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Abstract 
The direciional backprojection i s  one of the primary 

tools used b y  fine-motion planning systems. Informally, 
a directional backprojection i s  the set of configurations 
f rom which a commanded motion i s  guaranteed to  reach 
a goal configuration. It has been shown that, for  force 
controlled motions, the topology of the directional back- 
projection only changes at a finite set of critical velocity 
orientations. 

In a related paper, we have shown how visual con- 
straints can be exploited in  the construction of direc- 
tional backprojections. Here, we show how the introduc- 
tion of visual constraints into the backprojection formal- 
i sm aflects the computation and structure of the nondi- 
rectional backprojection. Specifically, by examining the 
behavior of visual constraints as a function of the direc- 
tion of the commanded velocity, we are able to  determine 
the new criteria for  critical velocity orientataons (i.e. 
velocity orientations at which the topology of the direc- 
tional backprojection, including visual constraint rays, 
might change). 

1 Introduction 
Real robotic systems must be able to cope effectively 

with uncertainties. To this end, Lozano-PCrez, Mason 
and Taylor [ll] have introduced the preimage formalism 
for the automatic synthesis of finemotion strategies. In- 
formally, a directional preimage of a goal is the set of 
points from which a commanded motion is guaranteed to 
reach and terminate recognizably in the goal. Because 
preimages are often difficult to compute, Erdmann [6] 
has introduced backprojections as a means of usefully 
approximating preimages by separating goal reachabil- 
ity from goal recognizability. Thus, fine-motion plan- 
ning can be reduced to recursively computing a sequence 
of directional backprojections. In [A, we introduced a 
method for exploiting visual constraints in the construc- 
tion of directional backprojections. 

Since directional backprojections are computed with 
respect to a specific commanded velocity, one difficulty 
that confronts a backprojection planner is the selec- 
tion of an appropriate commanded velocity. The nondi- 
rectional backprojection is a representation of all di- 

rectional backprojections together with their respective 
commanded velocities. As such, it provides an effec- 
tive tool for selecting commanded velocities. For the 
two-dimensional case, Donald has shown [4] that the 
topology of the directional backprojection changes only 
at certain critical velocity orientations; in non-critical 
intervals between critical orientations, the topology of 
the directional backprojection does not change. Thus, 
a finite set of directional backprojections (one for each 
critical orientation, and one for each non-critical inter- 
val) provides a sufficient representation of the nondirec- 
tional backprojection. In this paper, we describe how 
incorporating visual constraints into the planning pro- 
cess affects the structure and computation of the nondi- 
rectional backprojection. 

The remainder of the paper is organized as follows. 
In Section 2 we briefly review the computation of di- 
rectional backprojections. Following this, in Section 3 
we review the effect of visual constraints on the struc- 
ture and computation of directional backprojections. In 
Section 4 we review nondirectional backprojections, and 
the criteria that are used to determine critical velocity 
Orientations. In Section 5 we describe the effect of visual 
constraints on the nondirectional backprojection. This 
includes a discussion of new criteria for critical velocity 
orientations, and a discussion of the time complexity for 
computing nondirectional backprojections that include 
visual constraints. In Section 6, we discuss the extension 
of our algorithms to the three-dimensional case. Finally, 
in Section 7 we summarize the contributions of our work. 

2 Directional Backprojections 
The formal definition of a directional preimage Pe(G) 

is as follows. Let G be a goal region in Cu&d (where 
C u o l i d  is the set of valid configurations in the configu- 
ration space C). A motion command M = (v'e,TC), 
consists of a commanded velocity $8 (considered to be a 
unit vector with orientation e), and a termination pred- 
icate TC, which is used to  determine when the motion 
has achieved the goal. The preimage of G for motion M 
is defined as a subset of points, R C Cvalid,  such that if 
M commences from any point in R, TC will eventually 
return True and the motion will terminate in G. 
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A major difficulty of computing preimages is that, due 
primarily to uncertainty in sensing and control, there 
are circumstances under which a real termination pred- 
icate may not be able to reliably detect entry into the 
goal region. For this reason, Erdmann introduces back- 
projections [SI as a means of approximating preimages 
by separating the reachability and recognizability issues. 
Essentially, a backprojection is a preimage without a 
termination predicate; that is, the set of all points from 
which a commanded velocity is guaranteed to enter the 
goal, regardless of whether entry into the goal is recog- 
nized. The backprojection approach to motion planning 
can be characterized as recursively finding some subset 
of the goal region that is guaranteed to be recognized 
(see for example [lo, 6]), and constructing the backpro- 
jection for this region, until the initial configuration is 
contained within a computed backprojection. 

Donald and Canny [4] present a plane-sweep a lge  
rithm [12] that computes a directional backprojection, 
Be(G), in O(n1ogn) time, where n is the number of 
vertices of the Cspace obstacle region. The algorithm 
works by sweeping a line across the plane in the direction 
opposite that of the commanded velocity. The line stops 
at events that are (1) vertices of C-obstacles, (2) vertices 
of the goal region, (3) the intersection of two free edges, 
(4) the intersection of a free edge with a boundary of the 
goal region, and ( 5 )  the intersection of a free edge with 
an edge of a C-obstacle. In each case, the backprojec- 
tion is extended appropriately, using only local decision 
criteria. 

3 The Effect of Visual Constraints on 
the Directional Backprojection 

In this section we briefly review the impact of visual 
constraints on the computation and structure of the di- 
rectional backprojection. Details can be found in [7]. 
We assume here that the C-space representation of the 
visual constraint rays has already been constructed (C- 
space VC rays will be referred to as CVC rays). 

When visual constraint rays are included in the direc- 
tional backprojection, there are three new event types 
that must be considered by the plane-sweep algorithm 
that constructs the directional backprojection: (1) the 
intersection of a CVC ray with a C-obstacle edge (or 
a C-obstacle vertex), (2) the intersection of a CVC ray 
with a free ray of an inverted velocity uncertainty cone, 
(3) the intersection of two CVC rays. 

The decision criteria for an event corresponding to  the 
intersection of a CVC ray and a C-obstacle vertex (or 
edge) is illustrated in Figure 1. Denote the intersection 
point by b, with incident obstacle edges e; and ei-1 and 
incident CVC ray ewe. We denote by e,, the free edge of 
the inverted uncertainty cone erected at b. We assume 
ej-1 has already been added to the backprojection. We 
denote the orientation of the sweep line by c, i.e. the 
direction of the sweep itself is perpendicular to 3. We 
assume that j7 points to the interior of the backprojec- 
tion region that lies behind the sweep line, 80 that it 

Figure 1: Deciding how to  continue the backprojection 
from a Cobstacle vertex 

would point to the right in Figure 1. 

If e i  is a sliding edge, continue the backprojection 
along ei. 

Otherwise, if the angle between eve and 3 is greater 
than the angle between eew and y', continue the back- 
projection along ewe. 
Otherwise, add eew to the backprojection. 

For the event corresponding to the intersection of a 
CVC ray and a free edge of-the velocity uncertainty 
cone, the CVC ray should be used to continue the back- 
projection only when the termination point of the visual 
constraint ray on a C-obstacle edge is known to  be in 
the backprojection. 

For the event corresponding to the intersection of two 
CVC rays the CVC ray that results in the larger back- 
projection should be used to continue the backprojec- 
tion. 

As we have shown in [7], the asymptotic time com- 
plexity of computing the directional backprojection with 
visual constraints is O((n+c)  logn), where c is the num- 
ber of intersections of CVC rays. 

4 Critical Orientations and the 
Nondirectional Backpro jection 

The backprojection algorithm described in Section 3 
computes a directional backprojection relative to a spe- 
cific commanded velocity. A complete planner should 
consider all possible commanded velocitia at each itera- 
tion of the backchaining algorithm. This can be achieved 
by considering the nondirectional backprojection, B(G), 
which is defined as the union of all directional back- 
projections together with their respective velocity di- 
rections: 

e 
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Donald has shown that the topology of the directional 4.2 Time complexity 
Although Donald shows that there are O(n2) critical backprojection changes only at a finite set of critical ve- 

locity orientations, 8 E s1 141. Therefore, the nondi- 

orientation, and one for each non-critical interval. In 
this section we review critical orientations, and the time 
complexity of computing the traditional nondirectional 
backprojection (i.e. the backprojection without visual 
constraints). 

of type (3), he a naive o(n3) al- 

sections of free constraint rays. These intersections are 
free-space vertices of the directiond backprojection that 
trace out circlea as the velocity orientation is changed. 
Each such circle may intersect o(n) obstacle 
Therefore the number of intersections of circles with ob- 

backprojection can be represented by a finite 
backprojections; One for each critical 

gorithm to compute them, a f o ~ ~ o w s ~  There are O(n) 
free constraint rays, and therefore O(n2) possible inter- Of 

4.1 Critical Orientations 

conditions [4]: 

stacle edges is O(n3). The O(n2) critical orientations 
are contained in this set of size O(ns). 

The motivation for this algorithm is that, of all pas- 
sible O(n1 free-space backDroiection vertices. the subset 

Critical orientations occur under the following three 

A free edge becomes parallel t o  an edge in the obsta- 
cles’ visibility graph. To see this, notice that a free 
edge erected at some obstacle vertex bo will rotate 
with 8 and may eventually rotate to an angle 81 at 
which it intersects another obstacle vertex b l .  When 
the ray rotates beyond 81, it will be truncated by the 
obstacle edge incident on b l ,  and part of that ob- 
stacle edge may be included in the backprojection. 
Given this argument, note that the critical angle 81 
occurs exactly when the free edge coincides with the 
visibility-graph edge connecting bo to bl .  Hence such 
orientations are called vgraph-critical. 
An obstacle edge changes from a sliding into a sticking 
edge or vice versa. This occurs when a free edge of 
the velocity uncertainty cone is parallel or antiparallel 
to an edge of the friction cone. These orientations are 
called sliding-critical. 
The intersection point of two free edges of the back- 
projection intersects an obstacle edge, Since the free 
edges rotate with 8, so do the backprojection vertices 
formed by their intersections. When any such vertex 
intersects an obstacle edge, one of the free edges inci- 
dent on that vertex disappears, to be replaced by the 
obstacle edge. These are called vertex-critical orien- 
tations. 
Since the representative directional backprojection in- 

side a noncritical interval may be computed for an ar- 
bitrary value of B in that interval, it is possible that the 
algorithm will fail to compute a directional backprojec- 
tion that entirely contains the polygonal start region R. 
To avoid this problem, Donald [5] suggests adding R to 
the arrangement of polygons, thus adding the following 
critical orientation criterion: 

4. A n  edge o f R  intersects a f ree  edge of the backpmjec- 
tion. These orientations are called R-critical. 
For an input of n Gobstacle vertices, R has a constant 

number of edges and there are O(n) free edges bounding 
the backprojection. Therefore there are O(n) R-critical 
orientations. If the directional backprojection for some 
R-critical orientation Bi contains all the vertices of R, 
then a commanded motion from R with velocity Gee, will 
reach the goal. 

of these‘ that wiil contribute to the critical orientations 
is not known in advance; however, if all intersections of 
possible free-space vertices with obstacle edges are com- 
puted in advance, this set is guaranteed to contain all of 
the ones that will contribute to critical orientations. 

Donald’s critical-slice algorithm recomputes the back- 
projection from scratch at each critical orientation and 
inside each noncritical interval, despite the fact that a t  
most one vertex or edge changes across critical orien- 
tations. Recently, Briggs [l] presented an algorithm 
based on this observation that achieves an O(n210gn) 
bound for computing the nondirectional backprojection. 
Among other improvements, it uses a dynamic data 
structure to keep track of the rotating free-space vertices 
rather than computing all possible free-space vertices in 
advance. 

5 The Effect of Visual Constraints on 
the Nondirectional Backprojection 

In this section, we describe how the introduction of 
visual constraints affects the computation of the nondi- 
rectiond backprojection. In particular, we discuss the 
new critical orientations that result from the introduc- 
tion of visual constraints, and the time complexity of a 
modified nondirectional backprojection algorithm. 

According to the procedure outlined in Section 3, the 
decision of whether to continue the backprojection along 
a CVC ray from a given vertex event depends, among 
other things, on whether the incident C-obstacle edge 
ei  is a sliding or a sticking edge. Sliding us. sticking 
behavior changes only a t  sliding-critical orientations [4], 
so these orientations are also critical for VCenlarged 
backprojections. 

The introduction of visual constraints also adds two 
new criteria for critical orientations. The first is analo- 
gous to Donald’s vertex-critical criterion, and the second 
to his vgraph-critical criterion. 

5.1 Free-Edge-Critical orient at ions 
Suppose fi is a vertex of the backprojection formed 

by the intersection of two rays of the inverted velocity 
uncertainty cone. As the commanded velocity direction 
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Figure 2: A freeedgecritical orientation 

8 varies, fi moves along a circular arc. A critical ori- 
entation occurs when this circular arc intersects a CVC 
ray, since the decision of which of the free edges or CVC 
ray should be used to continue the backprojection may 
change. This is illustrated in Figure 2. By analogy 
to Donald's vgraph-critical orientations, we express this 
new critical orientation as follows: 

5 .  A free-space uertet  of the backprojection intersects a 
CVC ray. We call such orientations free-edge-criiical. 

Proposition 1 There are O(na) free-edge-critical ori- 
entations. 
Proof: We showed that the O(n) workspace obstacle 
vertices give rise to O(n) CVC rays. Donald shows 
that there are O(n2) vertex-critical orientations result- 
ing from the intersection of free vertices with O(n) ob- 
stacle edges. The same argument applies by treating the 
O(n) CVC rays as obstacle edges. 0 

Of course, it  is not always the case that the back- 
projection topology changes at free-edge-critical orien- 
tations. Figure 3 illustrates an example in which the 
topology of the backprojection does not change across 
a free-edge-critical orientation. The bold dashed lines 
bound the directional backprojection, and the CVC rays 
are indicated by eve. Note that in Figure 3(b), the back- 
projection enclosed by the bold dashed lines is incorrect, 
as was discussed in Section 3. 

5.2 VC-Crit ical Orientations 
Before describing the second critical orientation cri- 

teria added by CVC rays, we note the conditions from 
which it follows directly: 

The visibility of a vertex does not change with the 
commanded velocity direction 8, since the workspace 
obstacles and camera are k e d .  Therefore the 
workspace VC rays do not change with 8. 
Consequently, the C-space representation of the VC 
rays does not change with 8, since CVC rays are con- 
structed from workspace VC rays by considering only 

i \ 
I \ 
I \ r' ooddga \ 

Figure 3: The backprojection does not always change at 
a free-edge-critical orientation 

Figure 4: How the backprojection changes across a VC- 
critical orientation 

the vectors joining adjacent robot vertices. Since the 
robot cannot rotate, these vectors never change. 

e With respect to the directional backprojection, CVC 
rays behave as if they were nonsticking obstacle edges 
terminating at the camera focal center, since they do 
not move and sticking can never occur on them. 
With these statements in mind, we note the second 

new criterion for critical orientations added by CVC 
rays, constructed by analogy to Donald's condition (3): 

6 .  A free edge becomes parallel t o  a CVC ray. At such 
an orientation, the decision of whether to add the 
free edge or the CVC ray to the backprojection may 
change. We will call such orientations VC-critical. 
Figure 4 shows how the backprojection changes across 

such a critical orientation. 

Proposition 2 There are O(n)  VC-critical orienta- 
tions. 

Proof: As was shown in Section 5.1, there are O(n) 
CVC rays in an environment that contains n C-obstacle 
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vertices. Each of these introduces two critical orienta- 
tions of the type described above, given by the two free 
edges of the velocity uncertainty cone. Hence there are 
O(n) VC-critical orientations. 0 

5.3 New Asymptotic Time Bounds 
If we denote by B,,,(G) the directional backprojec- 

tion with visual constraints, and by B,,(G) the nondi- 
rectional backprojection with visual constraints, we have 

Proposition 3 A representation of the nondirectional 
backprojection with visual constraints, B,,(G), can be 
computed in t ime O(n3(n+c) logn), where c is the num- 
ber of intersections of CVC rays. 
Proof: Donald’s ‘critical-slice method [4] computes 
the nondirectional backprojection in time O(n4 log n) 
when there are O(n3) critical orientations, by comput- 
ing O(n3) slices each in time O(n1ogn). For the V G  
enlarged backprojection, the complexity of computing 
a slice, B,,,,(G), is O((n  + c)logn). There are O(n2) 
additional VC-critical orientations, but this does not 
asymptotically increase the total number of critical ori- 
entations since there are already O(n2) vgraph-critical 
orientations [4]. The critical orientations can be found 
using Donald’s proposed naive algorithm in time O(n3). 
Hence the nondirectional backprojection with visual 
constraints can be computed in time O(n3(n + c)  logn). 
0 

Conjecture 1 A representation of the nondirectional 
backprojection with visual constraints, B,,(G), can be 
computed in  t ime O(n2 log n) .  

Rationale: Briggs’s algorithm [l] computes the nondi- 
rectional backprojection in O(n2 logn) time when there 
are O(n2) critical orientations. Therefore it should 
be possible to extend Briggs’s algorithm to compute 
B,,(G) in time O(n210gn). It remains to provide a 
constructive proof of this conjecture. 0 

6 Backprojections for C = R3 
Here we briefly describe a number of the difficulties 

that are encountered when extending our algorithms to 
the three dimensional case. The reader should note 
these difficulties are inherent in the computation of 
three dimensional backprojections, and are not intro- 
duced by considering visual constraints. In fact, we will 
show informally that considering visual constraints does 
not make the three dimensional backprojection problem 
computationally harder. 

6.1 Critical cell decomposition 
As discussed in Section 4, Donald exploits the polyg- 

onal structure of the two dimensional backprojection to 

derive a critical-slice method for decomposing the veloc- 
ity direction space 5’’ using a finite number of critical 
orientations and noncritical intervals. In three dimen- 
sions, two angles are necessary to specify a commanded 
motion direction, say q5 and 8 using the convention of 
spherical coordinates. Thus the space of commanded 
motion directions is J = q5 x 6 = [0, T) x [0,2a). To 
apply Donald’s technique here, J must be decomposed 
into cells, inside each of which the topology of the back- 
projection does not change. The boundaries of the cells 
define critical orientations. 

However, since the backprojection is no longer poly- 
hedral, determining when changes in topology occur is 
considerably more difficult. Furthermore, although in 
two dimensions a backprojection polygon is closed by 
the intersection of two rays, a three dimensional back- 
projection volume is in general not closed by the inter- 
section of two planes, so it is not obvious exactly how 
the topology changes across adjacent critical cells. If 
rotation is prohibited, we speculate that there exists an 
algebraic representation of the critical orientation cri- 
teria, in which case a doubly-exponential exact cell de- 
composition [3] could be used to determine the critical 
cell boundaries. 

6.2 Velocity space discretization 
There is also the possibility of discretizing velocity 

space (approximate cell decomposition), as originally 
suggested by Erdmann for two dimensional nondirec- 
tional backprojections. However, in addition to the 
usual resolution problems, the sheer number of cells 
would result in having to compute so many slices that 
this alternative is not attractive. In addition, consider 
that Donald’s critical-slice algorithm was improved by 
Briggs by exploiting the fact that only one edge or vertex 
is added to or removed from the directional backprojec- 
tion at each critical orientation. This is not necessarily 
the case when approximate cell decomposition is used 
to  partition velocity space, so we cannot expect that 
geometric analysis will yield a method of incrementally 
constructing each backprojection slice from the previous 
one, as Briggs was able to do. 

6.3 Computational complexity 
Without a complete computational complexity analy- 

sis, we make the following conjecture about the complex- 
ity of considering visual constraints in three dimensions. 
Conjecture 2 Considering visual constraint surfaces 
in  the three dimensional directional backprojection does 
not increase the asymptotic t ime complexity of comput- 
ing it. 
Rationale: The operations necessary to support visual 
constraint rays are also necessary for supporting the b& 
sic algorithm. Visual constraint rays behave like fric- 
tionless obstacle surfaces in that they do not change 
with motion direction, and like uncertainty cone sur- 
faces in that they are free constraint surfaces not sup- 
ported by a physical object surface. In particular, if we 
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consider polyhedral obstacles only, intersecting planar 
visual constraint rays with obstacle faces and existing 
free constraint surfaces is no harder than intersecting 
circular uncertainty cones with those same surfaces. 0 
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