
Efficient Search and Hierarchical Motion Planning Using
Dynamic Single-Source Shortest Paths Trees

Michael Barbehenn Seth Hutchinson*
Artificial Intelligence Group

The Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract
In this paper we ecamine the search aspects of hierar-

chical motion planning. All previous robot motion plan-
ners based OR approximate cell decomposition ezibit re-
dundancy between successive searches for a sequence of
adjacent EMPTY cells. In this paper we present a search
method that eliminates this redundancy. Our search
method is founded on the ability to eflciently maintain a
single-source shortest paths tree embedded in the connec-
tivity graph that as subject t o the dynamic modifications
that result from incremental subdivision of cells. The
convergence of our algorithm is controlled b y the vertex
cost function, which relies on an estimate for the pro-
portion of free space in a cell. The planner is fully
implemented and we give empirical results to illustrate
the performance improvements of the dynamic algorithm
compared to Dijkstra's algorithm.

1 Introduction
This paper addresses hierarchical motion planning us-

ing approximate cell decomposition. We examine the
problem of a polygonal robot amid polygonal obsta-
cles in the plane. We reduce this problem to that of
finding a path in the three dimensional configuration
space of the robot, C = R2 x S'. All configurations
q E C for which the robot intersects some obstacle be-
long to the set of configuration space obstacles, denoted
by CB. For all other configurations, the robot is in free
space, denoted by Cfree . A planning problem is spec-
ified by an initial and a goal configuration, qjnjt and
Qgoal respectively. A solution trajectory is a continuous
mapping T : [0,1] -+ Cj,eel such that ~ (0) = qjnit and

We use a hierarchical subdivision algorithm to par-
tition C into rectangloid cells, K j = [xi, $] x [&, ~] x
[e:, e?] C R2 x S'. We denote a partition of C as P,
and the subdivision of a cell K as P" following [8]. Each
cell is labeled EMPTY, FULL, or MIXED depending on
whether it is completely contained in Cjree, completely
contained in CB, or not known to be completely con-

+) = P g 0 5 f .

tained in either Cjree or CB, respectively. The subdivi-
sion algorithm is approximate because MIXED cells below
some user-specified resolution are considered to be FULL
[3,5,7,6,11, $1. We use the respresentation of CB from
[9, 31 and the cell labeling algorithm given in [3].

A sequence of adjacent cells, ~ 1 ~ 2 . . . K n l is called a
channel. A channel composed Of EMPTY and MIXED cells
is termed an M-channel, and an M-channel that has only
EMPTY cells is an Echannel. Let K i n i t and ~~~~l denote
those cells that contain qinjt and qgoaf respectively. Then
the planning process consists of subdividing MIXED cells
until an Echannel, K i n j t . . . ~ g o 5 l is found. Subdivision
of cell K in Pi produces Pj+l as follows: Pi+l = (Pi -
{ K }) U 'P". A solution trajectory can be obtained from
this E-channel subject to various criteria that we do not
discuss here [3, 5 , 7, 6 , 81.

To facilitate efficient search for an Echannel, we
maintain the connectivity graph G(VIE) of P. Each
vertex v E V has an associated non-FULL cell, n. An
edge (vj,Vj) E E if and only if nj n ~j is a two di-
mensional boundary area. The connectivity relation is
non-reflexive and symmetric.

Associated with each path in G is a channel in P.
We refer to a path that corresponds to an M-channel
(resp. Echannel) aa an M-path (resp. Epath). Let
V j n i t and Vgoal be the vertices associated with ninjt and
Kgoal respectively. Planning is then reduced to searching
Gj for an M-path and then selecting vertices on the M-
path with MIXED cells to subdivide to obtain Gi+1. The
traditional FindPath algorithm is shown below.
procedure FindPath (qinit, qgo,r:config; &:graph)
111 i 6 0

a + an M-path from Vini t to vgoal in Gi
until ?r is an &path do

select vertices {vi} C ?r

subdivide cells { ~ j } and construct Gj+l
i t i + l
?r t an M-path from V i n i t to wgonl in Qi

return a
id

'This work was supported by the National Science Foun-
dation under grant number NSF-IRI-9110270

In this paper we show how the performance of the
traditional FindPath algorithm can be significantly im-

566
1050-4729/93 $3.00 0 1993 IEEE

proved through the use of a single-source shortest paths
tree (SP) to maintain potential solution paths at each
iteration of the algorithm. Specifically, by dynamically
maintaining SP, we reduce the search for an M-path
in Line 7 to a local tree update. In contrast, previous
implementations use a global search at each iteration.

The remainder of the paper is organized as follows.
In Section 2, we characterize the FindPath search space
and present a more efficient search algorithm based on
dynamically maintaining a single-source shortest paths
tree. In Section 3 we introduce the terminology and
concepts underlying our solution. Then in Section 4 we
present a greedy solution to the dynamic single-source
shortest paths problem. Section 5 reports empirical
results showing the improvement of the dynamic algo-
rithm over the traditional approach. Finally, Section 6
gives our conclusions.

2 FindPath Search
The search for a collision-free path in C is carried out

by finding an Echannel in a partition P of C. The search
for an Echannel in P is equivalent to searching the cor-
responding connectivity graph Q for an Epath from Vinit
to vgoal. The FindPath algorithm performs this search
by finding a graph Gn that contains an Epath from Vinit
to vgoal . The search for Gn begins with the initial con-
nectivity graph GO and progresses by subdividing some
MIXED cells in the underlying partition PO to obtain GI
(thereby producing a more detailed representation of the
underlying configuration space, C), and so on.

Before we discuss in detail the search space of the
FindPath algorithm, we present the basic terminology
that will be used throughout this paper to discuss paths
in graphs.
Definition 1 The path cost of a path x is given by,

pathcost(x) = { ,c"st(v' i f? r# 0

Definition 2 Denote by IIg(u, U) the set of all simple
paths in (i from U to v .
Definition 3 The least path cost from U to v in Q i s

given b y min,Eng(u,v) pathcost(x).
Definition 4 Denote by I I c (u , v) s IIg(u,v) the set

of all simple least cost paths zn Q from U t o U.
Note that IIg(u, v) = 0 if and only if IIc(u, v) = 0. If

there is any path x = (U .. . v) then there is a least cost
path; if there is no least cost path, then there can be no
path at all.

2.1 Finding a Solution Graph
Assume that C is enclosed in a cell K O . A given de-

terministic subdivision algorithm uniquely partitions KO

into subcells. We will restrict the problem by only
allowing MIXED cells to be subdivided.
Definition 5 Let AP be the space of all partitions that
can be obtained by perfowning a sequence of subdivisions
of MIXED cells.

otherwise.

Definition 6 Given two partitions, PI and Pz in dP,
PI 5 Pz if and only i f for all n1 E PI there exists some
K Z E PZ such that ~1 C nz.

The 5 relation imposes a partial order on dP. Every
pair of partitions has a greatest lower bound and a least
upper bound in dP. Therefore dP is a lattice. For a
given minimum resolution on the size of a cell, the lat-
tice is finite. The least upper bound of the lattice is the
initial partition PO that contains only one cell, K O , the
initial unsubdivided cell that encloses C. The greatest
lower bound of the lattice is the completely subdivided
(to resolution) partition Poo. For every partition P E
dP, there is a unique corresponding connectivity graph
0. Thus the space of partitions dP defines a space of
connectivity graphs which we denote by dQ. The bijec-
tive map between dP and dG implies that dQ is also a
lattice.
Definition 7 A solution graph i s any graph Q E d G

that contains an E-path from Vinit t o vgoal. Denote by
SQ the set of all solution graphs.

A sublattice is a subset of a lattice that is itself a
lattice. If SG were a sublattice, we would want the
FindPath algorithm to find the least upper bound of
Sg as the solution graph. In general, the set SG does
not form a sublattice of dQ because there may be mul-
tiple incomparable solution graphs such that their least
upper bound is not a solution graph. However, once an
Epath exists in Q, further subdivisions to MIXED cells
in the underlying partition P do not affect the existence
of that Epath. We express this more formally in the
following lemma.

Lemma 1 Let $3 E SG, and let G = {Gi E dB I Pi 5
P } . Then G C 8 G . l

Hill-climbing is well-suited for this search space be-
cause A6 is a lattice and all subdivisions eventually
lead to G,, which is a recognizable2 solution graph if
SQ # 0 (since there are only EMPTY cells in Goo). Also,
by Lemma 1, once a hill-climbing search is within SG,
it can never leave SG.

The search performed by the FindPath algorithm can
be characterized by how it searches d G . We have identi-
fied three distinct heuristics in the FindPath algorithm
as follows.
1. The selection of a particular M-path on Line 7 of the

FindPath algorithm serves to restrict subdivision to
cells in a particular M-channel. We refer to this re-
striction as the channel heuristic. This heuristic re-
flects the belief that the cells in the particular M-path
from Vinjt to vgoal in Gj can be subdivided to produce
an E-path from Vjnit to Vgoal .

2. The ver te t cost heuristic is a function that assigns a
cost to each vertex. The function should reflect the

'Proofs of all lemmas in this paper can be found in [Z].
2Due to the choice of M-path on Line 7 of the FindPath

algorithm, a given graph may or may not be recognized as a
solution graph.

567

3.

odds of finding a collision-free trajectory in the corre-
sponding cell. The desired properties of a good cost
function are (1) rapid growth for small p(v), (2) a
preference for larger cells over smaller cells, (3) pos-
itive values, and (4) continuously valued, where p(w)
measures the proportion of Ct,,, in the cell associated
with v. This function is described in more detail in
[2]. Vertex cost defines which M-path is the one of
least cost at any iteration of the FindPath algorithm.

The cell selection heuristic is used to identify which
MIXED cells to subdivide on Line 4 of the FindPath
algorithm. Selecting the maximum cost vertex with a
MIXED cell in the least cost path (winit . . . vgoa,) forces
the planner to give precedence to bottlenecks. This
causes the planner to work out the most difficult con-
straints on the solution trajectory first, the remaining
constraints, prioritized by the size of the bottleneck
presented, are incrementally easier to satisfy.

source, VO, to every vertex is maintained. For our plan-
ning application, WO is Vinit, and the path we are inter-
ested in is the path from WO to V p a l . This path can be
returned in time O(I), where 1 is the length of the path,
by following the unique pointers from Wgoal to vo. This
path is equivalent to the path found by A* search.

3 Computing SP
In this section we introduce the background material

for computing a single-source shortest paths tree, SP,
embedded in a connectivity graph, 4.

3.1 Terminology
In the standard shortest paths problem, we are given

a weighted, directed graph B(V, E), with cost function
cost : E -+ (O,oo), mapping edges to positive, real-
valued costs [l, 41. For our problem, we associate costs
with vertices rather than edges. The reason for this is
that in a connectivity graph, the cells associated with
the vertices represent the physic- space through which
a trajectory must The edges are associated with
the infinitesimal boundary between two cells. w e could
equivalently 88- the cost of each edge as the average
of the costs of the vertices it connects.
Definition 8 W e say that G'(V', E') is a tree embed-

ded in G(V, E), rooted a t voI i f and only if V' C V and
E' C E are such that ewew vertex v E V' is reachable

These three heuristics combine to form a Single vertex
selection heuristic that is used by FindPath to expand a
node in the search. In some sense, the channel heuristic
and cell selection heuristic can be viewed as fixed, and
the vertex cost function can be viewed as the crucial
parameter that controls the search.

2.2 Finding an M-Path
There have been two methods for finding an M-path

at each iteration of the FindPath algorithm: A* search,
and what we call the bridge the gap strategy. The bridge
the gap strategy was developed by [3] and embellished
by [7, 111 to avoid the work of repeated A* search.

The bridge the gap strategy can be explained as fol-
lows. Consider the vertex us on a path in Qi with a
MIXED cell K~ E Pi. The M-path has the form

Ti = (vinit . .vu-1,vs,va+1 .vgoal).

Suppose the cell K~ is subdivided to produce Pj+l. The
corresponding connectivity graph Gi+l is the same as 4i
except that vertices adjacent to vI in Gi are now ad-
jacent to vertices {vi), corresponding to the nOn-FULL
cells of P"*. The bridge the gap strategy is to form a
new path ni+l by connecting v,-1 to vs+l. In the case
of [7, 113, if no path (vs-l, V I . . .v2,vs+1) exists through
{ w j } , then the bridge construction fails and the search
backtracks over path decisions made in previous itera-
tions of the FindPath algorithm. In the case of [3],
a local detour from w s - l to v,+l is attempted; and if
bridge construction fails, a new path from Vinit to Vgoal
is found from scratch. Unlike A* search, the bridge the
gap strategy is not guaranteed to find the least cost path
from Vinit to Vgoal in Gi+1.

We introduce a mechanism to eliminate the exhibited
redundancy of repeatedly applying A* search without
sacrificing obtaining a least cost path. Specifically, we
make use of the single-source shortest paths tree (SP)
embedded in GI wherein the least cost path from the

from vo by a unique, simplk path in E'. More precisely,
Vv E V', I I p (w 0 , w) is a singleton set.

Given a tree B'(V', E') embedded in B(V, E), then for
a vertex v E V' we have the following
relevant tree and graph definitions.
neighbors(w) = {U E V I (U, w) E E }

parent(v) = U E V' such that (U, w) E E' %;;[:I = {U E V' I U # v and 3p E V'
such that (p, U) E E' and (p, w) E E'}

proper-neighbors(v) = neighbors(v) - ({parent(w)} U
children(v) U siblings(w)).

The relationships defined above are illustrated in Fig-
ure 1. The figure emphasizes the fact that there can be
multiple children (c), siblings (s), and proper neighbors
(N) of a vertex (v), but only one parent (P). Note that
siblings are not necessarily neighbors. Arrows in the
figure represent directed tree edges on top of undirected
edges in the underlying graph.
Definition 9 Given a tree Q'(V',E') embedded in a

graph G(V, E) , rooted at W O , denote b y n ~ ~ (v) the unique
simple path from the root vo to the vertex v in 4'.

Denote by parentG,(v) the parent of a vertex in n g ~ (v).
A singlesource shortest paths tree

(SP) is a tree, Q'(V', E') embedded in a graph G(V, E) ,
rooted at W O , such that

= {U E V' I (w,u) E E')

Definition 10

V' = {v E v I II&JO, w) # 0).
vw E V' 7rp(v) E IIE(w0,v)-
In other words, SP is a directed subgraph G'(V', E')

of G(V, E) such that V' consists of exactly those vertices

568

Figure 1: Vertex Relationships.

in Q that are reachable from the source vertex, and E’
consists of exactly those edges that form the least cost
paths from the source to every vertex.
Definition 11 Given a tree Q‘(V’, E’) embedded in a

graph Q(V,E), rooted at vo, a wertex U E V is locally
SP (abbreviated ISP) if and only if

if r p (v) = 0 or v = vo
p otherwise parento,(v) =

where p is such that V n E neighbors(v),
pathcost(Tgt (p)) 5 pathcost(?rgr(n)).

Lemma 2 Given a tree Q’(V’, E’) embedded in a graph
Q(V,E), rooted at V O , every v E V is IS? if and only if
Q’ i s a single-source shortest paths tree embedded in G.

3.2 Changing Costs

Throughout this section we will use the following no-
tation. The graph Qi+l is obtained by changing the cost
of some vertex v in Gi: Structurally, the two graphs
are identical. The tree Qi is embeddeded in Qi and is
a single-source shortest paths tree. We will sometimes
refer to Q{ as SPi to emphasize this fact. The tree Qi+l
is embedded in Qi+l and is structurally the same as Qi
but has a different cost for v . In general Qi+l is not a
single-source shortest paths tree.
Definition 12 We say that a vertex U is independent
of v if and only if the following independence equations
hold for all possible changes t o cost(v):
0 pathcost(?rgr,+, (U)) = pathcost(xgr,(u))

Definition 13 We say that a vertez: U is relatively
independent of v for some specific set changes t o cost(u),
if and only if the independence equations hold for all
such changes.

Lemma 3 A vertex U is independent of U, v # U, if
pathcost(?rori (parentg; (U))) 5 pathcost(? r ~ r ~ (parentoi (U))).

A consequence of Lemma 3 is that the parent, siblings,
and some proper-neighbors of a vertex v are independent
of v . The following corollary extends the lemma to the
rest of the proper-neighbors.

Corollary 4 A vertex U is relatively independent
of v, U # v and pathcost(?rgti(parentg;(ec))) 5
pathcost(api(v)), for those changes 6 in cost(v) such
that pathcost(?rgr, (parento; (U))) 5 pathcost(.lrpt,(v)) +
5.

Lemma 5 A vertex U that is relatively independent of
v in Gi for the given change, is 1SP in Qj+l.

It follows that a vertex U that is independent of U in
Gil is U P in Qj+l.

We have now established a local sufficiency condition
for vertex independence and hence a local condition for
whether a vertex is 1SP in Qi+l. We have not identified
all independent vertices, however. Furthermore, we have
not yet identified the dependent vertices nor indicated
whether they are ISP in Gi+l . Knowing that a vertex U
is not relatively independent of v for a given change to
cost(v) is not sufficient information to show whether U
is either 1SP or not 1SP in Qi+l. Instead, we examine
two complementary subsets of V’: descendents and non-
descendents, which are denoted by D (v) and V’ - D(v)
respectively, subject to changing cost(v).

Lemma 6 The descendents of v are 1SP in Qi+r f o r all
decreases to cost(v).

Lemma 7 A proper-neighbor n of v is not 1SP in Gj+l
if cost(v) decreases b y more than pathcost(?rgr,(v)) -
pathcost(?rGri (parentg:(n))).

Lemma 8 The non-descendents of v are relatively in-
dependent of v for all increases in cost(v).

A direct consequence of Lemma 8 and Corollary 4 is
that non-descendents are 1SP in Oi+l when a vertex
cost increases. Knowing that a vertex is a descendent
is insufficient to show whether the vertex is 1SP or not
1SP in Qi+l for an increase in cost(v). Furthermore, we
know of no precise local conditions.

The preceding lemmas identify large, easily recognized
subsets of vertices that are already 1SP after a given
change to the graph and therefore need no further pro-
cessing. In the case of a decrease to cost(v), Lemma 7
gives a local criterion for identifying those vertices that
are no longer 1SP in Gi+l. Lemma 7 also suggests that
the local repair is also the globally correct repair. Such
repairs can be propagated outward from the source of
the change. However, the above lemmas do not sanc-
tion any specific action on the part of an algorithm to
construct SPi+, for an increase in cost(v), they only
restrict our attention to the set D(v). Using a local de-
cision criterion to propage arbitrary changes the rest of
the graph, and in particular to assign a new parent to
a vertex whose initial parent in G{+l has increased its
path cost, may lead to an unbounded algorithm. Cycles
of arbitrary length can form and the algorithm will loop
until the path cost of the cycle becomes large enough
for a neighbor of some vertex in the cycle to provide a
lower cost path.

569

3.3 Changing the Graph
In our planning application, a selected vertex U, is

deleted from Gi, its corresponding MIXED cell tCa is sub-
divided, and the (interconnected) vertices corresponding
to the nOn-FULL cells of P"* are added to construct Gi+l .
The new vertices also inherit a subset of the neighbors of
V I . The cell adjacency tests take only a constant amount
of time for rectangloid cells. So computing Qi+l from Bj
is a local operation of complexity on the order of the
number of neighbors of us.

are re-
moved from g: as well as from gie As a result of this
modification to gi, children(v,) do not have parents in
Gi+l, and psrentp(v,) has one less child in Gl+l. Also,
each newly created vertex has no parent in Bi+l.

The graph is repaired and a new singlesource shortest
paths tree is computed by the algorithm given.in the
next section.

All edges incident on, or emanating from,

4 A Dynamic Algorithm
We identified in Section 3 those vertices that are inde-

pendent of a given change to the graph. There is no need
to re-initialize such vertices as they are already correct.
The algorithm given in this section can be seen to be
a direct implementation of Lemmas 3-8, with a greedy
local criterion for the case of a parent increasing its path
cost. Split-Vertex is the top-level function to be called
from Findpath; the other procedures are styled after [4]
to emphasize the similarity to Dijkstra's algorithm [l, 41.

This algorithm takes advantage of the sparseness of
the graph. Therefore we give the following lemma for
octrees, the spatial decomposition used in this paper.

Lemma 9 The connectivity raph G(V, E) of an ociree 8 i s sparse. Specifically [El < $ 1 ~ 1 .
In the pseudocode for dynamically constructing

SPi+l which follows, Divide-Vertex is responsible for
deleting the vertex and associated edges from Gi and
SPi, subdividing the cell associated with the vertex, la-
beling the new cells, and creating and adding the new
vertices to construct Gi+1. Divide-Vertex returns the
set of newly created vertices. Min-Neighbor returns the
neighboring vertex with the minimum path cost (the
posted least cost path to the source). BuildPQ, Update-
Priority, Insert, and DeleteMin are the standard prior-
ity queue functions [l, 41, modified to mark and unmark
vertices as they are inserted and deleted from the prior-
ity queue. This modification allows for an U(1) priority
queue membership test.
procedure Split-Vertex (v:vertex; G:graph)
[l] p c v.parent
[2] C t vxhildren
[3] N c Divide-Vertex(v,O)
[4] Dynamic-SSSP Cp, N U C)
end

procedure Dynamic-SSSP (p:vertex; newvertex-list)
[l] Dyn-Initialize(new)
[2] Q t BuildPQ({p} U new)
[3] while Q # 0 do
[4] U t DeleteMin(Q)
[5] PI Dyn-Relax(u, v , Q)
end

foreach v E u.neighbors do

procedure Dyn-Initialize (verticexvertex-list)
[l] foreach q E vertices do
[2] q.parent t Min-Neighbor(q)
[3]
end

q.pathcost t q.cost + q.parent.pathcost

procedure Dyn-Relax (U, v:vertex; Q:p-queue)
[l] c t v.cost + u.pathcost
[2] if c < wpathcost
[3] then Update-Vertex(u, v , Q)
[4] elseif U = u p r e n t and u.pathcost < c
[5] then Update-Vertex(Min-Neighbor(v), w , Q)
end

procedure Update-Vertex (U, wxertex; Qpqueue)
[l] v.parent c U

[2] v.pathcost t v.cost + u.pathcost
[3] if v E Q
[4] then UpdatePriority(v, Q)
[5] else Insert(v, Q)
end

In the complexity analysis that follows, let 2)s be
the vertex that is subdivided, let 1111 be the number
of vertices that are not independent of 211, and let le1
be the number of edges incident on those vertices. le1
and 1.1 are subset analogs of E and V. Dyn-Initialize
and BuildPQ are each called once in Lines 1 and 2 of
Dynamic-SSSP respectively. The while loop at Line 3
results in at best O(le1) calls to Dyn-Relax and O(lv1)
calls to DeleteMin.

BuildPQ takes O(n) time where n is the number
of vertices initially inserted into the queue [4]. Min-
Neighbor requires, on average, O(d) time where d is
the average vertex degree. Dyn-Initialize calls Min-
Neighbor for each vertex which is U (d 2) time. How-
ever, we can charge the cost of finding the minimum
path cost neighbor to the loop at Line 5 of Dynamic-
SSSP. Therefore the first two steps of Dynamic-SSSP
require U(d) time. DeleteMin and Update-Vertex re-
quire O(log n) time where n is size of the priority queue
which is bounded by ! V I , so Dyn-Relax takes time takes
time O(1ogIvl). If every vertex is guaranteed to be
deleted from the queue at most a constant number of
times, the time complexity of Dynamic-SSSP would be
O(lel log 1.1). As we indicated in Section 3, we cannot
guarantee the local criterion employed when the parent
of a vertex increases is a good choice. A poor choice
simply increases the amount of time required to relax

570

a- 1200- methods. We presented an algorithm for dynamically
4m- 1w - maintaining a single-source shortest paths tree (SP) ef-
3wo- ficiently. The ability to maintain SP under dynamic
3OOo- W O - modifications to the underlying connectivity graph is an

important source of the time improvements presented
here. Finally, we introduced an improved vertex cost
function that more accurately measures the complex-
ity of the underlying, unexplored space. This gives
our search algorithm better convergence properties than
other approaches.

References
[l] A. V. Aho, J. E. Hopcroft, and J. D. Ullman.

The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

Figure 2: Number of Calls to Primitive Operations and
the Growth in the Priority Queue Size.

all of the vertices into their minimum path costs. For
certain vertex cost functions, this local criterion works
very well, as is shown in Section 5 . This bound can be
guaranteed by a less greedy implementation [2, lo].

5 Results
Statistics were collected for random planning prob-

lems within environments taken from the motion plan-
ning literature [3, 111. Since Dijkstra’s algorithmis com-
parable to using A* search to find a least cost path, the
dramatic improvement of the dynamic algorithm over
Dijkstra’s algorithm can be used to show the improve-
ment of our method over previous results. Two of our
results are illustrated in Figure 2.

The left side of Figure 2 shows the number of calls to
the primitive priority queue operations UpdatePriority,
DeleteMin, and Insert, after each subdivision. This is
the crucial unit of measure of comparison since it is the
basic time-consuming operation of the algorithms and is
machine independent. The dynamic algorithm exhibits
a slight linear trend while Dijkstra’s algorithm shows
linear growth in the number of calls.

The right side of Figure 2 shows the average size of the
priority queue for each call to the primitive queue op-
erations after each subdivision. The size of the priority
queue affects the average time to rebalance as a result
of a primitive operation, each O(1og n) time complexity
where n is the size of the queue. A consistently smaller
queue results in consistently faster overall performance.
The dynamic algorithm showed near constant growth,
and Dijkstra’s algorithm, which inserts all vertices into
the queue at every iteration, exhibited the expected lin-
ear growth. If the dynamic algorithm maintains at
most a constant sized queue, then the complexity anal-
ysis for the algorithm becomes linear.

6 Conclusions
In this paper we presented a complete formulation of

the FindPath search problem which has not been ad-
equately addressed for approximate cell decomposition

[2] M. Barbehenn. Efficient search and hierarchi-
cal motion planning by dynamically maintaining
single-source shortest paths trees. Master’s thesis,
University of Illinois at Urbana-Champaign Dept.
of Computer Science, January 1993.

[3] R. Brooks and T. Lozano-Perez. A subdivision algo-
rithm in configuration space for findpath with rota-
tion. In Proe. Int. Joint Conf. on Ar t . Intell., pages
799-806,1983.

[4] T. H. Corman, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[5] B. Faverjon. Object level programming of indus-
trial robots. In IEEE International Conference on
Robotics and Automation, pages 1406-1412, San
Francisco, 1986.

Hierarchical strat-
egy for path planning among moving obstacles.
IEEE Dans . on Robotics and Automation, Febru-
ary 1989.

Multiresolution
path planning for mobile robots. IEEE Journal of
Robotics and Aut om at ion, 2(3) : 135-145, September
1986.

[8] J. C. Latombe. Robot Motion Planning. Kluwer
Academic Publishers, Boston, 1991.

[9] T. Lozano-Perez. Spatial planning: A configura-
tion space approach. IEEE Dans . on Computers,
February 1983.

[lo] G. Ramalingam and T. Reps. An incremental al-
gorithm for a generalization of the shortest-path
problem. Computer Science Department Techni-
cal Report 1087, University of Wisconsin, Madison,
May 1992.

New heuristic al-
gorithms for efficient hierarchical path planning.
IEEE Trans. on Robotics and Automation, 7(1):9-
20, February 1991.

[6] K. Fujimura and H. Samet.

[7] S. Kambhampati and L. Davis.

[ll] D. Zhu and J.-C. Latombe.

57 1

