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Abstract

In our earlier work, we have shown that visual consirasnt
surfaces can be used to effect visual guarded and visual
compliant motions (which are analogous to guarded and
compliant motion using force conirol). Here we show
how the backprojection afproach to fine-motion plannin
can be extended to ezploit visual constraints. Spec_zﬁ?
cally, by deriving a configuration space representation
of visual constraint surfaces, we are able to include vi-
sual constraint suvff;accs as boundaries of the directional
backprojection. e describe an implemented backpro-
jection planner for C = R? that is based on Donald
and Canny’s plane-sweep algorithm for compuling the
directional backprojection, and discuss the eﬂl;cts %f vi-
sual constrainis on the asymptotic time complezily of
the modified algorithm.

1 Introduction

To perform effectively in real-world settings, robots
must be able to plan and execute tasks in tﬁe pres-
ence of uncértainty. Typical sources of uncertainty in a
robotic work cell include limited sensing accuracy, errors
in robot control, and discrepancies between geometric
object models and physical objects (including the parts
to be manipulated and the robot itseif). Because of this,
the application of robotic technology to manufacturing
problems has typically been restricted to situations in
which uncertainty can be tightly controlled (for exam-
ple, by using specialized fixturing devices).

To account for control and sensing uncertainty,
Lozano-Pérez, Mason and Taylor [13] introduced the
theoretical framework of preimage planning. Informalg'l,
a preimage of a goal is the set of points from whicl
a commanded motion is guaranteed to reach and termi-
nate in the goal. Erdmann [7] derived backprojections as
a means of usefully approximating prein}agbes,by sepa-
rating goal reachability from goal recognizability. Don-
ald’s work on automatic error detection and recovery
[5, 6] considers model uncertainty in addition to posi-
tion and velocity uncertainty, and presents an extension
to the preimage strategy that computes motion plans
guaranteed to succeed 1n the presence of all three kinds
of uncertainty. To date, the only sensing modalities that
have been incorporate& into a preimage or backprojec-
tion planner have been force and position sensing.

One limitation of force control is that it can only
be used to constrain motion along directions normal to
constraint surfaces (C-surfaces). Position control must
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be used to control motions in directions tangent to C-
surfaces. Therefore, hybrid position/force control is not
sufficient when the exact manipulator and goal positions
are not known in the dimensions of position control.

One way to cope with this limitation is to add vision
sensing to the control servo loop. If the Eeometry of the
1magm(§ {Jrocws is known, then the task geometry can
be used to constrain the remaining degrees of freedom
by using visual servo control. Recently, a number of re-
searchers have begun to investigate visual servo control
[1, 3, 8, 14]. To date, however, the corresponding mo-
tion planning problem has not been addressed. Thus,
even though visual servo control systems are now avail-
able, there is no motion planning system that is capable
of exploiting such a control system. In this paper, we
present a geometric motion planner that exploits visual
constraints in the synthesis of uncertainty-tolerant mo-
tion plans. .

The remainder of the paper is organized as follows.
In Section 2 we briefly review visual constraint surfaces,
which are generated by projecting workspace features
onto the image plane of a fixed camera [11]. A visual
constraint surface can be used to constrain visually con-
trolled motions in the same way that physical surfaces
can be used to constrain force conl:rolﬁady motions. An
implemented hybrid position/vision servo control sys-
tem that executes visually constrained motions is de-
scribed in [3, 2]. In Section 3 we show how visual con-
straint surfaces in the workspace are mapped to configu-
ration space constraint surfaces. In Section 4 we review
preimages and backprojections. In Section 5 we show
how the directional backprojection (i.e. the backprojec-
tion with respect to a specified velocity) can be extended
to exploit visual constraint surfaces. Here we discuss
our lm(flemented backi)ro.)ectlon algorithm that extends
Donald and Canny’s plane-sweep algorithm for comput-
ing backprojections [4], and evaluate the added com-
putational complexity of considering visual constraint
surfaces.

2 A Geometric Specification for Visual
Constraints

Consider a workspace containing a number of solid
objects and a fixed camera. If the imaging process is
modelled by perspective projection [10], projection rays
from each point in the workspace converge on the cam-
era focal center. In general, any one-dimensional object
feature will project onto a planar curve on the camera
image plane. We will refer to the projection of an ob-



Figure 1: Ruled visual constraint surface generated by
a curved contour

Figure 2: Construction of workspace VC rays from un-
occluded obstacle vertices

Jject feature onto the camera image plane as an image
feature. An object feature is said to be unoccluded if
no projection ray emanating from that feature intersects
the interior of any other object or the robot. Intuitively,
this means that nothing is blocking the camera’s view
of the feature. In this [Yaper, the only one-dimension
object features that will be considered are the 3D edges
of objects.

A visual constraint (VC) surface is a ruled surface
bounded by a 3D object edge, its corresponding image
edge, and the rays Joxnlx;glthelr respective endpoints, as
in Figure 1. In the special case of polyhedral obstacles,
all image features will be straight line segments, so that
the VC surfaces will be polygons. The relevant equa-
tions are given in [11]. Note that a visual constraint
surface does not intersect any obstacles, since a neces-
sary condition for an edge to have a projection on the
camera image plane is that the edge not be occluded.

Visual compliant motion. During force-controlled
compliant motion, a physical surface is used to constrain
the motion of a robot along one or more degrees of free-
dom. For example, sliding motion along a surface ml%t
be achieved by ensuring that some constant force be
maintained in the direction normal to the surface. We
define visual compliance as compliant motion along a
(virtual) VC surface, such that the manipulator’s mo-
tion is constrained to always remain “in contact” with a
particular generating line of the the VC surface. Visual
compliance can be achieved by means of a closed-loop
visual servo system, as described by Castaiio [2].

Visual guarded motion. We define visual guarded
motion analogously to ﬁuarded motion us_mg physical
surfaces. In the latter, the robot moves until force feed-
back indicates that it has contacted a Sh sical surface.
VC surfaces can be used for visual guarded motion; that
is, the manipulator can move along a trajectory that in-
tersects a VC surface and be instructed to stop when
this intersection occurs. This is possible because the
intersection is a visually observable event.

3 Computing Visual Constraint Rays
for a Two Dimensional Workspace

In the case of a two dimensional workspace, the cam-
era is a one-dimensional sensor ]iositio_ne in the plane.
Using perspective projection, all projection rays con-
verge on the camera projection center. We assume that
if an object vertex is unoccluded (i.e. a projection ray
from that vertex to the camera focal point intersects the

Figure 3: Different positions of the polygonal robot give
diéerent CM vertices 8

interior of no workspace obstacle), then the projection of
that vertex in the camera image can be located by the
vision system. Workspace VC rays can be computed
by e}ctendm% rays from unoccluded workspace obstacle
vertices to the camera projection center, as in Figure 2.

Since the robot is polf_gonal, its i?mi'lect;ion on the
camera image plane is a line segment whose endpoints
represent the two furthest-apart robot vertices simulta-
neously visible to the camera, Note that there may be
other robot vertices that project to points on the line
segment; however, for the purposes of visual compliant
motion, we assume that the vision system can only ro-
bustly distinguish in real time the two vertices whose
projections are the endpoints of the image plane line
segment (although this restriction could be lifted if the
vision system were capable of robustly distinguishing
other unoccluded vertices in real time).

We will refer to the two robot vertices that project
to the endpoints of the line segment as CM vertices, to
indicate that they are the only robot vertices suitable
for effecting Compliant Motion along a VC ray. Note
that the particular robot vertices that are CM vertices
can change with the position of the robot. Figure 3
shows the same robot in two different positions for which
the CM vertices are different. In certain non-general
configurations of the robot, two robot vertices may lie
along the same projection ray. In such cases, we may
arbitrarily select one of these as a CM vertex. Thus, for
any specified position of the robot, we will obtain two
CM vertices.

Visual constraint rays in the workspace give rise to
C-space visual constraint rays (CVC rays). In mapping
workspace VC rays to CVC rays, we must allow for ei-
ther of the CM vertices to be moved compliantly along
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Figure 4: Construction of two C-space VC rays from a
single workspace VC ray

the workspace VC ray. Suppose that a particular vertex
ag of the robot is taken as 518 origin of the robot frame
to compute a representation of the C-space C. Since tra-
jectories in C will specify the motion of vertex ag among
the C-obstacles, we must find an appropriate represen-
tation for compliant motion of an ar%itrary robot vertex
a; along a VCray.

Since we are considering the case where C = R?, the
spatial relationship between ag and a; is fixed. Specif-
ically, if for some configuration ¢ the world coordinates
of ag are given by the vector dp(g), then the world co-
ordinates of a; in the same configuration are given by
d3(9) = do(q) + (d5(0) — 5(0)).

Let e’ be a VC ray emanating from a workspace ob-
stacle vertex b;, and let aj be a CM vertex of the robot
when the robot is positioned such that a; coincides with
b;. Then, as the robot moves compliantly, maintaining
contact between a; and em, vertex ag will move along
a straight line trajectory parallel to ¥ but displaced
from it by ao(0) — d; (0). We construct a CVC ray ey, in
C, whose endpoints are the endpoints of e?¥ displaced by
dp(0) — d;(0). Motion of ag (the reference vertex) along
ey corresponds to visual compliant motion of vertex a;

along e!¥. Similarly, visual guarded motion of aq ter-
minating on ey. corresponds to visual guarded motion
of a;j terminating on e}¥, which is a visually observable
event. The construction of CVC rays using this tech-
nique is illustrated in Figure 4. In tie figure, the light
dashed line represents the workspace VC ray, and the
two bold dashed lines represent tl{)e correspomfing CvC

ays.

‘When a CVC ray intersects a C-obstacle, visual com-
liant motion cannot be effected along the portion of the
VC ray that lies inside of the C-obstacle, since doing

so would cause the robot to overlap a workspace obsta-
cle. In this case, we must truncate the CVC ray at those
points where it enters CB, retaining only those segments
of the CVC ray that lie outside of CB. In Figure 5, the
CVC ray constructed from the workspace VC ray e¥V
intersects the interior of C-obstacle CB; (we will use the
notation CB; to indicate a particular C-obstacle, and CB
to represent the union of all C-obstacles). That part of
the CVC ray that lies outside of CB includes two line
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Figure 5: A CVC ray may intersect the interior of CB.

segments: e; is the segment between the camera and
artificial vertex bz on edge E, ez is the segment from ar-
tificial vertex b, to artificial vertex b;. In this example
only the segments ey and ey are included in the set of
CVC rays.

Although workspace VC rays intersect only at the
camera projection center, two C-space VC rays may in-
tersect at a point other than the camera projection cen-
ter. Figure 6 shows one example of intersecting CVC
rays. Since the CVC rays corresponding to a single
workspace VC ray are parallel, the intersectin, CéC
rays cannot have originated from the same workspace
VC ray. The physical interpretation of the intersection
of two CVC rays is a change from executing compli-

ant motion of vertex a; along workspace VC ray en’h to
compliant motion of vertex a;,j # i along workspace

VC ray el ,k # 1. For example, such an intersection
point might correspond to a change from compliant mo-
tion of the top right vertex of the square robot along VC

ray el¥ , to compliant motion of its bottom left vertex

W

along e, .

The C-space representation of the VC rays can be
computed by using two successive plane-sweep algo-
rithms. The first constructs all of the CVC rays, and
the second is used to truncate these CVC rays, as de-
scrib]ed above. The details of this process are described
in [9].

4 Preimages and Backprojections
4.1 Preimage Planning

Lozano-Pérez, Mason and Taylor (13] present a for-
malism for the automatic synthesis of fine-motion strate-
gies using rc:(na]q]cs. The main advantage to the preim-
age formalism is that it allows the fine-motion planner to
explicitly consider uncertainties in position and control.

In [13], position uncertainty is modeled by an error
ball, B.p(p), in the C-space, centered on the actual po-
sition p. Velocity uncertainty is modeled by an uncer-
tainty cone, whose vertex angle represents the maximum
directional deviation between the commanded velocity
and the actual velocity. If a position po lies within the
error ball centered on measured position pg, then p} is
said to be consistent with pg. Intuitively, this means
that the sensor might “mistakenly” measure pg as p§. A
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Figure 6: Intersection of two CVC rays

similar definition holds for measured vs. actual velocity
vectors. .

The velocity uncertainty cone plays a key role in the
computation of preimages (and, as will be seen below,
in the computation of backprojections). Specifically,
both preimages and backprojections may include in their
boundaries free edges of the velocity uncertainty cone.
A free edge is an edge that is parallel to an edge of the
inverted velocity cone erected at some C-obstacle vertex.

The formal definition of a directional preimage Py(G)
is as follows. Let G be a goal region in Cyqiiq (Where
Cyatid 1s the set of valid configurations in C). A motion
command M = (¥, TC), consists of a commanded ve-
locity @ (which is a considered to be a unit vector with
orientation ), and a termination predicate TC, which
is used to determine when the motion has achieved the
goal. The preimage of G for motion M is defined as a
subset of points, B C Cyaiig, such that if M commences
from any point in R, T wgl’l eventually return True and
the motion will terminate in G. A mazimal directional
preimage is the largest possible preimage relative to a
given motion direction and goal region.

4.2 Backprojections

A major difficulty of computing preimages is that
there are many circumstances under which a real termi-
nation predicate TC' may not be able to reliably detect
entry into the goal region, There are two primary rea-
sons for this: uncertainty in sensing, and limitations on
the amount of information available to the termination
predicate. Because of these difficulties, Erdmann intro-
duces backprojections [7] as a means of approximating
preimages. Essentially, a backprojection is a preimage
without a termination predicate; that is, the set of all
points from which an aj l;:ropria.t,e commanded velocity
18 guaranteed to enter the goal, regardless of whether
entry into the goal is recognized. The lack of a ter-
mination predicate makes backprojections weaker than
preimages, but backprojections are straightforward to
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compute, and they can usefully anroximate preimages
for certain tZl}l)es of planning problems. The backprojec-
tion approach to motion planning can be characterized
as recursively finding some subset of the goal region that
is guaranteed to be recognized [12, 7], and constructing
the backprojection for this region.

4.3 Computing Backprojections in C = R?

Donald and Canny [4] present an algorithm for com-
puting backprojections of polygonal goal regions for the
case C = R* The algorithm works by sweeping a line
across the plane in tﬁe direction opposite that of the
commanded velocity. The line stops at events that are
(1) vertices of C-obstacles, (2) vertices of the goal region,
(3) the intersection of two free edges, (4) the intersec-
tion of a free edge with a boundary of the goal region,
and (5) the intersection of a free edge with an edge of a
C-obstacle. In each case, the backprojection is extended
appropriately, using only local decision criteria.

Donald shows [4] that the algorithm is correct pro-
vided that the environment has a bounded number of
vertices, and that the friction cone is larger than the
velocity uncertainty cone. (This latter criterion is nec-
essary because without it, the algorithm would not be
able zo rely only on local information to determine how
to continue the backprojection.)

5 The Effect of Visual Constraints on
the Directional Backprojection

_In this section we show how the backg;ojection alFo-
rithm of Donald and Canny can be modified to exploit
visual constraints. We will refer to a backprojection
that includes CVC rays as a VC-enlarged backprojec-
tion, and we will denote a VC-enlarged backprojection
by By, (G). We begin by describing the new types of
event that must be considered by the plane-sweep algo-
rithm. Following this, the formal decision criteria for
determining whether to include a VC ray in the back-
projection boundary are presented. We then discuss the
time complexity of the modified directional backproe']ec-
tion algorithm. Finally, we present examples of VC-
enlarged backprojections for C = R? computed by our
implementation of the modified algorithm.

5.1 New Events for the Plane-Sweep
Algorithm

The first step in modifying the Donald and Canny di-
rectional backprojection algorithm to exploit CVC rays
is to determine the new events that must be considered
during the plane sweep. When CVC rays are included,
tb(fre s.re three new types of events that must be con-
sidered:

1. the intersection of a CVC ray with a C-obstacle edge
(or a C-obstacle vertex),

the intersection of a CVC ray with a free edge of the
inverted velocity uncertainty cone,

the intersection of two CVC rays.

When a CVC ray intersects a C-obstacle edge, we cre-
ate an artificial vertex at the intersection point. If a
particular C-obstacle vertex has a CVC ray incident on
1t, that vertex is marked to indicate this fact, and the
equation of the incident CVC ray is attached to it. Thus,
only intersections of CVC rays with C-obstacle vertices



Figure 7: Deciding how to continue the backprojection
from a C-obstacle vertex

will be considered in the remainder of the paper (since
artificial vertices are introduced when the CVC ray in-
tersects a C-obstacle edge).

In the worst case, there will be O(n) new artificial ver-
tices for the CVC rays that intersect C-obstacle edges.
There are O(n?) intersections of free edges with CVC
rays, but during the construction of the backprojection,
on{y the first intersection of a free edge with a CJV C ray
is considered. Therefore, the number of new events of
this type that must be considered by the algorithm is

O(n).

Finally, there are, in the worst case, O(n?) intersec-
tions of pairs of CVC rays. To see this, consider that
the intersection of two C}{/ C rays occurs when the two
CM vertices of the robot are simultaneously in contact
with two distinct workspace VC rays, say el¥; and e}?;.
Thus, such an intersection point can be created by po-
sitioning one CM vertex of the robot on el¥;, and then
moving the robot compliantly along this ray until the
remaining CM vertex contacts elY; .

Thus the number of events considered by the modified
plane-sweep algorithm is O(n+c), where c is the number
of intersections of pairs of CVC rays.

5.2 Intersection of a CVC Ray and a
C-Obstacle Edge

The decision criteria for an event corresponding to the
intersection of a CVC ray and a (possibly artificial) C-
obstacle vertex are as follows. As in the above example,
the vertex event being processed is a (possibly artificial)
C-obstacle vertex b, with incident obstacle edges e; and
;-1 and incident éve ray eyc. We denote by e, the
free edge of the velocity uncertainty cone erected at b.
We assume e;_; has already been added to the backpro-
jection, as in Figure 7. We denote the orientation of the
sweep line by ¢, i.e. the direction of the sweep itself is
perpendicular to §j. We assume that § points to the in-
terzor of the backprojection region that lies behind the
gweep line, so that it would pomt to the right in Figure

The decision criteria are:

. If e; is a sliding edge, continue the backprojection
along e;.
. Otherwise, if the angle between e, and 7 is greater

than the angle between e., and §, continue the back-
projection along e,..
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3. Otherwise, add e., to the backprojection.

5.3 Intersection of a CVC Ray and a Free
Edge

. The CVC ray should be used to continue the backpro-

jection at the Intersection of a CVC ray and a free edge

of the velocity uncertainty cone only when the termina-

tion point of the CVC ray on a C-obstacle edge is known

to be in the backprojection. This becomes evident by

enumerating the possible types of C-edges on which a
C ray ey, may terminate.

1. CVC ray ey terminates on a nongoal sticking edge. In
this case, compliant motion along ey, would result in
contact with a sticking edge from which motion to the
ﬁoa.] is not possible. Such a sticking edge will never

e included in the backprojection, therefore neither
should ey..

. CVC ray e,. terminates on a nongoal sliding edge ¢;
along which sliding motion away from the goal occurs.
In this case, e; should not be included in the back-
projection since a motion that brings the robot into
contact with e; will continue by sliding away from
the goal. Therefore e, should not be included in the
backprojection.

. CVC ra}t{.e . lerminates on @ nongoal sliding edge e;
along w ich sliding motion toward the goal occurs, In
this case, ¢; should be included in the backprojection,
and a motion that brings the robot into contact with
e; will continue by sliding towards the goal. Therefore
eye can be included in the backprojection.

. CVC raz eyc terminates on a goal edge. All goal edges
are in_the backprojection, and visual compliant mo-
tion along ey, will bring the robot into contact with
the goal, s0 €, can be included in the backprojection.

The cases enumerated above are exhaustive, and the
cases in which e,. should be included in the backpro-
jection occur exactly when e,. terminates on an edge
already known to be in the backprojection.

Formally, the decision criteria at a vertex event at
which a free edge of the velocity uncertainty cone ey
and a CVC ray e, intersect is as follows. As in Section
5.2, the vector ¥ points along the sweep line toward the
interior of the backprojection.

1. If ey is incident on a C-obstacle edge or vertex that is
already included in the backprojection, and the angle
between e, and ¥ is greater than the angle between

e.v and 7, continue the backprojection along e,..

2. Otherwise, continue the backprojection along e, .

5.4 Intersection of Two CVC Rays

Since the intersection of two CVC rays is a visually
observable event (i.e. the two CM vertices simultane-
ously contact two workspace VC rays), at such an inter-
section point, the backprojection algorithm should be
continued along the CV(% ray that maximizes the size of
the enclosed backprojection. Let § be as defined above,

and let the two intersecting CVC rays be ey.; and eyca.
Then:

1. If the angle between e,. and ¥ is greater than the
angle between e, .2 and ¥, continue the backprojection
along €ye1-

2. Otherwise, continue the backprojection along eycz.
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Figure 8: Effect of considering VC rays in computing
the directional backprojection

5.5 Asymptotic Time Bounds

Before beginning the plane-sweep to compute a direc-
tional backprojection, O(n) free edges can be erected at
sticking vertices and a separate plane-sweep can be used
to intersect them with each other and obstacle edges in
time O(nlogn). During the plane-sweep, each vertex
is processed in constant time. Therefore we make the
following proposition, whose proof is given in [9].

Proposition 1 The time to compute the directional
backprojection with visual constraint rays, B,.,(G), is
O((n + c)logn), where c is the number of intersections
of pairs of CVC rays.

6 Results

Figures 8(a)-(d) compare the traditional directional
backprojection to the VC-enlarged directional back-
projection for a variety of commanded velocities. In
each frame, the traditional directional backprojection,
By(G), is shown on the left, and the VC-enlarged back-
projection, Byc,(G), is shown on the right. The CVC

rays never make the backprogection smaller, and fre-
quently make it larger. In the figure we use the fol-
lowing conventions. “The directional backprojection is
enclosed by a dashed line, with edgw contributed by vi-
sual constraints highlighted in bold. Workspace obsta-
cles are shaded; C-obstacles are outlined. Solid arrows
denote the commanded velocity direction. The camera
projection center (workspace coordinates) is indicated
by a cross. The goal polygon is shaded black. The com-
manded velocity direction # = 0 corresponds to move-
ment straight down the page.

7 Conclusions

In this paper, we have introduced visual constraint
surfaces as a mechanism to effectively exploit visual con-
straints in the synthesis of uncertainty-tolerant robot
motion plans. Visual constraint surfaces can be used
to effect visual guarded and visual compliant motions.

310

By deriving a configuration space representation of vi-
sual constraint surfaces, we were able to include visual
constraint surfaces as boundaries of the directional back-
projection.
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