1. The selection of a particular M-path on Line 7 of the 

FindPath algorithm serves to restrict subdivision to 
cells in a particular M-channel. We refer to this re- 
striction as the channel heuristic. This heuristic re- 
flects the belief that the cells in the particular M-path 
from Vinjt  to vgoal in Gj can be subdivided to produce 
an E-path from Vjnit to Vgoal .  

2. The ver te t  cost heuristic is a function that assigns a 
cost to each vertex. The function should reflect the 

'Proofs of all lemmas in this paper can be found in [Z]. 
2Due to the choice of M-path on Line 7 of the FindPath 

algorithm, a given graph may or may not be recognized as a 
solution graph. 

567 



3. 

odds of finding a collision-free trajectory in the corre- 
sponding cell. The desired properties of a good cost 
function are (1) rapid growth for small p(v), (2) a 
preference for larger cells over smaller cells, (3) pos- 
itive values, and (4) continuously valued, where p(w) 
measures the proportion of Ct,,, in the cell associated 
with v. This function is described in more detail in 
[2]. Vertex cost defines which M-path is the one of 
least cost at any iteration of the FindPath algorithm. 

The cell selection heuristic is used to identify which 
MIXED cells to subdivide on Line 4 of the FindPath 
algorithm. Selecting the maximum cost vertex with a 
MIXED cell in the least cost path (winit . . . vgoa,) forces 
the planner to  give precedence to bottlenecks. This 
causes the planner to work out the most difficult con- 
straints on the solution trajectory first, the remaining 
constraints, prioritized by the size of the bottleneck 
presented, are incrementally easier to satisfy. 

source, VO, to every vertex is maintained. For our plan- 
ning application, WO is Vinit, and the path we are inter- 
ested in is the path from WO to V p a l .  This path can be 
returned in time O(I), where 1 is the length of the path, 
by following the unique pointers from Wgoal to vo. This 
path is equivalent to the path found by A* search. 

3 Computing SP 
In this section we introduce the background material 

for computing a single-source shortest paths tree, SP, 
embedded in a connectivity graph, 4. 

3.1 Terminology 
In the standard shortest paths problem, we are given 

a weighted, directed graph B(V, E), with cost function 
cost : E -+ (O,oo), mapping edges to positive, real- 
valued costs [l, 41. For our problem, we associate costs 
with vertices rather than edges. The reason for this is 
that in a connectivity graph, the cells associated with 
the vertices represent the physic- space through which 
a trajectory must The edges are associated with 
the infinitesimal boundary between two cells. w e  could 
equivalently 88- the cost of each edge as the average 
of the costs of the vertices it connects. 
Definition 8 W e  say that G'(V', E') is a tree embed- 

ded in G(V, E), rooted a t  voI i f  and only if V' C V and 
E' C E are such that ewew vertex v E V' is reachable 

These three heuristics combine to form a Single vertex 
selection heuristic that is used by FindPath to  expand a 
node in the search. In some sense, the channel heuristic 
and cell selection heuristic can be viewed as fixed, and 
the vertex cost function can be viewed as the crucial 
parameter that controls the search. 

2.2 Finding an M-Path 
There have been two methods for finding an M-path 

at each iteration of the FindPath algorithm: A* search, 
and what we call the bridge the gap strategy. The bridge 
the gap strategy was developed by [3] and embellished 
by [7, 111 to avoid the work of repeated A* search. 

The bridge the gap strategy can be explained as fol- 
lows. Consider the vertex us on a path in Qi with a 
MIXED cell K~ E Pi. The M-path has the form 

Ti = (vinit . .vu-1,vs,va+1 .vgoal). 

Suppose the cell K~ is subdivided to produce Pj+l. The 
corresponding connectivity graph Gi+l is the same as 4i 
except that vertices adjacent to vI in Gi are now ad- 
jacent to vertices {vi), corresponding to the nOn-FULL 
cells of P"*. The bridge the gap strategy is to form a 
new path ni+l by connecting v,-1 to vs+l. In the case 
of [7, 113, if no path (vs-l, V I . .  .v2,vs+1) exists through 
{ w j  } , then the bridge construction fails and the search 
backtracks over path decisions made in previous itera- 
tions of the FindPath algorithm. In the case of [3], 
a local detour from w s - l  to v,+l is attempted; and if 
bridge construction fails, a new path from Vinit to Vgoal 
is found from scratch. Unlike A* search, the bridge the 
gap strategy is not guaranteed to find the least cost path 
from Vinit to  Vgoal in Gi+1. 

We introduce a mechanism to eliminate the exhibited 
redundancy of repeatedly applying A* search without 
sacrificing obtaining a least cost path. Specifically, we 
make use of the single-source shortest paths tree (SP) 
embedded in GI wherein the least cost path from the 

from vo by a unique, simplk path in E'. More precisely, 
Vv E V', I I p ( w 0 ,  w )  is  a singleton set. 

Given a tree B'(V', E') embedded in B(V, E), then for 
a vertex v E V' we have the following 
relevant tree and graph definitions. 
neighbors(w) = {U E V I (U, w )  E E }  

parent(v) = U E V' such that (U, w )  E E' %;;[:I = {U E V' I U # v and 3p  E V' 
such that (p, U) E E' and (p, w )  E E'} 

proper-neighbors(v) = neighbors(v) - ({parent(w)} U 
children(v) U siblings(w)). 

The relationships defined above are illustrated in Fig- 
ure 1. The figure emphasizes the fact that there can be 
multiple children (c), siblings (s), and proper neighbors 
(N) of a vertex (v), but only one parent (P). Note that 
siblings are not necessarily neighbors. Arrows in the 
figure represent directed tree edges on top of undirected 
edges in the underlying graph. 
Definition 9 Given a tree Q'(V',E') embedded in a 

graph G(V, E ) ,  rooted at W O ,  denote b y  n ~ ~ ( v )  the unique 
simple path from the root vo to  the vertex v in 4'. 

Denote by parentG,(v) the parent of a vertex in n g ~  (v). 
A singlesource shortest paths tree 

(SP) is  a tree, Q'(V', E') embedded in a graph G(V, E ) ,  
rooted at W O ,  such that 

= {U E V' I (w,u) E E') 

Definition 10 

V' = {v E v I II&JO, w )  # 0). 
vw E V' 7rp(v) E IIE(w0,v)- 
In other words, SP is a directed subgraph G'(V', E') 

of G(V, E) such that V' consists of exactly those vertices 
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Figure 1: Vertex Relationships. 

in Q that are reachable from the source vertex, and E’ 
consists of exactly those edges that form the least cost 
paths from the source to every vertex. 
Definition 11 Given a tree Q‘(V’, E’) embedded in a 

graph Q(V,E),  rooted at vo, a wertex U E V is locally 
SP (abbreviated ISP) if and only if 

if r p ( v )  = 0 or v = vo 
p otherwise parento,(v) = 

where p is such that V n E neighbors(v), 
pathcost(Tgt ( p ) )  5 pathcost(?rgr(n)). 

Lemma 2 Given a tree Q’(V’, E’) embedded in a graph 
Q(V,E),  rooted at V O ,  every v E V is IS? if  and only if 
Q’ i s  a single-source shortest paths tree embedded in  G. 

3.2 Changing Costs 

Throughout this section we will use the following no- 
tation. The graph Qi+l is obtained by changing the cost 
of some vertex v in Gi: Structurally, the two graphs 
are identical. The tree Qi is embeddeded in Qi and is 
a single-source shortest paths tree. We will sometimes 
refer to Q{ as SPi to emphasize this fact. The tree Qi+l 
is embedded in Qi+l and is structurally the same as Qi 
but has a different cost for v .  In general Qi+l is not a 
single-source shortest paths tree. 
Definition 12 We say that a vertex U is independent 
of v if and only if the following independence equations 
hold for all possible changes t o  cost(v): 
0 pathcost(?rgr,+, (U)) = pathcost(xgr,(u)) 

Definition 13 We say that a vertez: U is relatively 
independent of v for some specific set changes t o  cost(u), 
if and only if the independence equations hold for all 
such changes. 

Lemma 3 A vertex U is independent of U, v # U, if 
pathcost( ?rori (parentg; (U))) 5 pathcost( ? r ~ r ~  (parentoi (U))). 

A consequence of Lemma 3 is that the parent, siblings, 
and some proper-neighbors of a vertex v are independent 
of v .  The following corollary extends the lemma to the 
rest of the proper-neighbors. 

Corollary 4 A vertex U is  relatively independent 
of v,  U # v and pathcost(?rgti(parentg;(ec))) 5 
pathcost(api(v)), for those changes 6 in cost(v) such 
that pathcost(?rgr, (parento; ( U ) ) )  5 pathcost(.lrpt,(v)) + 
5. 

Lemma 5 A vertex U that is  relatively independent of 
v in Gi for  the given change, is  1SP in Qj+l. 

It follows that a vertex U that is independent of U in 
Gil is U P  in Qj+l. 

We have now established a local sufficiency condition 
for vertex independence and hence a local condition for 
whether a vertex is 1SP in Qi+l. We have not identified 
all independent vertices, however. Furthermore, we have 
not yet identified the dependent vertices nor indicated 
whether they are ISP in Gi+l .  Knowing that a vertex U 
is not relatively independent of v for a given change to 
cost(v) is not sufficient information to show whether U 
is either 1SP or not 1SP in Qi+l. Instead, we examine 
two complementary subsets of V’: descendents and non- 
descendents, which are denoted by D ( v )  and V’ - D(v)  
respectively, subject to changing cost(v). 

Lemma 6 The descendents of v are 1SP in Qi+r f o r  all 
decreases to  cost(v). 

Lemma 7 A proper-neighbor n of v is not 1SP in Gj+l 
if cost(v) decreases b y  more than pathcost(?rgr,(v)) - 
pathcost(?rGri (parentg:(n))). 

Lemma 8 The non-descendents of v are relatively in- 
dependent of v for all increases in cost(v). 

A direct consequence of Lemma 8 and Corollary 4 is 
that non-descendents are 1SP in Oi+l when a vertex 
cost increases. Knowing that a vertex is a descendent 
is insufficient to show whether the vertex is 1SP or not 
1SP in Qi+l for an increase in cost(v). Furthermore, we 
know of no precise local conditions. 

The preceding lemmas identify large, easily recognized 
subsets of vertices that are already 1SP after a given 
change to the graph and therefore need no further pro- 
cessing. In the case of a decrease to cost(v), Lemma 7 
gives a local criterion for identifying those vertices that 
are no longer 1SP in Gi+l. Lemma 7 also suggests that 
the local repair is also the globally correct repair. Such 
repairs can be propagated outward from the source of 
the change. However, the above lemmas do not sanc- 
tion any specific action on the part of an algorithm to 
construct SPi+, for an increase in cost(v), they only 
restrict our attention to the set D(v).  Using a local de- 
cision criterion to propage arbitrary changes the rest of 
the graph, and in particular to assign a new parent to 
a vertex whose initial parent in G{+l has increased its 
path cost, may lead to an unbounded algorithm. Cycles 
of arbitrary length can form and the algorithm will loop 
until the path cost of the cycle becomes large enough 
for a neighbor of some vertex in the cycle to provide a 
lower cost path. 
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3.3 Changing the Graph 
In our planning application, a selected vertex U, is 

deleted from Gi,  its corresponding MIXED cell tCa is sub- 
divided, and the (interconnected) vertices corresponding 
to the nOn-FULL cells of P"* are added to construct Gi+l .  
The new vertices also inherit a subset of the neighbors of 
V I .  The cell adjacency tests take only a constant amount 
of time for rectangloid cells. So computing Qi+l from Bj 
is a local operation of complexity on the order of the 
number of neighbors of us. 

are re- 
moved from g: as well as from gie As a result of this 
modification to gi, children(v,) do not have parents in 
Gi+l, and psrentp(v,) has one less child in Gl+l. Also, 
each newly created vertex has no parent in Bi+l. 

The graph is repaired and a new singlesource shortest 
paths tree is computed by the algorithm given.in the 
next section. 

All edges incident on, or emanating from, 

4 A Dynamic Algorithm 
We identified in Section 3 those vertices that are inde- 

pendent of a given change to the graph. There is no need 
to  re-initialize such vertices as they are already correct. 
The algorithm given in this section can be seen to be 
a direct implementation of Lemmas 3-8, with a greedy 
local criterion for the case of a parent increasing its path 
cost. Split-Vertex is the top-level function to be called 
from Findpath; the other procedures are styled after [4] 
to emphasize the similarity to Dijkstra's algorithm [l, 41. 

This algorithm takes advantage of the sparseness of 
the graph. Therefore we give the following lemma for 
octrees, the spatial decomposition used in this paper. 

Lemma 9 The connectivity raph G(V, E) of an ociree 8 i s  sparse. Specifically [El < $ 1 ~ 1 .  
In the pseudocode for dynamically constructing 

SPi+l which follows, Divide-Vertex is responsible for 
deleting the vertex and associated edges from Gi and 
SPi,  subdividing the cell associated with the vertex, la- 
beling the new cells, and creating and adding the new 
vertices to construct Gi+1. Divide-Vertex returns the 
set of newly created vertices. Min-Neighbor returns the 
neighboring vertex with the minimum path cost (the 
posted least cost path to the source). BuildPQ, Update- 
Priority, Insert, and DeleteMin are the standard prior- 
ity queue functions [l, 41, modified to mark and unmark 
vertices as they are inserted and deleted from the prior- 
ity queue. This modification allows for an U(1) priority 
queue membership test. 
procedure Split-Vertex (v:vertex; G:graph) 
[l] p c v.parent 
[2] C t vxhildren 
[3] N c Divide-Vertex(v,O) 
[4] Dynamic-SSSP Cp, N U C) 
end 

procedure Dynamic-SSSP (p:vertex; newvertex-list) 
[l] Dyn-Initialize(new) 
[2] Q t BuildPQ({p} U new) 
[3] while Q # 0 do 
[4] U t DeleteMin(Q) 
[5] PI Dyn-Relax(u, v ,  Q) 
end 

foreach v E u.neighbors do 

procedure Dyn-Initialize (verticexvertex-list) 
[l] foreach q E vertices do 
[2] q.parent t Min-Neighbor(q) 
[3] 
end 

q.pathcost t q.cost + q.parent.pathcost 

procedure Dyn-Relax (U, v:vertex; Q:p-queue) 
[l] c t v.cost + u.pathcost 
[2] if c < wpathcost 
[3] then Update-Vertex(u, v ,  Q) 
[4] elseif U = u p r e n t  and u.pathcost < c 
[5] then Update-Vertex(Min-Neighbor(v), w ,  Q )  
end 

procedure Update-Vertex (U, wxertex; Qpqueue) 
[l] v.parent c U 

[2] v.pathcost t v.cost + u.pathcost 
[3] if v E Q 
[4] then UpdatePriority(v, Q) 
[5] else Insert(v, Q) 
end 

In the complexity analysis that follows, let 2)s be 
the vertex that is subdivided, let 1111 be the number 
of vertices that are not independent of 211, and let le1 
be the number of edges incident on those vertices. le1 
and 1.1 are subset analogs of E and V. Dyn-Initialize 
and BuildPQ are each called once in Lines 1 and 2 of 
Dynamic-SSSP respectively. The while loop at Line 3 
results in at best O(le1) calls to Dyn-Relax and O(lv1) 
calls to DeleteMin. 

BuildPQ takes O(n) time where n is the number 
of vertices initially inserted into the queue [4]. Min- 
Neighbor requires, on average, O(d) time where d is 
the average vertex degree. Dyn-Initialize calls Min- 
Neighbor for each vertex which is U ( d 2 )  time. How- 
ever, we can charge the cost of finding the minimum 
path cost neighbor to the loop at Line 5 of Dynamic- 
SSSP. Therefore the first two steps of Dynamic-SSSP 
require U(d)  time. DeleteMin and Update-Vertex re- 
quire O(log n) time where n is size of the priority queue 
which is bounded by ! V I ,  so Dyn-Relax takes time takes 
time O(1ogIvl). If every vertex is guaranteed to be 
deleted from the queue at most a constant number of 
times, the time complexity of Dynamic-SSSP would be 
O(lel log 1.1). As we indicated in Section 3, we cannot 
guarantee the local criterion employed when the parent 
of a vertex increases is a good choice. A poor choice 
simply increases the amount of time required to relax 
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a- 1200- methods. We presented an algorithm for dynamically 
4m- 1w - maintaining a single-source shortest paths tree (SP) ef- 
3wo- ficiently. The ability to maintain SP under dynamic 
3OOo- W O -  modifications to  the underlying connectivity graph is an 

important source of the time improvements presented 
here. Finally, we introduced an improved vertex cost 
function that more accurately measures the complex- 
ity of the underlying, unexplored space. This gives 
our search algorithm better convergence properties than 
other approaches. 
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the queue at every iteration, exhibited the expected lin- 
ear growth. If the dynamic algorithm maintains at 
most a constant sized queue, then the complexity anal- 
ysis for the algorithm becomes linear. 

6 Conclusions 
In this paper we presented a complete formulation of 

the FindPath search problem which has not been ad- 
equately addressed for approximate cell decomposition 
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