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Abstract 

In  this paper we discuss the use of computer vision 
for  real-time state estimation in feedback control sys- 
tems. To this end, we construct a system for visual 
state estimation of simple state vectors and study ihe 
effects of various real-world disturbances on the state 
estimates. Simulations are performed using a detailed 
camera model t o  study the performance of an image 
plane position estimation algorithm for a single circu- 
lar feature. Various disturbances, such as  lens distor- 
tion, noise, defocus, and b lumhg are simulated and 
analyzed with respect t o  this estimation routine and 
visual state estimation in general. 

1 Introduction 

A common characteristic of the visual servo control 
schemes reported to date is that the vision system is 
used in an outer ‘‘command loop”, which generates 
reference inputs to an inner “robot control loop” (e.g. 
[l], [3], [4], [5], [a], [9], [13]). This arrangement, which 
we shall refer to as a dual-loop visual servo controller, 
is illustrated in Figure 1. In dual-loop controllers, the 
vision loop typically runs a t  a frequency much lower 
than that of the robot controller. This difference in 
sampling rates is typically due to limitations of the 
vision system, which include limits on the sampling 
time for vision hardware, and the computing time re- 
quired by various vision algorithms. 

By keeping the vision sensing outside the servo level 
control loop, these hierarchical control schemes pos- 
sess certain inherent robustness properties. However, 
such robustness may be achieved at the expense of 
performance. An alternative controller architecture is 
illustrated in Figure 2, which we shall refer to as a 
direct visual servo system. 

In the direct visua1 servo system, the vision system 
is directly feeding back state information (instead of 

Figure 1: Dual-loop visual servo 

3 
Figure 2: Direct visual servo 

reference inputs) to the robot controller. Such an ar- 
chitecture, where the vision system senses part or all 
of the system state, may be useful in several situa- 
tions. For example, in a task space feedback linearita- 
tion scheme[7], [ll], one can define an output error as 
the difference between the position of the object to be 
tracked (environment) and the robot end-effector, and 
use this error directly in the output feedback control 
scheme. In this case, the only means of sensing the 
object may be with the vision system. 

More generally, we may wish to consider the 
robot/environment as the complete system to be con- 
trolled, rather than just the robot itself, as is typical in 
most of robot control theory. In this case, the system 
state consists of the state of the robot and the state 
of the environment to which it is coupled. Hence, the 
vision system is really measuring part of the system 
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state when it views the environment of the robot. 
In order to design robust direct visual servo con- 

trol systems, it is important to fully understand the 
interactions between the image formation process and 
state estimation. To this end, in this paper we present 
a detailed model of the image formation process, in- 
cluding a set of parameters that characterize the de- 
parture of the system from the ideal (which in the 
computer vision literature is typically considered to 
be an ideal pinhole lens system). To date there has 
been no analysis of the relationship between distor- 
tions in the imaging process and the performance of 
visual servo systems. Therefore, although our work is 
done specifically in the context of direct visual servo 
systems, we expect the results to also be of benefit to 
designers of dual-loop visual servo systems. 

The remainder of the paper is organized as follows. 
In Section 2 we present a detailed model of the image 
formation process, and a set of parameters that char- 
acterize various distortions that can occur. In Section 
3 we present a qualitative analysis of the effects of 
the distortions on state estimation and discuss a num- 
ber of simulation studies that quantitatively illustrate 
these effects. 

2 A model of the image formation pro- 
cess 

Once an ideal camera model is determined, we 
will be primarily concerned with two classes of dis- 
turbances: those which affect imaging geometry, and 
those which affect image intensity. Geometric distur- 
bances affect any state estimator based on computer 
vision. Disturbances that affect image intensity will 
have varying effects on state estimation, depending 
on the particular vision algorithms utilized. 

2.1 Imaging geometry 

As is standard in the computer vision literature, 
we assume that the underlying model of the cam- 
era is that of an ideal pinhole. With this model, a 
scene point whose coordinates in the camera frame are 
( x c ,  ye, 2,) projects onto the image plane as follows 

where f is the focal length of the camera and the sub- 
script i indicates the ideal image coordinates, with 
no distortion. In a real imaging system, there is a 

class of distortions that can affect the geometric cor- 
respondence between points in the camera’s field of 
view and points in the image. The primary members 
of this class are typically known as lens distortions or 
aberrations. There exist camera calibration schemes 
which seek to identify a set of lens distortions for off- 
the-shelf cameras such as those to be used with this 
system (e.g., [12J, [14]). We have chosen the work of 
[14] as the basis of our model. The three types of 
distortion that are documented there are: radial, de- 
centering, and thin prism distortions. We now give a 
brief overview of each of these distortions and discuss 
their physical causes. 

Radial distortion causes a displacement of image 
points toward (pincushion distortions) or away from 
(barrel distortions) the optical axis, and arises from 
flaws in the lens construction, typically in the curva- 
ture of one or more of the lenses in the system. While 
it cannot be corrected, it does not change over time, 
and once isolated can be considered a known param- 
eter. The result of radial distortion is a displacement 
of (bur, bur)  to the ideal image coordinates, given by 

where we use the notation O[(U,V)”]  to denote an 
n - th  order term in the image coordinates U ,  U. The 
parameter 121 is positive for barrel and negative for 
pincushion distortion. 

The second type of lens distortion is known as de- 
centering and occurs when the elements in a lens sys- 
tem are not aligned properly, so that the optical axes 
of the lenses may differ slightly. This type of distor- 
tion can easily appear after a camera system has been 
moved or disassembled, even though it was not present 
earlier. Thus, this distortion is one of the hardest to 
isolate in a real system, unless calibration is performed 
before every use of the camera. The effect of decen- 
tering distortion, parameterized by ( p l ,  p ~ ) ,  is a dis- 
placement of ( b u d ,  b u d )  to the ideal image coordinates, 
given by 

The final lens distortion that we consider arises 
from improper lens design or construction of the lens 
array. Typical examples include variations in the ra- 
dius of curvature over a single side of a lens, slight tilt 
of a lens in the array, or a fundamental miscalcula- 
tion of the characteristics of the designed lens system. 
This type of distortion can be modeled by adding a pa- 
rameterized thin prism to the system. The resulting 
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distortion is given by 

where s1 and s2 are the parameters of the thin prism. 
Combining the effects of these three types of dis- 

tortion gives the following 

where ( u i , v i )  are the ideal image coordinates of the 
point of interest. For modeling of overall distortion, 
we ignore all but the lowest order terms in each of the 
distortion equations. This is justified by a restriction 
of the image plane to [-1,1] in both U and v ,  together 
with simulation results which indicate these lowest or- 
der terms offer a good representation of the distortions 
with only five parameters. 

2.2 Image intensity 

The intensity of an image pixel is a function of a 
number of parameters, including the illumination of 
the scene, and the reflectivity and orientation of sur- 
faces in the scene. Here, we are not concerned with 
the exact relationships between the scene and the light 
pattern incident on the lens system, but rather with 
how the camera parameters affect the image intensity 
based on this incident light pattern, and thereby af- 
fect the performance of state estimation algorithms. 
In particular, in this section we will consider the ef- 
fects of blur, camera sensitivity, defocusing and noise. 

We assume that the system uses a standard CCD 
camera. Each pixel's gray level is generated by a 
photo-transistor and a single CCD element. The level 
of charge generated in each CCD is determined by in- 
tegrating the intensity of the incoming light on that 
pixel over the sample period. Therefore, if the features 
of interest are moving during the sample period, the 
resulting image will be blurred. 

Camera sensitivity is defined as the responsiveness 
of each camera sensing element to the light incident 
on the lens, which is focused onto the elements of the 
image array. An imaging system may show excellent 
sensitivity near its optical axis, but may suffer from a 
decrease of transmitted light from the lens system near 
the edges of the CCD array, causing what should be 
identical intensities at the optical axis and the edge of 
the image to differ by several gray scale levels. Thus, 
camera sensitivity is often a result of the lens system 

and not the CCD array. Under the assumption that 
this is the case, we model this distortion as 

z = ZO cosa(tan-'(r/f)) (11) 

where I is the distorted image intensity, IO is the orig- 
inal, undistorted image intensity, r = I/=, f is 
the camera focal length and p is a non-negative inte- 
ger. 

Another problem that can arise in most visual sys- 
tems is that of defocus. If the system is not in 
proper focus, the image, even with no blurring, will 
be smeared out. Defocus is represented by a two- 
dimensional convolution of the image intensity profile 
with a radially symmetric function (known as the point 
spread function). We choose to  represent this effect as 
a discrete convolution applied multiple times to the 
image. For this model, defocused images are gener- 
ated by calculating a number of intermediate images 
from a set of ideally focused pixel values using a con- 
volution of a mask of the type shown in Figure 3. Each 
image is convolved with the mask to  generate a new 
image. This process is repeated N times to  generate a 
defocused final image. The parameters (fo, f 1 ,  fi) and 
this number N are the parameters for the defocus. 

Figure 3: Mask for discrete convolution in defocus sim- 
ulation 

Finally, the intensity of an image pixel is subject to 
noise in the image formation process. We model image 
noise as an additive term with a Gaussian distribution 
and a standard deviation of r gray levels. 

3 Analysis and simulations 

To present our results a concise manner, we have di- 
vided the possible disturbances into two groups. The 
first group, which includes blur, defocus, camera sen- 
sitivity and noise, can be assessed in broad qualitative 
terms. Therefore, in Section 3.1 we present a discus- 
sion of these distortions and their effects on state e 6  
timation, as observed through a number of simulation 
experiments. In Section 3.2 we give several q u a n t h  
tive results that illustrate the effects of lens distortion 
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on state estimation. In all simulations, we utilize a 
512 x 512 pixel image with 256 gray levels. The vi- 
sion algorithm utilized is a simple centroid tracking 
scheme, where the state to be determined is the l e  
cation of the centroid of a thresholded feature in the 
image plane. For details of the implementation, see 
PI * 

3.1 Blur, defocus, camera sensitivity and 
noise 

Blur will present a problem for any camera system 
viewing a moving object. It is the hope of the de- 
signer that the sample rate of the camera system will 
be high enough compared to the speed of the mov- 
ing features to render the distortion from blur negli- 
gible. Nonetheless, it can be noted that the centroids 
to be determined in the visual state estimation a l g e  
rithm defined above will represent the centroids of the 
features at approximately the midpoint of the sample 
interval, assuming the motion is relatively constant 
over the interval. For small sample periods, this rep- 
resents a delay in the data of approximately one-half 
of the sample period, in addition to any delays which 
arise from calculations or are inherent in the feedback 
controller utilized. Thus we see the need for high fre- 
quency in order to avoid increasing the delays in the 
feedback control law, which could result in instabil- 
ity of the system. When blur is present, care must 
be taken to  consider its effects when choosing system 
parameters, such as a threshold level. Blur can be 
partially negated by the use of asynchronous shutters 
(which have an exposure time much smaller than the 
sample interval) or certain image processing steps [6]. 

With regard to defocus, our experiments have 
shown that typical values for the defocus parameters 
(fo, f l ,  f z ) ,  (i.e. parameters that reflect a system that 
has been brought into focus by a human operator or 
by an autofocus mechanism) produce negligible effects 
on the state estimates. This matches expectations, 
since many computer vision algorithms exploit Gaus- 
sian blurring as a preprocessing step to help cope with 
image noise. 

Camera sensitivity is of particular concern when 
the vision algorithms rely on intensity thresholding for 
segmentation of image features. When camera sensi- 
tivity varies greatly across the image plane, it is pos- 
sible that there will not exist a suitable global inten- 
sity threshold for feature segmentation. In such cases, 
methods such as local histogramming can be used to 
compensate (see, for example [lo]). For most cam- 
eras, the sensitivity issue is not significant. Therefore, 

in the following simulations, we will assume this dis- 
tortion to be negligible. 

Noise, as mentioned above, is an omni-present prob- 
lem. Assuming that the underlying noise process is 
Gaussian, we expect that the effects of additive noise 
as described above will be averaged out over a large 
area. In fact, since the image is thresholded, we will 
only be concerned with points which are disturbed 
from their initial intensity enough to cross the thresh- 
old, either downward or upward. This can pose prob- 
lems for feature segmentation and the estimation of 
feature locations. Analytically, we can see that over 
a large region of continuous intensity, the effects of 
noise with zero mean will average out. The same sort 
of result is seen when the image is thresholded. The 
Gaussian noise in the gray scale image translates to 
salt-and-pepper noise in the thresholded image. Over 
a large region of pixels with value one, such as an ex- 
tended feature in a thresholded image, the centroid is 
relatively undisturbed by the noise. 

In the following simulations, the state to be esti- 
mated is the image plane location (in ( u , ~ ) )  of the 
centroid of a stationary, uniform circle. Again, the 
image plane is assumed to be [-1,1] x [ -1 ,1] .  The 
simulations utilize a circle with a radius, in the im- 
age plane, of 0.02 units and a brightness of 255 gray 
levels on a background with a brightness of zero. The 
threshold of the vision algorithm is set at 200 gray lev- 
els. Estimation error data was taken with the circle 
placed such that the ideal centroid was a t  the vertices 
of a regular grid over the image plane. 

Errors in the state estimates in the case of no lens 
distortions were on the order of units over the en- 
tire image plane, due to quantization noise and thresh- 
olding. The estimation errors for noise of U = 75 gray 
levels show negligible effect (errors on order of 
units). 

3.2 Lens distortion 

Equations 5 - 8 demonstrate that the effects of p1 
and pz are similar, as are those of s1 and s2. Since we 
are concerned only with a circularly symmetric fea- 
ture in the image plane, we can analyze only p1 and 
SI, knowing that the effects of pz and s2 will mimic 
those results under proper coordinate transformations. 
Thus we are concerned only with the distortions kl, 
p1 and sl. By noting that the distortion equations 
are linear in the distortion coefficients, we avoid pre- 
senting a family of plots for various values of each 
distortion. 

In Figures 4, 5 and 6, we see the error in location of 
the centroid of the circle defined above, over a portion 

171 



of the image plane, for distortion parameter values of 
0.05 (which represent distortions readily apparent to  
the naked eye). The error on the remainder of the 0 

0 2  image plane can be generated by noting, from the dis- 
0 4  

tortion tortion fields equations for each (3)-(8), parameter. the symmetries A negative of value the dis- for !*E/![ 4 6  

2- 4 8  4 8  4 4  4 2  d 0 ;  041 0;  0 ;  0 8  
I! 

kl yields distortions which are approximately equiva- 
lent to those shown, but with reversed signs. Negative 
values for p1 and 81 reflect the error graphs about the 
v axis, with appropriate sign changes. 

U 

c U 

ff 0 6  

U O \ o . o 4 . s  l0.4 '0.3 '4.2 '4.1 '0 

Figure 4: State estimation error for k l  = 0.05 units-2 
(all values in image plane units) 

Figure 5:  State estimation error for p l  = 0.05 units-' 
(all values in image plane units) 

Considering these state estimation error graphs and 
the associated distortion equations, we can generate a 
set of qualitative guidelines for use of this type of vi- 
sual state estimation under these distortions. Clearly, 

U 

Figure 6: State estimation error for sl = 0.05 units- 
(all values in image plane units) 

1 

in any case where lens distortions are present, best re- 
sults can be obtained when the features of interest are 
near the optical axis. In most other cases, it is the type 
of state information to be derived that determines the 
steps which should be taken when each distortion is 
present. As an example, consider a state which con- 
sists of the planar orientation and location of a single, 
rigid link. This state could be generated by inscribing 
one circle on each end of the link and locating their 
centroids using the scheme detailed above, then cal- 
culating the orientation and position from those end- 
points. By maintaining one end of the link near the 
optical axis, the orientation measurement would not 
be disturbed badly by radial distortions such as k1. If 
the orientation was limited to some arc of [e,, e,] in 
the world reference frame, and distortions like p1 or s1 
were present in the system, it might be best to orient 
the camera so that the direction of maximum distor- 
tion lies along the midpoint of this arc, minimizing 
the angular distortion. One might also take the ver- 
tex closest to the optical axis as the best measure of 
the location. 

When features of interest are moving between sam- 
ple frames, and image plane velocities are to be cal- 
culated as part of the state estimation, lens distor- 
tions also impose an additional velocity distortion as 
the feature moves across the image plane. This veloc- 
ity distortion arises from the variation of the magni- 
tude of position distortion over the image plane. Thus, 
even when calculations are based on differences of im- 
age values (in this case, positions), the distortion still 
presents a problem. 

Cases of state estimation for objects which are to 
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be recognized by relative position of two or more fea- 
tures demonstrate another difficulty presented by lens 
distortions. If the image of the object extends over 
a large area of the image plane, or rests far from the 
optical axis, the features of interest may depart from 
their ideal locations to  a degree which causes a loss 
of identification and a failure of the state estimation 
routine. Careful bounds on measurement error must 
be set in such cases to avoid a loss of data. In the sim- 
ulated case of simple centroid tracking, bounds were 
set on the minimum and maximum area of a contigu- 
ous, thresholded region of value one which would be 
labeled as a feature. 

We see from the simulations performed that, when 
the distortions in the lens array are small, such as to 
be difficult to  notice with the naked eye, the error in 
state estimation for our simple scheme is quite accept- 
able. Further, with the use of the data accumulated 
and the distortion fields derived, suitable guidelines 
for selecting a proper camera setup and appropriate 
operating goals can be obtained for most visual state 
estimation schemes. 

4 Conclusions 

Herein we have demonstrated the quantitative and 
qualitative effects of various disturbances and aberra- 
tions on visual state estimation for direct visual servo 
of robotic systems. This information is useful in select- 
ing the proper camera system for applications which 
could be very sensitive to errors in the state feedback, 
and offers guidelines for dealing with distortions in ex- 
isting equipment. This research has been applied to 
simulations of a real-time robot control system utiliz- 
ing visual feedback for robotic state estimation of a 
balancing robot in [2]. 
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