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Abstract 
We have previously developed a new method for gener- 
ating collision-free paths for robots operating in chang- 
ing environments. Our approach relies on creating a 
representation of the configuration space that can be 
easily modified in real time to  account for changes in 
the environment. In this paper we address the issues 
of efficiency and robustness. First, we develop a novel, 
efficient encoding scheme that exploits the redundancy 
in the map from robot’s Euclidean workspace to its con- 
figuration space. Then, we introduce the concept of 
e-robustness, and show how it can be used to enhance 
the representations that are used by the planner. Along 
the way, we present quantitative results that illustrate 
the eficaency and robustness of our approach. 

1 Introduction 
We have developed a new method for generating 
collision-free paths for robots operating in changing 
environments Ill, 121. Our approach, which we de- 
scribe in Section 2, relies on creating a representation 
of the configuration space that can be easily modified 
in real time to account for changes in the environment. 
As with previous probabilistic roadmap (PRM) ap- 
proaches (e.g., [1,2,5,6, lo]), we begin by constructing 
a graph that represents a roadmap in the configuration 
space, but we do not construct this graph for a spe- 
cific workspace. Instead, we construct the graph for 
an obstacle-free workspace, and encode the mapping 
from cells in the workspace to nodes and arcs in the 
graph. When the environment changes, this mapping 
is used to make the appropriate changes to the graph, 
and plans can be generated by searching the modified 
graph. 

There are two main difficulties that confront our ap- 
proach. First, encoding the mapping from the robot’s 
workspace to the representation of its configuration 
space potentially requires a huge amount of computer 
memory. Fortunately, there is a great deal of redun- 
dancy in this mapping, and we can exploit this to 
compress our representations. This is the topic of Sec- 

Figure 1: (a) A plan for a 19-joint robot passing 
through a (relatively) narrow corridor. The dark 
blocks are the obstacles, and (b) a plan for a 5-joint 
robot passing the same corridor. 

tion 3. Secondly, since our representations are created 
a priori, for an empty workspace, it is possible that 
the introduction of obstacles will cause the roadmap 
to become disconnected. In Section 4 we present a 
quantitative measure for the robustness of a configu- 
ration space roadmap to  the introduction of new ob- 
stacles. We then show how this measure can be used 
to drive an enhancement stage, resulting in an aug- 
mented roadmap that is robust to the introduction of 
new obstacles into the workspace. 

Figure 1 shows two plans generated by our system. 
The planner’s internal representations were generated 
for an empty workspace. A t  execution time, the two 
obstacles were added to the workspace, and the illus- 
trated plans was generated in less than one second 
(including the time to update the roadmap). We have 
applied our planner to a large number of robots, with 
from two to twenty degrees of freedom, in two- and 
three-dimensional workspaces, and we show a number 
of results throughout the paper. For the sake of clar- 
ity, however, we will typically illustrate our ideas with 
two-dimensional examples. 
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2 Overview of the Planner 

350 

300 

As mentioned above, our planner begins with an off- 
line stage in which a configuration space roadmap is 
constructed for an empty environment. The construc- 
tion of this roadmap is similar to  methods used in pre- 
vious probabilistic roadmap planners (e.g., [SI). Nodes 
are generated by sampling a uniform distribution on 
the configuration space [lo], and these nodes are then 
connected to form the roadmap. Like the PRM ap- 
proaches, we connect each node to its k-nearest neigh- 
bors using a simple local planner. We represent the 
roadmap by a graph, which we denote by 9 = (Sn, Sa), 
in which 9, is the set of nodes in the graph, and 9, 
the set of arcs in the graph. 

The key element of our path planning approach 
is the encoded mapping from the workspace to the 
roadmap in configuration space. The basic idea is to be 
able to determine, for each obstacle in the workspace, 
those portions of the roadmap that are no longer valid 
due to the robot colliding with the obstacle. The por- 
tions of the roadmap that remain after this step are 
then used for path planning. To be able to  adjust to 
changes in the environment in real time, the mapping 
must be simple to evaluate, so that the roadmap can 
be updated as the environment changes. 

To represent the workspace, we use a uniform, rect- 
angular decomposition, which we denote by W. We 
denote the configuration space by e, and define the 
mapping 4 : W + e as 
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in which w is cell of the workspace and A(q) denotes 
that subset of W occupied by the robot at configura- 
tion q. We note that #(w) is exactly the configuration 
space obstacle region (often denoted by e%) if w is con- 
sidered as a polyhedral obstacle in the workspace. In 
our approach, we do not explicitly represent the con- 
figuration space, but use only the roadmap s. There- 
fore, we define two additional mappings, one from the 
workspace to the nodes in the graph, and one from the 
workspace to the axcs in the graph: 

An example of this mapping is shown in Figure 2 for 
a two-link robot in a two-dimensional workspace. The 
shaded region in Figure 2 is the CB region created by 
the obstacle in the workspace. The mapping & for 
this obstacle includes the nodes of the graph shown 
with empty circles, and includes the arcs shown as 
dotted lines. Note that since q5,, need not include the 
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Figure 3: Size of using a naive encoding. 

arcs connected to the nodes in +,,; these arcs are not 
shown as dotted lines in the figure. 

In previous papers we have described in more detail 
the construction of the roadmap, as well as the com- 
putations of +,, and & [ll, 121. In this paper we are 
concerned with the efficiency and the robustness of the 
representations, to  which we now turn our attention. 

3 Compact Representations 
For even moderately large roadmaps, the representa- 
tions of q5,, and & can become prohibitively large. 
Figure 3 shows the sizes for naive encodings of & for 
roadmaps with 2K, 8K and 16K nodes, for robots with 
from two to  20 degrees of freedom. As can be seen, the 
naive encoding requires 400Mb for a roadmap with 
16K nodes, using a robot with 20 degrees of freedom. 
Such large sizes have motivated us to explore more 
compact representations. 

From an information theoretic viewpoint, compres- 
sion of a data set involves the reduction of redundancy 
in that data set. The amount of compression that can 
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be performed is limited by the information content of 
the data set, which, in turn, is related to the degree of 
unexpectedness, or randomness, in the data set [3]. In 
the representation of 4,, and &, there are three main 
sources of redundancy that can be exploited: 1) the 
spatial coherence of $(w) for a neighborhood q(w) in 
W, 2) the spatial coherence of the set 4(w) in e for a 
specific w in W, and 3) the representation of the labels 
of the nodes and arcs in the graph. In this paper, we 
concentrate only on the first of these. 

The spatial coherence of e23 has been exploited in 
previous collision checking approaches (e.g., [13, 14, 
151). In our case, spatial coherence derives from the 
continuity of 4, namely that for a small obstacle, say 
w, in the workspace, small changes in the location of 
w will cause only small changes to +(w). Thus, for 
a cell w*, we expect that 4(w) will be very similar 
to  4(w*) for all w E q(w*), given that q(w*) is an 
appropriate neighborhood of w*. This suggests the 
following approach to compressing the representation 
of 4: partition W into a set of neighborhoods, and, 
for each neighborhood (a) choose a representative w*, 
(b) derive a compact representation of +(w*) and (c) 
for all w E q(w*), express 4(w) in terms of 4(w*)- 
In some cases, we may be able to improve upon this 
by selecting some reference set in step (c) other than 
+(w*), and we discuss this below. 

We can formulate this approach as an optimization 
problem. For specific choice of neighborhood system 
we have the cost functional 

in which W' is a set of representative cells in W ,  ~ ( w ' )  
is the set of neighbor cells for w*, and cost[4(w)] de- 
notes the cost of encoding the representation. This 
leads to the the optimization problem 

minimize C(W*, q) 
subject to: Uw.EW. q(w*) = W and (4) { Q(w;)  n v(w;) = 0, i + j .  

Thus, the problem is to partition the workspace grid 
into neighborhoods such that the overall representa- 
tion cost is minimized. This formulation suggests an 
algorithm that first selects representatives in W ,  builds 
the appropriate neighborhoods, and then efficiently en- 
codes the representatives and the neighborhoods. 

We have implemented a region growing algorithm to  
perform this optimization. At each iteration, the al- 
gorithm selects a seed cell in the workspace grid, and 
expands a neighborhood around it until the cost of 

Figure 4: The two neighborhoods of w*: ql(w*) is the 
light region and qz(w*) is the darker region. 

encoding the neighborhood satisfies a stopping crite- 
rion. Choosing the optimal set of seed cells is a dif- 
ficult combinatoric optimization problem. Therefore 
we have applied a greedy selection approach: at each 
iteration, the algorithm selects as the seed cell the un- 
encoded workspace cell with the largest representation 

We expand the neighborhood around the seed cell 
in two stages. Thus, for a seed cell, w * ,  we actually 
construct two neighborhoods, ~1(w*) and qz(w*). As 
we discuss below, we use a different encoding method 
for each of these neighborhoods. An example of the 
neighborhood structure is shown in Figure 4. 

The neighborhood q1 (w') is constructed as follows. 
Let 4;l be the representation that minimizes 

of 4(w)- 

I + 1 4 ( 4  e3 4;l I, 
WEll 

in which 1 .  I denotes set cardinality, and @ denotes the 
set symmetric difference operator. That is, q5G1 is such 
that if every w E q1(w*) is encoded by a symmetric 
difference with 4Gl, then the cost of the representation 
of q1(w*) is minimized. Beginning with the seed w*, 
we add cells to q1 until it becomes more efficient to 
encode additional cells using the encoding method for 
qz. Cells that are assigned to  ~1(w*) are then encoded 
by their symmetric difference with 

Each cell in Q(w*) is encoded by the symmetric 
difference with the representation the one of its neigh- 
bors, WN, that minimizes the resulting representation 
size. This is illustrated in Figure 4, where the ar- 
rows originating in the darkly-colored cells point to 
the neighbor that is used for the differential encoding. 
Of course, care must be taken to avoid loops in this 
referencing scheme. 

relies on two 
parameters: a recursion depth and a scale factor. The 

Construction of the neighborhood 
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Figure 5: Size of the representations for da for a variety 
of cases. 

recursion depth limits the length of the chain of refer- 
ences between adjacent cells. For example, the longest 
such chain in Figure 4 is 4, with two cells having chains 
of this length. The scale factor is used to  ensure that 
the encoding of the new cell is sufficiently small, i.e., 
the cell is added t o  772 if @(w) @ +(wnr)l < sl4(w)I, 
where s is the scale factor. 

Shown in Figure 5 is the size of &, for several dif- 
ferent encodings of the roadmap. The curve labeled 
‘naive’ corresponds to  the naive encoding and the oth- 
ers are compressed versions, each of which also use 
a more efficient encoding of the labels. The graph 
labeled ‘self’ shows the improvement achieved using 
the more efficient label encoding alone, ‘region’ shows 
the additional gain from using the region-growing ap- 
proach described above, and ‘hier’ shows the result us- 
ing neighborhoods defined in a multi-resolution hierar- 
chical structure. Using the methods described above, 
we have achieved compression ratios for 4, in the range 

of 8 to  18 for the robots with 3D workspace, and 10 to 
20 for the planar robots. 

4 Robust Representations 
One of the difficulties faced by traditional PRM plan- 
ners is placing samples in narrow passages in e,,,,. 
This led to  the development of an enhancement phase, 
in which more sampling is performed to  improve the 
connectivity of the roadmap. Since our roadmap is 
constructed without obstacles, reducing the number 
of connected components is not the goal for our en- 
hancement phase. Instead, we are interested in pre- 
serving the connectivity of the roadmap when obsta- 
cles are added to the workspace. In the following, we 
first review methods that others have used to improve 
the connectivity of PRMs, and then describe our own 
method to enhance the robustness of our roadmap to 
changes in the workspace. 

4.1 Previous enhancement methods 
In traditional PRM planners, the enhancement phase 
occurs after an initial roadmap is constructed, but be- 
fore any planning takes place that uses the roadmap. 
For these methods, the primary concern is to join to- 
gether different connected components in the initial 
roadmap. The basis of the enhancement step is the 
identification of “difficult” regions in the configuration 
space, where “difficult” regions are defined as those re- 
gions where the sample density is low, or ‘harrow” re- 
gions between two or more connected components of 
the roadmap. Once these difficult regions have been 
identified, one is selected at each step of the enhance- 
ment phase for the placement of new nodes. 

The selection criterion used in [5] evaluates each 
small connected component of the roadmap in an at- 
tempt to  connect it to the largest component. The 
node chosen for this connection attempt is the node 
closest to  any node in the large component. The se- 
lection criterion used in [8, 41 weights each node of 
the roadmap with a value inversely proportional to the 
number of nodes to which it is connected. One of these 
nodes is then selected at random using the weights to 
bias the selection. 

’pwo methods for resampling have been proposed: 
neighborhood importance sampling and random walk 
sampling. The simplest resampling method of the 
two is the neighborhood importance sampling. In this 
method, a neighborhood is constructed around a tar- 
get node by selecting a small interval for each degree of 
freedom of the robot. After a new configuration is gen- 
erated in this small region, the local planner is invoked 
to attempt to  connect it to  the rest of the roadmap. 
This resampling method was used in [SI for articulated 
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robots. For these robots, the size of the interval used 
for resampling was different for each joint, with joints 
closer to the origin of the robot having smaller inter- 
vals than those close to the end. A difficulty with this 
approach is that there is no guarantee that the new 
node can be connected to the roadmap. 

The random walk resampling method addresses this 
problem. This method is based on performing a ran- 
dom walk from the selected node and attempting to 
connect the endpoint of the walk to the roadmap. The 
random walk is performed as follows: Choose a direc- 
tion at random and use the local planner to move in 
this direction until a collision occurs. At (or a small 
distance away from) the collision point, a new random 
direction is chosen and the walk continues until a stop- 
ping criterion is reached. The stopping criterion used 
in [5] is based on the assumption that C!free contains 
a single connected component: check each step in the 
walk to determine whether it can be connected to an- 
other component in the roadmap, and stop the walk 
once this happens. An iteration limit is used in [lo] 
and [9]. 

4.2 Enhancement using €-robustness 
The resampling methods described above require 
knowledge about the distribution of obstacles in the 
environment, and are designed to connect the various 
components of a disconnected graph. Since we build 
our roadmap without obstacles, the roadmap will al- 
ways have a single connected component, and there- 
fore the traditional idea of graph enhancement does 
not apply. Also, unlike previous approaches, we are 
concerned with maintaining the connectivity even if 
certain nodes or arcs are deleted from the graph. In 
this section, we first propose €-robustness (inspired by 
the notion of €-goodness described in [7]) as a quan- 
titative measure of the robustness of the roadmap to 
the appearance of new obstacles in the workspace. We 
then discuss how e-robustness can be used to drive en- 
hancement. 

We say that s is €-robust if no obstacle in the 
workspace of radius E (or less) can cause 9 to become 
disconnected. Note that erobustness is a global prop- 
erty of the graph s. Using this concept, it is possible 
to ensure that, after the enhancement phase, 9 can 
tolerate certain types of obstacles. In particular, for a 
specified value of E, 9 can be tested for erobustness. 
This test can used to enumerate the specific workspace 
obstacles that violate the e-robustness criterion and, 
for each such obstacles, the roadmap can be patched 
appropriately. 

Some motivation for the c-robustness idea can be 
seen in Figure 6, which shows the workspace and con- 

Workspace 
el 

Configuration space 

Figure 6: Effect of an occupied cell in the workspace 
on the connectivity of the roadmap. The configuration 
shown in the workspace corresponds to the enlarged 
node on the right side of configuration space. 

Figure 7: The result of e-robustness processing on the 
roadmap shown in Figure 6. Note that the obstacle no 
longer breaks the roadmap. 

figuration space for a two-joint robot with a roadmap 
with 50 nodes. The first joint of the robot has no limit 
on its range of motion; hence the left and right bor- 
ders of the view of the configuration space correspond 
to the same configuration for the first joint. The sec- 
ond joint has limits on its range; these correspond to 
the top and bottom of the view of configuration space. 
In the figure, the dark cell in the workspace corre- 
sponds to the shaded region in configuration space. In 
this case, the obstacle breaks the roadmap into three 
pieces. Hence, the roadmap in Figure 6 is not €-robust 
for any value of 6. Figure 7 shows an enhanced version 
of the roadmap of Figure 6 (the enhancement caused 
26 arcs to be added to the roadmap). This enhanced 
roadmap is €-robust for E 5 4. In other words, no sin- 
gle obstacle of size less than four units can cause the 
roadmap to become disconnected. 

Our approach to enhancement is to add arcs to 
roadmap until the desired level of E-robustness is 
achieved (if possible). Our algorithm proceeds as fol- 
lows. Starting with a cube of size 1 x 1 x 1, sweep 
cube-shaped volume of cells over the workspace of the 
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Workspace Configuration space 

Figure 8: An example where the local planner failed 
to reconnect the roadmap. 

robot. For each location of the cube, compute the set 
of connected connected components in the roadmap. If 
there is more than one component, add an arc, if pos- 
sible, to  repair the connectivity of the roadmap, using 
the local planner to  verify the feasibility of each arc 
tested. Repeat the sweep with larger cubes, 2 x 2 x 2, 
3 x 3 x 3, etc., up to  a cube of side length r2c + 11. 
Our algorithm is not complete, since the local planner 
may fail to to find a path to join two components. An 
example of this is shown in Figure 8, where the config- 
uration of the robot shown in the workspace is isolated 
from the rest of the roadmap (recall that our example 
robot has joint limits). 

Unfortunately, it is not always possible to achieve 
€-robustness, even for c = 1. For many robots (partic- 
ularly those with joint limits), there are specific cells 
in the workspace such that if an obstacle is placed 
in one of these cells, e,,,, itself may become discon- 
nected, or, the passage connecting two components 
of etree may become sufficiently narrow that repre- 
senting this passage in the roadmap becomes difficult. 
Our approach is to  flag these cells in W ,  and to elimi- 
nate them from consideration during the enhancement 
stage. The resulting roadmap will, of course, not be 
globally c-robust, but it will be as nearly c-robust as 
possible. 

Three cases that correspond to erree becoming dis- 
connected are shown in Figure 9. The cells that cor- 
respond to case I are those that split the range of the 
first joint into multiple disconnected pieces. The cell in 
the example in Figure 9 creates three such pieces. The 
cells that  correspond to case I1 prevent a qualitative 
transition in the configuration of the robot. In the 
example, this prevents the robot from switching be- 
tween the left-arm and right-arm configurations. The 
cells that correspond to  case I11 are those that trap the 
robot near a joint limit. In the example shown, there 
are three components to  (?free:  two small pockets and 
one large region. 

Workmace Configuration mace 

Case I 

Case I1 

Case I11 

Figure 9: Three cases of cells that disconnect e,,,, 
and the corresponding (?B. The problem cell is shaded, 
the solid dots represent the rotation axes of the joints, 
and the enlarged nodes in the configuration space cor- 
respond to  the configurations shown in the workspace. 

While the examples shown in Figure 9 are for robots 
with two joints, these same cases also occur for robots 
with more joints. In addition, if limits are placed on 
the motion of the first joint, then all cells that can be 
touched by the first link of the robot will disconnect 
the roadmap. Other cases are possible for robots with 
more joints. For example, the regions of e where the 
robot collides with itself combined with e23 from a 
cell in the workspace can also yield isolated pockets of 
(? f ree .  Another example is shown in Figure 10. This 
is a case for planar robots for which the width of a 
passage can become arbitrarily narrow, such that it is 
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I 

Figure 10: A problem cell for planar robots. 

difficult to represent the connectivity of e,,,, in the 
roadmap. 

The concept of €-robustness can also be used as 
an evaluation tool in robot design, with the goal of 
creating robots with fewer pathological obstacles in 
the workspace. As an example, consider the robot 
used for case I1 in Figure 9 and shown again in Fig- 
ure ll(a). A view of its configuration space is shown 
in Figure l l(b),  which also shows (5'23 for a collection 
of seven cells in the workspace. Each of these cells 
generates a e-obstacle which contains a pocket that 
is separated from the rest of efree, and some of these 
pockets trap nodes in the roadmap. A modified ver- 
sion of the robot, shown in Figure ll(c), does not have 
these pockets. A view of its configuration space with 
the same set of obstacles is shown in Figure ll(d). An 
additional benefit of the modification to the robot is 
that no single cell in the workspace corresponds to case 
I1 in Figure 9 (a sufficiently large block will cause this 
problem, though). 

Shown in Figure 12 is the number of arcs added 
to the roadmap as a result of e-robustness processing. 
The roadmap was constructed to have a minimum of 
five arcs per node. Most of the arcs are added in the 
first pass, with the result that the number of arcs per 
node becomes linear in the number of joints of the 
robot. Table 1 shows the number of individual cells in 
the workspace that can disconnect the roadmap, be- 
fore and after processing. As can be seen, even though 
global e-robustness is not achieved, the number of 
obstacles that can cause the roadmap to become dis- 
connected has been tremendously reduced by our ap- 
proach. 

Figure 11: A robot with and a robot without some 
pathological cells in the workspace. 

Table 1: Number of cells in workspace that disconnect 
the roadmap (3D robots). 

1277 
2800 

5 Conclusion 

In this paper we have focussed on issues of efficiency 
and robustness of representations that can be used for 
real-time path planning in changing environments. We 
began by developing compression schemes that exploit 
the redundancy in the map from robot's Euclidean 
workspace to  its configuration space. Using these 
schemes we were able to obtain compression ratios of 
up to 18. We introduced the concept of e-robustness, 
and showed how it can be used to enhance the rep- 
resentations that are used by the planner. Our en- 
hancement stage reduced the number of obstacles that 
could disconnect the roadmap to a small fraction of 
what would have been the case without enhancement. 
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Figure 12: Arcs per node in the roadmap after e- 
robustness processing (for 2D, e = 2, for 3D, e = l). 
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