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Abstract 
In  our earlier work, we have shown that visual constraint 
surfaces can be used t o  effect visual guarded and visual 
compliant motions (which are analogous t o  guarded and 
compliant motion using force control). Here we show 
how the backpro 'ection a proach to  fine-motion plannin 
can be edended to  e z p i i t  visual constraints. Specij! 
cally, by deriving a con guration space rePTsentation 
of visual constraint sur P aces, we are able to  tnclude vi- 
sual constratnt sur aces as .boundaries of the directional 

jection planner for C = R2 that is  based on Donald 
and Cann 's plane-sweep algorithm for com uting the 
directional back projection, and discuss the e$ects o vi- 

the modified algorithm. 

backprojection. d e describe an implemented backpro- 

sual constraints on the asymptotac trme complext f y of 

1 Introduction 
To erform effectively in real-world settings robots 

must {e able to plan and execute tasks in the pres- 
ence of uncertainty. pica1 sources of uncertainty in a 

in robot control, and discrepancies between geometric 
object models and physical objects (including the parts 
to be manipulated and the robot itself). Because of this, 
the application of robotic technology to manufacturing 
problems has typically been restricted to situations in 
which uncertainty can be tightly controlled (for exam- 
ple, by using specialized fixturing ,devices). 

To account for control and sensing uncertainty, 
Lozano-P&rez, Mason and Taylor [13] introduced the 
theoretical framework of preimage planning. Informal1 
a preimage of a oal-is the set of points from whicg 
a commanded mofion is guaranteed to reach and termi- 
nate in the goal. Erdmann [7] derived backprojections ~ E I  
a means of usefully approximating preima es by =pa.- 
rating goal reachability from goal recogniz&ility. Don- 
ald's work on automatic error detection and recovery 
[5, 61 considers model uncertainty in addition to posi- 
tion and velocity uncertaint and presents an extension 
to the preimage strategy tpat computes motion 
guaranteed to succeed in the presence of all three &% 
of uncertainty. To date the only sensing modalities that 
have been incorporated into a preimage or backprojec- 
tion planner have been force and position sensing. 

One limitation of force control is that it can only 
be used to constrain motion along directions normal to 
constraint surfaces (C-surfaces). Position control must 

Fobotic work cell inch 7 e.limited sensing accuracy, errop 
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be used to  control motions in directions tangent to C 
surfaces. Therefore, hybrid position/force control is not 
sufficient when the exact manipulator and goal positions 
are not known in the dimensions of position control. 

One way to cope with this limitation is to add vision 
sensing to the control servo loop. If the eometry of the 
imagint p,cess is .known, then ;the t a d  geometry can 
be use o constrain the remaining degrees of freedom 
by using visual servo control. Recently, a number of re- 
searchers have begun to investigate visual servo control 
[l, 3, 8, 141. To date, however, the corresponding mo- 
tion planning problem has not been addressed. Thus, 
even though visual servo control systems are now avail- 
able, there is no motion planning system that is capable 
of exploiting such a control system. In this peaper, we 
present a gepmetric motiop planner that exploits visual 
constraints in the synthesis of uncertainty-tolerant mo- 
tion plans. 

The remainder of the paper ,is organized. as follows. 
In Section 2 we briefly review visual constraint surfaces, 
which are generated by projecting workspace features 
onto the image plane of a fixed camera [ll]. A visual 
constraint surface can be used to constrain visually con- 
trolled motions in the same way that h sical surfaces 
can be used to constrain force controlEdrmotions. An 
implemented hybrid position/vision servo control sys- 
tem that executes visually constrained motions is de- 
scribed in [3, 21. In Section 3 we show how visual con- 
straint surfaces in the workspace are mapped to configu- 
ration space constraint surfaces. In Section 4 we review 
preimages and backprojections. In Section 5 we show 
how the directional backprojection (i.e. the backprojec- 
tion with respect to a specified velocity) can be extended 
to exploit visual constraint surfaces. Here we discuss 
our im lemented back rojection al orithm that extends 
Donadand Canny's pfane-sweep afgorithm for comput- 
ing backprojections [4], and evaluate the added com- 
putational complexity of considering visual constraint 
surfaces. 

2 A Geometric Specification for Visual 
Constraints 

Consider a workspace containing a number of solid 
objects and a fixed camera. If the imaging process is 
modelled by perspective projection [lo], projection rays 
from each point in the workspace converge on the cam- 
era focal center. In general, any one-dimensional object 
feature will pro'ect onto a planar curve on the camera 
image plane. d e  will refer to the projection of an ob- 



Figure 1: Ruled visual constraint surface generated by 
a curved contour 

ject feature onto the camera ima e plane as an imaqe 
feature. An object feature is saif to be unoccluded if 
no projection ray emanating from that feature intersects 
the interior of any other object or.the robot. Intuitively, 
this means that nothing is blocking the camera’s view 
of the feature. In this aper, the on1 onedimensional 
object features that w i ibe  consideredrare the 3D edges 
of objects. 

A visual constraint (VC) surface is a ruled surface 
bounded b a 3D object edge, its corresponding- image 
ed e, and t i e  ra sjoinin their respective endpoints as 
insigure 1. In t i e  s eci$ case of polyhedral obstacies, 
all ima e features wit  be straight line segments, so that 
the V8surfaces will be polygons. The relevant equa- 
tions are given in [ll]. Note that a visual constraint 
surface does not intersect any obstacles, since a neces- 
sary condition for an edge to have a pro’ection on the 
camera image plane is that the edge not be occluded. 
Visual compliant motion. During force-controlled 
compliant motion, a ph sical surface is used to  constrain 
the motion of a robot afong one or more degrees of free- 
dom. For example, sliding motion along a surface mi ht 
be achieved by ensuring that some constant forcese 
maintained in the direction normal to the surface. We 
define visual compliance as compliant motion along a 
(virtual) VC surface, such that the manipulator’s mo- 
tion is constrained to  always remain “in contact” with a 
particular generating line of the the VC surface. Visual 
compliance can be achieved by means of a closed-loop 
visual servo system, as described by Caataiio [2]. 

Visual guarded motion. We define visual guarded 
motion anal0 ously to uarded motion usin physical 
surfaces. In t%e latter, t i e  robot moves until force feed- 
back indicates that it has contacted a h sical surface. 
VC surfaces can be used for visual guarledrmotion; that 
is, the mani ulator can move Gong a tra’ectory that in- 
tersects a $C surface and be instructed to stop when 
this intersection occurs. This is possible because the 
intersection is a visually observable event. 

3 Computing Visual Constraint Rays 
for a Two Dimensional Workspace 

In the case of a two dimensional works ace, the cam- 
era is a one-dimensional sensor mitionex in the plane. 
Using perspective projection, 31 projection rays con- 
verge on the camera projection center. We assume that 
if an object vertex is unoccluded (i.e. a projection ray 
from that vertex to the camera focal point intersects the 

Figure 2: Construction of workspace VC rays from un- 
occluded obstacle vertices 

Fi ure 3: Different positions of the polygonal robot give 
dikerent CM vertices 

interior of no workspace obstacle), then the projection of 
that vertex in the camera ima e can be located by the 
vision system. Workspace V 8  ra s can be computed 
by extendin rays from unoccludei workspace obstacle 
vertices to t f e  camera projection center, as in Figure 2. 

ro’ection on the 
camera image plane is a fne  segmenrwhose endpoints 
represent the two furthest-apart robot vertices simulta- 
neously visible to the camera. Note that there may be 
other robot vertices that project to oints on the line 
segment; however, for the purposes of visual com liant 
motion, we assume that the vision system can ony 
bustly distinguish in real time the two vertices w%&: 
projections are the endpoints of the image plane line 
segment (although this restriction could be lifted if the 
vision system were capable of robustly distinguishing 
other unoccluded vertices in real time). 

We will refer to the two robot vertices that project 
to the endpoints of the line se ment as CM vertices, to 
indicate that they are the on& robot vertices suitable 
for effecting Compliant Motion don  a VC ray. Note 
that the particular robot .vertices that are CM vertices 
can change with the position of the robot. Figure 3 
shows the same robot in two different positions for which 
the CM vertices are different. In certain non-general 
configurations of the robot, two robot vertices may lie 
along the same projection ray. In such cases, we may 
arbitrarily select one of these as a CM vertex. Thus, for 
any specified position of the robot, we will obtain two 
CM vertices. 

Visual constraint rays in the workspace give rise to 
C-space visual constraint rays (CVC rays). In mapping 
workspace VC rays to CVC rays, we must allow for ei- 
ther of the CM vertices to be moved compliantly along 

Since the robot is. pol gonal, its 
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Figure 4: Construction of two C-space VC rays from a 
single workspace VC ray 

the workspace VC ray. Sup ose that a articular vertex 
a0 of the robot is taken as &e origin otthe robot frame 
to compute a re resentation of the C-s ace C. Since tra- 
jectories in C w81 specify the motion ofvertex a0 among 
the Cobstacles we must find an a propriate represen- 
tation for coy i i an t  motion of an a r h r a r y  robot vertex 
aj along a V ray. 

Since we are considering the case where C = R 2 ,  the 
spatial relationship between a0 and aj is fixed. Specif- 
ically, if for some configuration a t h e  world coordinates 
of a0 are given by the vector G(3, then the world co- 
ordinates of Q j  in the same configuration are given by 

Let e: be a VC ray emanating from a workspace ob- 
stacle vertex bi ,  and let aj be a CM vertex of the robot 
when the robot is positioned such that aj coincides with 
bi .  Then, as the robot moves compliantly, maintaining 
contact between ai and e:, vertex a0 will move along 
a straight line trajectory parallel to e,Me) but displaced 
from it by a>(O) -a: (0). We construct a CVC ray evc in 
C, whose endpoints are the endpoints of e: displaced by 
a;(O) - u;(O). Motion of a0 (the reference vertex) along 
euc corresponds to visual compliant motion of vertex aj 

along e:. Similarly, visual guarded motion of a0 ter- 
minating on eve corresponds to visual guarded motion 
of aj terminating on e: , which is a visually observable 
event. The construction of CVC ra s using this tech- 
nique is jllustrated in Figure 4. In the fi ure, the li ht 
dashed line represents the works ace V 8  ray and b e  
two bold dashed lines represent tl?e corresponding CVC 
rays. 

When a CVC ray intersects a C-obstacle, visual com- 
liant motion cannot be effected along the portion of the 

6VC ra that lies inside of the C-obstacle, since doing 
so woud cause the robot to overlap a workspace obsta- 
cle. In this case, we must truncate the CVC ray at those 
points where it enters CB, retainin only those segments 
of the CVC ray that lie outside of?CB. In Figure 5, the 
CVC ray constructed from the workspace VC ray e: 
intersects the interior of Gobstacle CBI (we will use the 
notation CBi to indicate a particular C-obstacle, and CB 
to represent the union of all C-obstacles). That part of 
the CVC ray that lies outside of CB includes two line 

= a'o(93 + (a:@) - a'O(0)). 

\ e v '  
workspace vc ray - e .  - - c-spacevcray 

Figure 5:  A CVC ray may intersect the interior of CB. 

segments: el is the se ment between the camera and 
artificial vertex b3 on e#e E,  e2 is the segment from ar- 
tificial vertex b2 to arti cia1 vertex b . In this example 
on1 the segments el and e2 are included in the set of 
C& rays. 

Although workspace VC rays intersect only at the 
camera projection center two C-space VC rays may in- 
tersect-at a point other than the camera projection cen- 
ter. Fi ure 6 shows one example of intersecting CVC 
rays. knce the CVC rays Corresponding to a sin le 
workspace VC ray are parallel, the intersectin C f C  
ra s cannot have or1 inated from the same wogspace 
V 6  ray. The physicaf interpretation of the intersection 
of two CVC rays is a change from executing compli- 
ant motion of vertex ai along workspace VC ray e E k  to 
compliant motion of vertex a j , j  # i along workspace 
VC ray e Z I ,  k # 1 .  For example, such an intersection 
point might correspond to a change from compliant mo- 
tion of the top right vertex of the square robot along VC 
ray e:,, to compliant motion of its bottom left vertex 
along e z 2 .  

The C-s ace representation of the VC rays can be 
computed %y using two successive plane-sweep algo- 
rithms. The first constructs all of the CVC rays, and 
the second is used to truncate these CVC rays, as de- 
scribed above. The details of this process are described 
in [9]. 

4 Preimages and Backprojections 
4.1 Preimage Planning 

Lozano-PBrez, Mason and Taylor [13] present a for- 
malismfor the automaticsynthesis of finemotion strate- 
gies using reima es. The main advantage to the preim- 
age formdsmis t%at it allows the finemotion planner to 
explicitly consider uncertainties in position and control. 

In [13], position uncertainty is modeled by an error 
ball, Be&), in the C-space, centered on the actual po- 
sition p .  Velocity uncertaint is modeled by an uncer- 
tainly cone, whose vertex angsk represents the maximum 
directional deviation between the commanded velocity 
and the actual velocity. If a position po lies within the 
error ball centered on measured position p;I, then pg is 
said to be consistent with PO. Intuitively, this means 
that the sensor might "mistakenly" measure po as &. A 
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Figure 6: Intersection of two CVC rays 

similar definition holds for measured vs. actual velocity 
vectors. 

The velocity uncertainty cone plays a key role in the 
computation of preimages (and, as will be seen below, 
in the computation of backprojections). Specifically, 
both reima es and back rojections may include in their 
bounflaries &e edges o t the  velocity uncertainty cone. 
A free edge is an edge that is parallel to an ed e of the 
inverted velocity cone erected at some C-obstack vertex. 

The formal definition of a directional preimage Pe(G) 
is as follows. Let G be a goal region in (where 

is the set of valid configurations in C). A motion 
command M = (38 , TC), consists of a commanded ve- 
locity 50 (which is a considered to be a unit vector with 
orientation e), and a termination predicate TC, which 
is used to determine when the motion has achieved the 
goal. The preima e of G for motion is defined as a 
subset of points, I$ C C ali such that if M commences 
from any point in R T 6  w$l eventually return and 
the motion will terminate in. G. A maximal dyeettonal 
preimage !s the largest possible preimage relative to a 
given motion direction and goal region. 

4.2 Backpro jections 
A major difficulty of computing preimages is that 

there are many circumstances under which a real termi- 
nation predicate TC may not be able to reliably detect 
entry into the goal region. There are two primary rea- 
sons for this: uncertainty in sensin and limitations on 
the amount of information av.ailabf< to the termination 
predicate. Because of these difficulties, Erdmann intro- 
duces backprojections [7] as a means of approximating 
preima es. Essentially, a backprojection is a preima e 
without a termjnation predicate; that is, the set of 31 
points from which an a ropriate commanded velocity 
is guaranteed to enter f i e  goal, regardless of whether 
entry into the goal is recognized. The lack of a ter- 
mination predicate makes backprojections weaker than 
preimages, but backprojections are straghtforward to 

compute and they can usefully a proximate preimages 
for certdn ty es of plannin probkms. The backprojec- 
tion approacf to motion pknning can be characterized 
as recursively finding some subset of the goal region that 
is guaranteed to be recognized [12, 71, and constructing 
the backprojection for this region. 

4.3 
Donald and Canny [4] present an algorithm for com- 

puting backprojections of polygonal goal regions for the 
case C = Ra, The al orithm works by swee ing a line 
across the lane m t i e  direction opposite &at of the 
commandefvelocity. The line stops at events that are 
(1) vertices of C-obstacles, (2) vertices of the goal region, 
(3) the intersection of two free edges, (4) the intersec- 
tion of a free edge with a boundary of the goal region, 
and ( 5 )  the intersection of a free edge with an edge of a 
C-obstacle. In each case, the backprojection is extended 
appropriately, using only local decision criteria. 

Donald shows [4] that the algorithm is correct pro- 
vided that the environment has a bounded number of 
vertices, and that the friction cone is larger than the 
velocity uncertainty cone. (This latter criterion is nec- 
essar because without it., the al orithm would not be 
able to  rely only on local informafion to determine how 
to  continue the backprojection.) 

Computing Backprojections in C = R2 

5 

In this section we show how the back rojection a1 o- 
rithm of Donald and Cann can be mogified to expkit 
visual constraints. We w& refer to a backprojection 
that includes CVC rays as a VC-enlarged backprojec- 
tion, and we will denote a VC-enlarged backprojection 
by Bvca(G). We begin by describing the new types of 
event that must be considered by the plane-sweep a1 o- 
rithm. Followin this, the formal decision criteria for 
determinin whefher to include a VC ray in the back- 
projection foundary are presented, We then discuss the 
time complexity of the modified directional backpro'ec- 
tion algorithm. Finally, we present examples of k- 
enlarged backprojections for C = R2* computed by our 
implementation of the modified algorithm. 

5.1 New Events for the Plane-Sweep 
Algorithm 

The Effect of Visual Constraints on 
the Directional Backprojection 

The first step in modifying the Donald and Canny di- 
Fectional backprojection algorithm to exploit CVC rays 
is to determine the new events that must be considered 
during the plane sweep., When CVC r a p  are included, 
there are three new types of events that must be con- 
sidered: 
1. the intersection of a CVC ray with a C-obstacle edge 

(or a Gobstacle vertex), 
2. the intersection of a CVC ray with a free edge of the 

inverted velocity uncertamty cone, 
3. the intersection of two CVC rays. 

When a CVC ray intersects a C-obstacle edge, we cre- 
ate an artificial vertex at the intersection point. If a 
particular C-obstacle vertex has a CVC ra incident on 
it, that vertex is marked to indicate this fact, and the 
equation of the incident CVC ray is attached to it. Thus, 
only intersections of CVC rays with C-obstacle vertices 
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Figure 7: Deciding how to continue the backprojection 
from a C-obstacle vertex 

will be considered in the remainder of the paper (since 
artificial vertices are introduced when the CVC ray in- 
tersects a Cobstacle edge). 

In the worst case, there will be O(n) new artificial ver- 
tices for the CVC rays that intersect C-obstacle edges. 
There are O(n2) intersections of free edges with CVC 
ra s, but durin the construction of the backpro‘ection 
only the first intersection of a free edge with a &C r a i  
is considered. Therefore, the number of new events of 
this type that must be considered by the algorithm is 

Finally, there are, in the worst case, O(na) intersec- 
tions of pairs of CVC ra s. To see this, consider that 
the intersection of two &C rays occurs when the two 
CM vertices of the robot are simultaneously in contact 
with two distinct workspace VC rays, say eg! and e E j .  
Thus, such an intersection point can be created by po- 
sitioning one CM vertex of the robot on e g i ,  and then 
moving the robot compliantly along this ray until the 
remaining CM vertex contacts e g j .  

Thus the number of events considered by the modified 
plane-sweep algorithm is O(n+c),  where c is the number 
of intersections of pairs of CVC rays. 

5.2 Intersection of a CVC Ray and a 
C-Obstacle Edge 

O(n>* 

The decision criteria for an event corresponding to the 
intersection of a CVC ray and a (possibly artificial) C- 
obstacle vertex are as follows. AS in the above example, 
the vertex event being processed is a (possibly artificial) 
C-obstacle vertex b with incident obstacle ed es ei and 
e,-1 and incident CVC ray eve .  We denote %y ee,  the 
free edge of the velocity uncertaint cone erected at b. 
We assume ei-1 has already been aided to the backpro- 
jection, as in Figure 7. We denote the orientation of the 
sweep line by y’, i.e. the direction of the sweep itself is 
perpendicular to g. We assume that points to the in- 
t e n o r  of the backprojection region that lies behind the 
sweep line, so that it would point to the right in Figure 
7. 

The decision criteria are: 
1.  If ei is a sliding edge, continue the backprojection 

along e ; .  
2. Otherwise, if the angle between e,,, and y’ is greater 

than the an le between ee ,  and g, continue the back- 
projection afong evc.  

3 .  Otherwise, add ee,  to the backprojection. 

5.3 Intersection of a CVC Ray and a Free 
Edge 

The CVC ray should. be used to continue the backpro- 
jection at the intersection of a CVC ra and a free edge 
of the velocity uncertainty cone only wKen the termina- 
tion point of the CVC ray on a Cobstacle edge !s known 
to be in the backprojection. This becomes evident by 
enumerating the possible types of C-edges on which a 
CVC ray evc may terminate. 

1. CVC my eve terminates qn a nongoal stickin edge. In 
this case, compliant motion along eWF woudresult in 
contact with a stickin ed e from which motion to the 
~1 is not possible. %ucf a stickin edge will never 

e included in the backprojection, therefore neither 
should euc. 

2 .  CVC ray eue tenninaies on a nongoal sliding edge ej 
alon which sliding motion away from the. goal occurs. 
In t d s  case, ej should not be included in the back- 
projection since a motion that brin s t h e  robot into 
contact with ej will continue by siding away from 
the goal. Therefore eve should not be included in the 
backprojection. 

terminates on a nongoal sliding edge ei 
along wficKCslidin mo.iion toward the goal occurs: In 
this case, e i  shoul8 be included in the backprojection, 
and a motion that bFings the robot into contact with 
ei will continue b slidin towards the goal. Therefore 
eve can be includred in t i e  backprojection. 

4. CVC ra eve terminates on a goal edge. All oal edges 
are in tge backprojection, and visual comaiant m e  
tion along eve will bring the robot into contact with 
the goal, so e,, can be included in the backprojection. 
The. cases enumerated above are exhaustive, and the 

cases in which euc should be included in the backpro- 
jection occur exactly.when eve terminates on an edge 
already known to be in the backprojection. 

Formally, the decision criteria at a vertex event at 
which a free edge of the velocity uncertainty cone eeu 
and a CVC ray ewe intersect is as follows. As in Section 
5.2, the vector @points along the sweep line toward the 
interior of the backprojection. 
1. If eve is incident on a Cobstacle.edge or vertex that is 

already included in the backprojection, and the angle 
between eve and y’ is greater than the angle between 
eev and @, continue the backprojection along euc. 

2. Otherwise, continue the backprojection along ee, .  

3 .  CVC ra e 

5.4 
Since the intersection of two CVC rays is a visually 

observable event (i.e. the two CM vertices simultane- 
ously contact two workspace VC rays), at such an inter- 
section point, the back rojection algorithm should be 
continued along the CV8 ray that maximizes the size of 
the enclosed backprojection. Let y’be as defined above, 
and let the two intersecting CVC rays be euel and euc2. 
Then: 
1. If the angle between evel and y’ is greater than the 

angle between eUc2 and Y; continue the backprojection 
along euc l .  

Intersection of Two CVC Rays 

2. Otherwise, continue the backprojection along euc2. 

309 



i’ 1 + + 

I I I 

I I I  I I 

Figure 8: Effect of considering VC rays in computing 
the directional backprojection 

5.5 Asymptotic Time Bounds 
Before beginning the planesweep to compute a direc- 

tional backprojection, O(n) free edges can be erected at 
sticking vertices and a separate plane-sweep can be used 
to intersect them with each other and obstacle edges in 
time O ( n  log n) .  During the plane-sweep, each vertex 
is processed in constant time. Therefore we make the 
following proposition, whose proof is given in [9]. 
Proposition 1 The time t o  compute the directional 
backprojection with visual constraint rays, Bvee ( G ) ,  is  
O((n  + c) logn), where c i s  the number of intersections 
of pairs of C V C  rays. 

6 Results 
Figures 8(a)-(d) compare the traditional directional 

backprojection to the VC-enlarged directional back- 
pro’ection for a variety of commanded velocities. In 
each frame, the traditional directional backprojection, 
Be(G), is shown on the left, and the VC-enlarged back- 
projection, Bue,(G), is shown on the right. The CVC 
rays never make the backpro‘ection smaller, and fre- 
quently make it larger. In. tie-figure we use the fo!- 
lowing conventions. The directional backprojection is 
enclosed by a dashed line, with ed es contributed by vi- 
sual constrmnts highli hted in bofd. Works ace obsta- 
cles are shaded; C-obsjacles are outlined. &lid arrows 
denote the commanded velocity direction. The camera 
projection center (workspace coordinates) is indicated 
by a cross. The goal polygon is shaded black. The com- 
manded velocity direction 8 = 0 corresponds to move- 
ment straght down the page. 

7 Conclusions 
In this paper, we have introduced visual constraint 

surfaces as a mechanism to effectively exploit visual con- 
straints in the s nthesis of uncertainty-tolerant robot 
motion plans. &sua1 constraint surfaces. can be used 
to effect visual guarded and visual compliant motions. 

By deriving a configuration space representation of vi- 
sual constraint surfaces, we were able to include visual 
constraint surfaces as boundaries of the directional back- 
projection. 
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