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Abstract 
W e  present a method for analyzing and selecting time- 

optimal coordination strategies for  n robots whose con- 
figurations are constrained t o  lie on a C-space roadma 
(which could for  instance represent a Voronoi diagramJ 
We consider independent objective functionals, associ- 
ated with each robot, together in a game-theoretic contexi 
in which maximal Nash equilibria represent the favor- 
able strategies. Within this framework additional crite- 
ria, such as priority or the amount of sacrifice one robot 
makes, can be applied t o  select a particular equilibrium. 
A n  algorithm that determines all of the mazimal Nash 
equilibria for a given problem is  presented, along with 
several computed examples for two and three robots. 

1 Introduction 
There has been considerable interest from the mo- 

tion planning community in the problem of coordinating 
multiple robots. Most traditional approaches to  coordi- 
nation either form a global objective that constructs a 
path throu h a joint confi uration space, simultaneously 
solving ea& robot goal ?centralized planning), or first 
generate plans using independent objectives, and then 
consider the interactions with other robots (decoupled 
planning). We argue that one of the fundamental issues 
of coordination is the incorporation of multiple, inde- 
pendent objectives into a single framework that directly 
models the competition or conflict that occurs. This 
consideration is naturally provided by a game-theoretic 
analysis, which leads to the determination of maximal 
Nash equilibria as the smallest set of useful coordination 
strategies. 

With the centralized view, a multiplerobot planning 
problem can be viewed as a single robot planning prob- 
lem by considering the combined configuration space of 
the robots [2, lo]. As an example, the problem of plan- 
ning the motion of n disks in the plane was solved in [15] 
by performing a critical curve analysis on the configu- 
ration spaces of the disks, and planning a collision-free 
path through free cells in the combined configuration 
space. 

A variety of decoupled planning approaches exist. 
Prioritized planning has been proposed, in which plans 

ifications are made to accommodate robot interaction. 
In [13] robot paths are independently determined, and 

a coordination diagram is used to plan a collision-free 
trajectory along the paths. 

Our approach can be considered somewhere between 
centralized planning and decoupled plannin . We com- 
pute a roadmap for each independent robot becoupled), 
and 'consider coordinating the paths and motions of the 
robots on the roadmap (centralized). 

Our primary interest, however, is in a notion of o p  
timality that applies to multiple robots and guides the 
selection of coordination strategies. Traditionally, the 
amount of sacrifice that each robot makes individually 
to accomplish its goals is not usually taken into account. 
For instance, it might be that one robot's goal is nearby, 
while the other robot has a distant goal. Optimizing 
the joint goal might produce a plan that is good for the 
robot that has the distant goal; however, the execution 
cost for the other robot would be hardly considered. 

Instead of seeking a single, optimal coordination 
strategy, we show that there exists a natural partial or- 
dering on the space of strategies, yielding a search for the 
set of maximal coordination strategies. For any other 
coordination strategy that can be considered, there will 
exist at least one maximal strategy that is clearly better 
or equivalent, and the set of all maximal strategies is 
typically small. Within this framework additional crite- 
ria, such as priority or the amount of sacrifice one robot 
makes, can be applied to select a particular strategy. If 
the same tasks are repeated and priorities change, then 
only a different maximal strategy would be selected, aa 
opposed to re-exploring the space of coordination stra;e- 

These maximal strategies furthermore satisfy the 
Nash equilibrium condition, which intuitively means 
that each robot is satisfied with the outcome, given the 
actions taken by the other robots. This concept is bor- 
rowed from game theory, which is a well-studied subject 
that deals precisely with the multiple objective problem 
in which some form of competition or conflict occurs. 
From a modern viewpoint, game theory represents a 
generalization of decision theory, optimal control theory, 
and games considered in AI contexts. Particularly, an 
extensive amount of material can be found in optimiza- 
tion and control literature; numerous references can be 
found in [I]. The Nash equilibrium concept in our con- 
text generalizes the notion of optimality to a multiple 
robot case. 

In Section 2, we formally define our multi-robot co- 
ordination problem. Section 3 introduces the game- 
theoretic formulation of the robot objectives and solu- 
tion space. A coordination space is considered, and a 

gies. 
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Figure 1. An example roadmap structure with oriented 
constant-speed paths. 

key proposition based on path homotopy is presented 
that states that there is only one etrategy per path class 
worth considering in a coordination diagram (this is uti- 
lized by OUT algorithm). Section 4 presents an algorithm 
that can generate the complete set of maximal Nash 
equilibria, given diecretised reprmtat ions of coordina- 
tion diagrams. The algorithm was used to compute the 
results presented in Section 5. Section 6 presents some 
conclusions. 

2 Problem Definition 
We have choeen to work with a roadmap representa- 

tion for our coordinated motion planning problem since 
several general methods exist for producing a roadmap 
in configuration space lo]. The visibility gmph approach 

the boundary of the free configuration space, C j r e e ,  and 
is primarily suitable for two-dimensional polygonal C- 
space planning problems. The topological refraction 
operation has been used in a roadmap generation a p  
proach that continuously retracts C t r e e  onto its Voronoi 
dia am [14]. Other roadmap methods are described 
in E 61. Roadmap coordination has also been recently 
considered in [16]. 

We use Ai to represent a robot, and assume that the 
position of each robot is represented by a point in a com- 
mon configuration space, C. We consider a roadmap 'R, 
to be a onedimensional connected subset of Cjree )(see 
Figure 1). The roadmap is parametrized by a collec- 
tion of regular curves, 7, euch that for each ~i E 7, 
Ti : [O,1] + 'R. We refer to each Ti a segment of 32. We 
assume without losa of generality that each parametriza- 
tion is of constant speed. The endpoints of some paths 
coincide in 'R to form a network. For instance, in Figure 
1, Ts(1) = T4(0) = T6(1). 

We assume that a roadmap representation has been 
a priori determined for a given problem for a workspace 
with static obstacles. The implication of working with 
this common roadmap is that the configurations in 'R 
must be colliion free for each robot independently. We 
can alternatively consider independent roadmaps for 
each of the robots without significantly altering our ap- 
proach. 

A problem is specified by providing an initial configu- 
ration, dnit E 'R, and a goal configuration q:oal E 72 for 
each robot, Ai. As a minor extension one could addi- 
tionally consider initial and goal configurations in ct...; 
a roadmap can be extended in a strai htforward man- 

given problem [lo]. 

generates a roadmap b y connecting certain vertices of 

ner to include the particular initial an % goal states of a 

t 

Figure 2. A sample velocity function u(l) E Y. 

The objective of each robot can be expressed as: 

Determine a continuous path ~ r j  : [0,1] -+ 'R in 
which Xi(0) = and Xi(1) = qioal. 

Determine a velocity function ui( t )  that specifies 
the motion of Ai along the path. 

The functions xi and vj(f must be chosen 80 that 

roadmap already guarantees that the robots do not 
collide with obstacles). 

Minimize the time required to reach qioal. 

the robots do not cok d e with each other (the 

A position on 72 along xi at time t is given by 
Tics,' tJi(t)dt/l(Xj))l in which i(rj) is the arc length' of 
ri! For ui(t)  to be valid, we must have ~ ~ v i ( t ) d t  = 
i(ri), SO that the robot is at Tj(1) as t + 00. 

To simplify the analysis, we place some restrictions 
on the choices for xi and ui(t) .  Since paths are con- 
strained to lie on 72, we choose paths, Ti, by select- 
ing a route through the roadmap from dnit to qioa,. 
Such a route can be specified by a sequence of segments, 
{Til , . . . , Tir}, such that dnit L contained in the segment 
parametrized by Till and qiMl is contained in the seg- 
ment parameterized by rir. We form from a sequence 
of segments by constructmg a constankspeed paramet- 
ric function that traverses each segment. We denote the 
set of all valid paths for Ai as IIj. 
As an example (recall Figure l ) ,  suppose that dnjt = 

ment sequence, n(1) = qj(O), nj(1 = Ts(0) and the 

path, xi, from &it to qfiOal is constructed as 

72(1/2), qioal = 73(1/2), {n, n, a) is a connected seg- 

segments are of.equal y c  length. ?r he corresponding 

We allow segment sequences that revisit the same points 
in R, such as {q, r5,73,qj, TI ] .  If the segment sequence 
causea the robot to visit some Xj(0) twice without vis- 
iting Tj(1) (or equivalently, Ti(1) twice without r i ( O ) ) ,  
then we travel a fixed distance into the segment before 
returning. A path of this type is useful when one robot 
needs to get past another on 'R (Figure 8 of Section 5 
shows an example of this 
We assume that all ro ots are capable of moving at 

the same constant velocity. We do not model robot dy- 
namia (with the exception of avoiding collision), and 

b: 
We use arc length to d e r  to the distance dong a path. 
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consequently allow robots to instantaneously switch be- 
tween being stopped and maintaining the fixed veloc- 
ity (see Figure 2). This yields a set of valid velocity 
functions for Ai, which we denote by Vi. Others have 
considered trajectory coordination of robots along paths 
incorporating dynamics [3, 81, and we believe the ideas 
presented in this paper can be extended through consid- 
ering additional constraints and forming a suitable class 
of velocity functions, Vi. 

3 Coordination Equilibria 
The objective of each robot Ai is to determine a path 

and velocity function that minimizes the time to reach 
qioa,. If each robot Ai was trying to meet its objective 
without the presence of other robots, we would be con- 
fronted with a standard optimization problem in which 
we simply select the shortest path from $nit to qioal, 
and move the robot at its k e d  velocity from start to 
finish. 

When considering interaction with other robots, how- 
ever, this choice of path and velocity function may pro- 
duce a collision. Furthermore, a collision-free velocity 
function might not even exist for the optimal arc-length 
path. Insthe coordination scenario, each robot is faced 
with this difficulty, even though independent optimal 
choices exist. 

For this problem we seek a notion of “optimality” that 
guides the selection of coordination strategies, given that 
we have a vector of independent objectives (as opposed 
to a single objective in a standard optimization setting). 
We can formulate the problem defined in Section 2 as a 
single-stage game by defining the following three com- 
ponents: 

Players A1, * . ,An 
Strategy Space 
Loss Functionals 

I’ = I’1 x I’2 x . . x l’, 
Ll ( r ) ,  . . . , Ln(7) 

The ith component of the strategy space is defined as 
ri = IIi x Vi, which is the Cartesian product of the set 
of all paths and the set of all valid velocity functions for 
Ai. We call each 7 E r a strategy for the game, and 
some 7i E I’i a strategy for player i. 

The loss functionah encode the objectives of the play- 
ers. We take Li(7) to be the time required for player Ai 
to reach qtoal if strategy 7 is implemented and Ai does 
not collide with another robot. If Ai collides with an- 
other robot, then we declare Li(7) = 00. Other criteria, 
such as total distance or energy could be combined into 
a loss functional. 

We can consider a partial ordering, 3, on the space 
of strategies as follows: 7 5 -y‘ if Li(7) 5 Li(7’) for 
each i. If it further holds that Lj(7) < Lj(y‘) for some 
j, we say that 7 is better than 7’. The strategies are 
equivalent if Li(7) = Li(y‘) for each i .  TWO strategies, 
7 and -y‘, are incom arable if there exists some i ,  j such 
that Li(7) < Li(J and Lj  7) > L (7’). Hence we 
can consider 7 to be either Letter t ian,  worse than, 
equivalent to, or incomparable to -y‘. We say that 7* is 
a mazimal strategy if for all 7 # 7* such that 7 and 7* 
are not incomparable, we have 7* 5 7. 

Only the maximal coordination strategies, 7*, are 

reasonable to consider since for any other 7 E I’ there 
exists a maximal strategy that is better. In general game 
theory, however, it could be the case that player i can 
further reduce its lw by selecting a different 7!, given 
the 7; chosen by the other players, even though 7* is 
maximal. In other words, player i mi ht not be satis- 

players. However, for the loss function considered for 
this multiple robot coordination problem and a maxi- 
mal strategy 7* = ($ . . .7:), the following holds for 
each i and each yi E ri: 

fied with the outcome, given the 7i t s en by the other 

This is referred to as a Nash equilibrium, and we will 
hereafter refer to a 7* as a maximal Nash equilibrium. 
The goal of our algorithm is to determine all of these 
maximal Nash equilibria for a given problem. 

For the remainder of this section we &cues how v e  
locity functions are determined for a given set of paths, 
{?TI, . . . , Tn}. The key result is Proposition 1, which 
states that very few velocity functions are candidates 
for maximal Nash equilibria. This is exploited by our 
algorithm, which is presented in Section 5. 

We begin by considering a representation referred to 
in robotics literature as a coordination space 3, 131. We 
denote this space with S, which represents t 6 e unit n- 
cube spanned by the coordinates (s1,s.a:. . . , sn 
point in S corresponds to a fixed position, Ti 
each Ai. 

We define the obstacle region in S as the set of n- 
tuples, (sl, 82, .  . . , s,) such that: 

Ai(ri(si))ndj(rj(sj)) # 0 for i # j. (3) 

This states that some pair of robots, Ai and Aj, collide 
at confi rations ~i (s i )  and “’(si). We will use the no- 
tation g&+ to denote the dosure of the obstacle-free 
subset of S. Figure 6 shows a discretized example of S 
for which n = 2. The shaded region indicates places in 
S in which two robots collide. 

The objective is to provide a continuous path, de- 
noted by f, from (O,O, . . ., to (1, l,. . ., 2, whose im- 
age is contained in &lid. his correspon s to moving 
each robot from ~ i ( 0 )  to xi(l), without colliding with 
other robots. b b o b  are allowed to touch (at the bound- 
ary of &,lid); however, the obstacle region in S can be 
appropriately modified if this aspect is undesirable. 

Since we made the assumption that the robots can 
either move at some fixed velocity along the path or 
halt, there are some restrictions imposed on f: 
e f must be nondecreasing with respect to each ‘si 

0 f is a polygonal curve 

0 Each linear piece of f must correspond to having 
some number of robots moving at their fixed veloc- 
ity, and some robots stopped. 

We next consider path classes in Sualid. Two paths f1 
and f2 in Svalid are homotopic (with endpoints fixed) If 
there exists a continuous map h : [0, 1 x [0, 11 -, Sualid 
with h(s, 0) = n ( s )  and h(s, 1) = fz(s\ for all s E 0,1] 
and h(0 , t )  = h(0,O) and h ( 1 , t )  = h(1,O) for al I t 6 
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[0,1]. This homotopy determines an equivalence rela- 
tion, N, among the monotonic paths from (O,O, . . . ,0) 
to (1,1,. . ., 1 in Svalid.  We will use [fl to denote the 
eqwvalence c 1 ass of paths that contains f. Note that 
since f is monotone, the path classes defined here do not 
represent the fundamental group from homotopy theory. 

Using these path classes we have the following prop* 
sit ion : 
Proposition 1 There ez is ts  an f with corresponding 7 
such that for every other path f’ E [fl and its c o m -  
sponding straiegy r‘, we have 7‘ 5 7 (i.e., each path 
class contains a best strategy) 

Overview of Proof For n = 2: Su pose to the con- 
trary that there exists some f’ E [{such that 7 and 
-f are incomparable. Consider the points in Svolid at 
which f and f‘ intersect, which includes (0,O) and (1,l). 
Between each consecutive pair of intersection points, 
say (z1,yl) and (z2,*), a path, U, can be found from 
(z1,yl) to.(za,&) (using the fact that [fl = [f’] and 
monotonicity) whose losses L1 and LZ (in terms of time) 
are lese than or equal to the losses associated with the 
corresponding pieces of f and f’ from (z 1, yl) to (za , ya) . 
The strategy that corresponds to piecing together the U 
for each consecutive pair of intersection points is better 
than both 7 and -y‘, which is a contradiction. 

For n > 2: Suppose again that 7 and 7’ are incompe 
rable. This implies that for some pair of indices i ,  j, we 
have Li(7) < Li(7’) and Lj(7) > L . ( y ) .  Consider S2 as 
the coordination space generated by sisj. The projec- 
tions of f  and f’ onto Sa lie in distinct path classes by 
the n = 2 art of this proposition. This can be used to 
show that ffl # [f’] in &alid, which is a contradiction. 
0 

4 A Coordination Algorithm 
In this section we describe the components of the fol- 

lowing algorithm which obtains the maximal Nash equi- 
libria: 

1. 

2. 

3. 

4. 

5. 

6. 

Initialize strategy list, G and let k = n 

For each index set in &, execute Steps 3 and 4 using 
the corresponding paths rl , . . . , r,  

If there does not exist some strategy in -y E G such that 
Li(7)  5 J(ri) for each a, then execute Step 4 (otherwise 
skip to the next index set in E,) 
For the choice of paths, construct a discretized repre- 
sentation of Svolid, and consider the addition of one 
maximal strategy from each path class [A to G 

If Step 4 was executed at least once (or until some max- 
imum k), then let k + k + 1 and go to Step 2 

Return G as the set of maximal Nash equilibria 

Throughout the execution of the algorithm, we main- 
tain and update a set of strategies, G. Initially, G is 
empty, and in Step 6, G will result in the set of maximal 
Nash equilibria. 

The path choices for each robot are iteratively mn- 
sidered in a systematic manner. Let Z(ui) represent the 
arc length of the path xi. First, we use an efficient algo- 
rithm that repeatedly returns the nth shortest path for 

m 

I 

1 2 3 4 5 6  

Figure 3. The progression of alternative path consideration 
in our algorithm. 
di (minimizing /(xi)), given the previous shortest n - 1 
paths. Detailed analysis of nth shortest path algorithms 
is provided in [12]. 
We describe the consideration of paths for n = 2, and 

a similar idea applies when n > 2. Let [i , jJ represent 
the choice of the ith best path for dl and the j t h  best 
path for A2. For each execution of Step 2, with value 
k, the algorithm considers all choices of i ‘1 for which 
i+ j = k, denoted by Ck . Figure 3 shows t 61’ e progression 
of paths that we consider (ignore the shaded triangle for 
now). The horizontal axis represents path choices for 
AI, and the vertical axis represents path choices for dz. 
The first execution of Step 2 considers [l, 11, then [l, 2 

[3., lb etc. Proposition 2 indicates when the algorithm 
Wlll alt. 

In Step 4, we construct a discretized representation of 
S, which was considered for two robots in [lo, 131. This 
is constructed by dividing each path ui into a sequence 
of wi path segments, determined by the intervals & k j  = 

1. In our experiments, we take the intervals si,$, to 
correspond to motions of equal length along each path 
~ r i .  This subdivision transforms the continuous S space 
into an n-dimensional array of ni wi closed rectangular 
cells. A cell, represented by &,k0 x . ex Sn,+,, , is classified 
as EMPTY if 

{di(ri(si))IS E &,kj} n {dj(rj(Sj))Is E 6j ,kj )  = 0 (4) 
for all 1 5 i , j  5 n with i j. The cell is classified as 

t o  collide in an EMPTY cell, while they may collide in 
a FULL cell. Each path f is constrained not to pass 
through a FULL cell. We note that completeness for 
a given problem (i.e., whether all path classes are guar- 
anteed be found) will in general depend on the selected 
resolution for the discretization. 

Once the discretized representation of S has been 
built, the next step is to determine the maximalstrategy 
for each path class [fl. We accomplish this by generat- 
ing one representative path from each [fl, and iteratively 
shortening it until a maximal path f’ E [ is obtained. 
The path f’ minimizea the time for each p 3 ayer to reach 
qigoal, given the path class [fl. 

Each time a new strategy, 7, is found in Step 4, one 
of the following actions is taken: 

e If 7 5 for some -y‘ E G, then 7 is added to G, 

and 2,1]. The third execution considers [1,3], [2,2], an d 

[Si,k,, sj,k,+l], with ki = 0, . . . ,Wi-1, Si,o = 0 and si,w, = 

FULL otherwise. Hence, t f e robots are guaranteed not 

and all strategies worse than 7 are removed 
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0 If 7’ 3 7 for some 7‘ E G, then 7 is discarded 

0 If 7 is incomparable to every element in G, then 7 

If the goal is to  determine equivalent maximal strategies 
which use different paths (as opposed to one represen- 
tative for each equivalent loss), then strategies that are 
equivalent to some element in G are added. 

The following proposition provides the motivation for 
Step 5: 
Proposition 2 If there ex+ a game strategy for each 
Ai that allows it to reach qioal optimally (independently 
of other robots), then the presented algorithm provides 
the complete set of maximal Nash equilibria in r. 
Overview of Proof Recall that we assumed the robots 
move at some h e d  velocity. Without loss of generality, 
we will assume that this fixed velocity is one unit per 
second, measured in the same units as path length, l ( ~ i ) .  
Also, assume further that n . = 2. For eacfi choice of 
paths, [i, j] (yielding T! and 4) I(.!) and I ( < )  represent 
a lower bound on the loss values (Ll(7) and L2(7) that 

exists a game strategy, 7’ that allows A1 to reach qjOol 
in time 1(7r; ) ,  and another strategy y2 that allows A2 to 
reach qgoal in time l ( ~ i ) ,  then only a finite number of 
pairs [i,j] exist that can potentially produce better or 
incomparable strategies. 

If G in the algorithm represents the maximal strate- 
gies in I?, then by inspection of (2) it can be seen that 
every element of G is a Nash equilibrium. 

The same argument holds for n > 2. 0 
For instance, suppose we find a strategy 7 from path 

choice [l, 11 (meaning the shortest path for each player) 
such that Ll(7) < 1($)  and L2(7) < l ( d ’ ) .  Then the 
shaded re ion in Figure 3 does not need to  ke considered 
because strategies obtained from path choicea in that 
region will be worse ,than (or equivalent to) 7. 

is added to G 

could be obtained from any 7 represented 111 S. I r’ there 

5 Examples 
In this section we present examples that were com- 

puted using the algorithm in Section 4. We have 
presently considered 2- and brobot coordination prob- 
lems. Using Allegro Common Lisp on a SPARC 10 work- 
station, the computation time ranged from seconds to 
about an hour. Each of these examples involves a few 
segments, which makes the robot motions tightly con- 
strained. More complex roadmaps tend to generate sim- 
ilar types of robot interaction illustrated here, or offer 
alternative paths that avoid collision altogether. To sim- 
plify the collision detection, (4), we used circular robots 
in these examples. For each strategy, several frames are 
shown that indicate the location of the robots during 
the strategy execution. 

Figures 4 and 5 show the two unique-loss maxi- 
mal equilibria for an “H”-shaped roadmap coordination 
problem in which two robots attempt to reach opposite 
corners. The black and white circles in the two figures 
indicate the positions of A1 and A2, respectively. The 
black and white triangles in Figures 4.1 and 5.1 indicate 
the goal positions. 

Fi we  4 is time-optimal for A1 , but A2 must make a 
sacrifce by waiting. Figure 5 is time-optimal for Az, but 
A1 waits instead. Figure 6 shows the corresponding dis- 
cretized coordination diagram generated from the opti- 
mal length paths for A1 and A2, U: and r:, which yields 
two paths that are homotopically distinct. For this prob- 
lem, these paths generate the two maximal Nash equi- 
libria. 

Figure 7 shows a maximal Nash equilibria (among 
several) for three robots. The black, white, and shaded 
circles in the two figures indicate the positions of Ai, 
A2, and As, respectively. Figure 7 is time-optimal for 
As. 

Figure 8 shows a maximal equilibrium for a prob- 
lem in which three robots must reverse their ordering 
to accomplish the goal. Robots A2 and As wait in side 
segments, while A1 passes. 

1. A I 

Figure 4. One of two maximal Nash equilibria 

Figure 5. One of two maximal Nash equilibria 
1 

0 81 1 

Figure 6. The coordination diagram (with w1 = tu2 = 25) 

6 Conclusions 
We have determined that maximal Nash equilibria 

sufficiently characterize the interesting strategies that 
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1. 61,. 
3. H4.? 

Figure 7. One of several maximal Nash equilibria 

H 
O- 

1. -t- 2. -%- 
Figure 8. One of two maximal Nash equilibria 

3. -P- 
exist in the roadmap coordination problem. F’urther- 
more, through the analysis of path classes in S and the 
systematic progrwion of path choices, we presented an 
algorithm that can find all the maximal Nash equilibria 
for a given problem. 

After obtaining these equilibria, one can execute a 
specific strategy by agreeing on a certain global policy. 
For instance, we could decide to select a strategy that 
minimizes the amount of sacrifice that a robot will have 
to make, in comparison to its optimal strategy in the 
presence of no other robots. Or it could be the case 
that one robot, say Ai, is designated with highest prior- 
ity, and a strategy, 7, is selected that minimizes Li(7). If 
this lobal policy changes over time (assuming that the 
coorfination problem is repeated) then a different equi- 
librium will be selected, as opposed to reinvestigating 
the space of all possible strategies. 

We believe the general game-theoretic principles dis- 
cussed in this paper apply to other robotic tasks as well. 
A variety of robot tasks can be expressed in optimization 
terms, and the concept of Nash equilibria provide a u s e  
ful extension of optimality to multiple robots. F’urther- 
more, additional structure from modern game theory 
can be incorporated. As an example, stochastic uncer- 
tainty in sensing and control can be introduced [7, 111. 

4. + 
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