
Prowdings of the 2001 IEEEmsJ
International Conferens on Intelligent Robots and Systaas
Maui, Hawaii, USA, On 29 -NOV. 03,2001

Robust, Compact Representations for Real-Time Path Planning
in Changing Environments

Peter Leven, Seth Hutchinson
p.leven@computer.org, seth@uiuc.edu

University of Illinois at Urbana-Champaign
Urbana, IL, USA

Abstract
We have previously developed a new method for gener-
ating collision-free paths for robots operating in chang-
ing environments. Our approach relies on creating a
representation of the configuration space that can be
easily modified in real time to account for changes in
the environment. In this paper we address the issues
of efficiency and robustness. First, we develop a novel,
efficient encoding scheme that exploits the redundancy
in the map from robot’s Euclidean workspace to its con-
figuration space. Then, we introduce the concept of
e-robustness, and show how it can be used to enhance
the representations that are used by the planner. Along
the way, we present quantitative results that illustrate
the eficaency and robustness of our approach.

1 Introduction
We have developed a new method for generating
collision-free paths for robots operating in changing
environments Ill, 121. Our approach, which we de-
scribe in Section 2, relies on creating a representation
of the configuration space that can be easily modified
in real time to account for changes in the environment.
As with previous probabilistic roadmap (PRM) ap-
proaches (e.g., [1,2,5,6, lo]), we begin by constructing
a graph that represents a roadmap in the configuration
space, but we do not construct this graph for a spe-
cific workspace. Instead, we construct the graph for
an obstacle-free workspace, and encode the mapping
from cells in the workspace to nodes and arcs in the
graph. When the environment changes, this mapping
is used to make the appropriate changes to the graph,
and plans can be generated by searching the modified
graph.

There are two main difficulties that confront our ap-
proach. First, encoding the mapping from the robot’s
workspace to the representation of its configuration
space potentially requires a huge amount of computer
memory. Fortunately, there is a great deal of redun-
dancy in this mapping, and we can exploit this to
compress our representations. This is the topic of Sec-

Figure 1: (a) A plan for a 19-joint robot passing
through a (relatively) narrow corridor. The dark
blocks are the obstacles, and (b) a plan for a 5-joint
robot passing the same corridor.

tion 3. Secondly, since our representations are created
a priori, for an empty workspace, it is possible that
the introduction of obstacles will cause the roadmap
to become disconnected. In Section 4 we present a
quantitative measure for the robustness of a configu-
ration space roadmap to the introduction of new ob-
stacles. We then show how this measure can be used
to drive an enhancement stage, resulting in an aug-
mented roadmap that is robust to the introduction of
new obstacles into the workspace.

Figure 1 shows two plans generated by our system.
The planner’s internal representations were generated
for an empty workspace. A t execution time, the two
obstacles were added to the workspace, and the illus-
trated plans was generated in less than one second
(including the time to update the roadmap). We have
applied our planner to a large number of robots, with
from two to twenty degrees of freedom, in two- and
three-dimensional workspaces, and we show a number
of results throughout the paper. For the sake of clar-
ity, however, we will typically illustrate our ideas with
two-dimensional examples.

0-7803-6612-3/01/$10.0002001 IEEE

1483

mailto:p.leven@computer.org
mailto:seth@uiuc.edu

2 Overview of the Planner

350

300

As mentioned above, our planner begins with an off-
line stage in which a configuration space roadmap is
constructed for an empty environment. The construc-
tion of this roadmap is similar to methods used in pre-
vious probabilistic roadmap planners (e.g., [SI). Nodes
are generated by sampling a uniform distribution on
the configuration space [lo], and these nodes are then
connected to form the roadmap. Like the PRM ap-
proaches, we connect each node to its k-nearest neigh-
bors using a simple local planner. We represent the
roadmap by a graph, which we denote by 9 = (Sn, Sa),
in which 9, is the set of nodes in the graph, and 9,
the set of arcs in the graph.

The key element of our path planning approach
is the encoded mapping from the workspace to the
roadmap in configuration space. The basic idea is to be
able to determine, for each obstacle in the workspace,
those portions of the roadmap that are no longer valid
due to the robot colliding with the obstacle. The por-
tions of the roadmap that remain after this step are
then used for path planning. To be able to adjust to
changes in the environment in real time, the mapping
must be simple to evaluate, so that the roadmap can
be updated as the environment changes.

To represent the workspace, we use a uniform, rect-
angular decomposition, which we denote by W. We
denote the configuration space by e, and define the
mapping 4 : W + e as

._.- -...... 2048 -
- ,:E .,L?

- i

,..'

in which w is cell of the workspace and A(q) denotes
that subset of W occupied by the robot at configura-
tion q. We note that #(w) is exactly the configuration
space obstacle region (often denoted by e%) if w is con-
sidered as a polyhedral obstacle in the workspace. In
our approach, we do not explicitly represent the con-
figuration space, but use only the roadmap s. There-
fore, we define two additional mappings, one from the
workspace to the nodes in the graph, and one from the
workspace to the axcs in the graph:

An example of this mapping is shown in Figure 2 for
a two-link robot in a two-dimensional workspace. The
shaded region in Figure 2 is the CB region created by
the obstacle in the workspace. The mapping & for
this obstacle includes the nodes of the graph shown
with empty circles, and includes the arcs shown as
dotted lines. Note that since q5,, need not include the

-
$ 250
k 8 200
Q
.N 150
v)

100

50

n
2 4 6 8 10 12 14 16 18 20

Number of joints

Figure 3: Size of using a naive encoding.

arcs connected to the nodes in +,,; these arcs are not
shown as dotted lines in the figure.

In previous papers we have described in more detail
the construction of the roadmap, as well as the com-
putations of +,, and & [ll, 121. In this paper we are
concerned with the efficiency and the robustness of the
representations, to which we now turn our attention.

3 Compact Representations
For even moderately large roadmaps, the representa-
tions of q5,, and & can become prohibitively large.
Figure 3 shows the sizes for naive encodings of & for
roadmaps with 2K, 8K and 16K nodes, for robots with
from two to 20 degrees of freedom. As can be seen, the
naive encoding requires 400Mb for a roadmap with
16K nodes, using a robot with 20 degrees of freedom.
Such large sizes have motivated us to explore more
compact representations.

From an information theoretic viewpoint, compres-
sion of a data set involves the reduction of redundancy
in that data set. The amount of compression that can

1484

be performed is limited by the information content of
the data set, which, in turn, is related to the degree of
unexpectedness, or randomness, in the data set [3]. In
the representation of 4,, and &, there are three main
sources of redundancy that can be exploited: 1) the
spatial coherence of $(w) for a neighborhood q(w) in
W, 2) the spatial coherence of the set 4(w) in e for a
specific w in W, and 3) the representation of the labels
of the nodes and arcs in the graph. In this paper, we
concentrate only on the first of these.

The spatial coherence of e23 has been exploited in
previous collision checking approaches (e.g., [13, 14,
151). In our case, spatial coherence derives from the
continuity of 4, namely that for a small obstacle, say
w, in the workspace, small changes in the location of
w will cause only small changes to +(w). Thus, for
a cell w*, we expect that 4(w) will be very similar
to 4(w*) for all w E q(w*), given that q(w*) is an
appropriate neighborhood of w*. This suggests the
following approach to compressing the representation
of 4: partition W into a set of neighborhoods, and,
for each neighborhood (a) choose a representative w*,
(b) derive a compact representation of +(w*) and (c)
for all w E q(w*), express 4(w) in terms of 4(w*)-
In some cases, we may be able to improve upon this
by selecting some reference set in step (c) other than
+(w*), and we discuss this below.

We can formulate this approach as an optimization
problem. For specific choice of neighborhood system
we have the cost functional

in which W' is a set of representative cells in W , ~ (w ')
is the set of neighbor cells for w*, and cost[4(w)] de-
notes the cost of encoding the representation. This
leads to the the optimization problem

minimize C(W*, q)
subject to: Uw.EW. q(w*) = W and (4) { Q(w;) n v(w;) = 0, i + j .

Thus, the problem is to partition the workspace grid
into neighborhoods such that the overall representa-
tion cost is minimized. This formulation suggests an
algorithm that first selects representatives in W , builds
the appropriate neighborhoods, and then efficiently en-
codes the representatives and the neighborhoods.

We have implemented a region growing algorithm to
perform this optimization. At each iteration, the al-
gorithm selects a seed cell in the workspace grid, and
expands a neighborhood around it until the cost of

Figure 4: The two neighborhoods of w*: ql(w*) is the
light region and qz(w*) is the darker region.

encoding the neighborhood satisfies a stopping crite-
rion. Choosing the optimal set of seed cells is a dif-
ficult combinatoric optimization problem. Therefore
we have applied a greedy selection approach: at each
iteration, the algorithm selects as the seed cell the un-
encoded workspace cell with the largest representation

We expand the neighborhood around the seed cell
in two stages. Thus, for a seed cell, w * , we actually
construct two neighborhoods, ~1(w*) and qz(w*). As
we discuss below, we use a different encoding method
for each of these neighborhoods. An example of the
neighborhood structure is shown in Figure 4.

The neighborhood q1 (w') is constructed as follows.
Let 4;l be the representation that minimizes

of 4(w)-

I + 1 4 (4 e3 4;l I,
WEll

in which 1 . I denotes set cardinality, and @ denotes the
set symmetric difference operator. That is, q5G1 is such
that if every w E q1(w*) is encoded by a symmetric
difference with 4Gl, then the cost of the representation
of q1(w*) is minimized. Beginning with the seed w*,
we add cells to q1 until it becomes more efficient to
encode additional cells using the encoding method for
qz. Cells that are assigned to ~1(w*) are then encoded
by their symmetric difference with

Each cell in Q(w*) is encoded by the symmetric
difference with the representation the one of its neigh-
bors, WN, that minimizes the resulting representation
size. This is illustrated in Figure 4, where the ar-
rows originating in the darkly-colored cells point to
the neighbor that is used for the differential encoding.
Of course, care must be taken to avoid loops in this
referencing scheme.

relies on two
parameters: a recursion depth and a scale factor. The

Construction of the neighborhood

1485

45 I naive - I
40-

............
35 . hier .- /-I Self

”
2 4 6 8 10 12 14 16 18 20

350

300

250
6

w
5 200

150

100

50

0

-
ii

Number of joints
Planar robots, 16384 node roadmap

najve -
self
hier -- region .---o---

Figure 5: Size of the representations for da for a variety
of cases.

recursion depth limits the length of the chain of refer-
ences between adjacent cells. For example, the longest
such chain in Figure 4 is 4, with two cells having chains
of this length. The scale factor is used to ensure that
the encoding of the new cell is sufficiently small, i.e.,
the cell is added t o 772 if @(w) @ +(wnr)l < sl4(w)I,
where s is the scale factor.

Shown in Figure 5 is the size of &, for several dif-
ferent encodings of the roadmap. The curve labeled
‘naive’ corresponds to the naive encoding and the oth-
ers are compressed versions, each of which also use
a more efficient encoding of the labels. The graph
labeled ‘self’ shows the improvement achieved using
the more efficient label encoding alone, ‘region’ shows
the additional gain from using the region-growing ap-
proach described above, and ‘hier’ shows the result us-
ing neighborhoods defined in a multi-resolution hierar-
chical structure. Using the methods described above,
we have achieved compression ratios for 4, in the range

of 8 to 18 for the robots with 3D workspace, and 10 to
20 for the planar robots.

4 Robust Representations
One of the difficulties faced by traditional PRM plan-
ners is placing samples in narrow passages in e,,,,.
This led to the development of an enhancement phase,
in which more sampling is performed to improve the
connectivity of the roadmap. Since our roadmap is
constructed without obstacles, reducing the number
of connected components is not the goal for our en-
hancement phase. Instead, we are interested in pre-
serving the connectivity of the roadmap when obsta-
cles are added to the workspace. In the following, we
first review methods that others have used to improve
the connectivity of PRMs, and then describe our own
method to enhance the robustness of our roadmap to
changes in the workspace.

4.1 Previous enhancement methods
In traditional PRM planners, the enhancement phase
occurs after an initial roadmap is constructed, but be-
fore any planning takes place that uses the roadmap.
For these methods, the primary concern is to join to-
gether different connected components in the initial
roadmap. The basis of the enhancement step is the
identification of “difficult” regions in the configuration
space, where “difficult” regions are defined as those re-
gions where the sample density is low, or ‘harrow” re-
gions between two or more connected components of
the roadmap. Once these difficult regions have been
identified, one is selected at each step of the enhance-
ment phase for the placement of new nodes.

The selection criterion used in [5] evaluates each
small connected component of the roadmap in an at-
tempt to connect it to the largest component. The
node chosen for this connection attempt is the node
closest to any node in the large component. The se-
lection criterion used in [8, 41 weights each node of
the roadmap with a value inversely proportional to the
number of nodes to which it is connected. One of these
nodes is then selected at random using the weights to
bias the selection.

’pwo methods for resampling have been proposed:
neighborhood importance sampling and random walk
sampling. The simplest resampling method of the
two is the neighborhood importance sampling. In this
method, a neighborhood is constructed around a tar-
get node by selecting a small interval for each degree of
freedom of the robot. After a new configuration is gen-
erated in this small region, the local planner is invoked
to attempt to connect it to the rest of the roadmap.
This resampling method was used in [SI for articulated

1486

robots. For these robots, the size of the interval used
for resampling was different for each joint, with joints
closer to the origin of the robot having smaller inter-
vals than those close to the end. A difficulty with this
approach is that there is no guarantee that the new
node can be connected to the roadmap.

The random walk resampling method addresses this
problem. This method is based on performing a ran-
dom walk from the selected node and attempting to
connect the endpoint of the walk to the roadmap. The
random walk is performed as follows: Choose a direc-
tion at random and use the local planner to move in
this direction until a collision occurs. At (or a small
distance away from) the collision point, a new random
direction is chosen and the walk continues until a stop-
ping criterion is reached. The stopping criterion used
in [5] is based on the assumption that C!free contains
a single connected component: check each step in the
walk to determine whether it can be connected to an-
other component in the roadmap, and stop the walk
once this happens. An iteration limit is used in [lo]
and [9].

4.2 Enhancement using €-robustness
The resampling methods described above require
knowledge about the distribution of obstacles in the
environment, and are designed to connect the various
components of a disconnected graph. Since we build
our roadmap without obstacles, the roadmap will al-
ways have a single connected component, and there-
fore the traditional idea of graph enhancement does
not apply. Also, unlike previous approaches, we are
concerned with maintaining the connectivity even if
certain nodes or arcs are deleted from the graph. In
this section, we first propose €-robustness (inspired by
the notion of €-goodness described in [7]) as a quan-
titative measure of the robustness of the roadmap to
the appearance of new obstacles in the workspace. We
then discuss how e-robustness can be used to drive en-
hancement.

We say that s is €-robust if no obstacle in the
workspace of radius E (or less) can cause 9 to become
disconnected. Note that erobustness is a global prop-
erty of the graph s. Using this concept, it is possible
to ensure that, after the enhancement phase, 9 can
tolerate certain types of obstacles. In particular, for a
specified value of E, 9 can be tested for erobustness.
This test can used to enumerate the specific workspace
obstacles that violate the e-robustness criterion and,
for each such obstacles, the roadmap can be patched
appropriately.

Some motivation for the c-robustness idea can be
seen in Figure 6, which shows the workspace and con-

Workspace
el

Configuration space

Figure 6: Effect of an occupied cell in the workspace
on the connectivity of the roadmap. The configuration
shown in the workspace corresponds to the enlarged
node on the right side of configuration space.

Figure 7: The result of e-robustness processing on the
roadmap shown in Figure 6. Note that the obstacle no
longer breaks the roadmap.

figuration space for a two-joint robot with a roadmap
with 50 nodes. The first joint of the robot has no limit
on its range of motion; hence the left and right bor-
ders of the view of the configuration space correspond
to the same configuration for the first joint. The sec-
ond joint has limits on its range; these correspond to
the top and bottom of the view of configuration space.
In the figure, the dark cell in the workspace corre-
sponds to the shaded region in configuration space. In
this case, the obstacle breaks the roadmap into three
pieces. Hence, the roadmap in Figure 6 is not €-robust
for any value of 6. Figure 7 shows an enhanced version
of the roadmap of Figure 6 (the enhancement caused
26 arcs to be added to the roadmap). This enhanced
roadmap is €-robust for E 5 4. In other words, no sin-
gle obstacle of size less than four units can cause the
roadmap to become disconnected.

Our approach to enhancement is to add arcs to
roadmap until the desired level of E-robustness is
achieved (if possible). Our algorithm proceeds as fol-
lows. Starting with a cube of size 1 x 1 x 1, sweep
cube-shaped volume of cells over the workspace of the

1487

Workspace Configuration space

Figure 8: An example where the local planner failed
to reconnect the roadmap.

robot. For each location of the cube, compute the set
of connected connected components in the roadmap. If
there is more than one component, add an arc, if pos-
sible, to repair the connectivity of the roadmap, using
the local planner to verify the feasibility of each arc
tested. Repeat the sweep with larger cubes, 2 x 2 x 2,
3 x 3 x 3, etc., up to a cube of side length r2c + 11.
Our algorithm is not complete, since the local planner
may fail to to find a path to join two components. An
example of this is shown in Figure 8, where the config-
uration of the robot shown in the workspace is isolated
from the rest of the roadmap (recall that our example
robot has joint limits).

Unfortunately, it is not always possible to achieve
€-robustness, even for c = 1. For many robots (partic-
ularly those with joint limits), there are specific cells
in the workspace such that if an obstacle is placed
in one of these cells, e,,,, itself may become discon-
nected, or, the passage connecting two components
of etree may become sufficiently narrow that repre-
senting this passage in the roadmap becomes difficult.
Our approach is to flag these cells in W , and to elimi-
nate them from consideration during the enhancement
stage. The resulting roadmap will, of course, not be
globally c-robust, but it will be as nearly c-robust as
possible.

Three cases that correspond to erree becoming dis-
connected are shown in Figure 9. The cells that cor-
respond to case I are those that split the range of the
first joint into multiple disconnected pieces. The cell in
the example in Figure 9 creates three such pieces. The
cells that correspond to case I1 prevent a qualitative
transition in the configuration of the robot. In the
example, this prevents the robot from switching be-
tween the left-arm and right-arm configurations. The
cells that correspond to case I11 are those that trap the
robot near a joint limit. In the example shown, there
are three components to (?free: two small pockets and
one large region.

Workmace Configuration mace

Case I

Case I1

Case I11

Figure 9: Three cases of cells that disconnect e,,,,
and the corresponding (?B. The problem cell is shaded,
the solid dots represent the rotation axes of the joints,
and the enlarged nodes in the configuration space cor-
respond to the configurations shown in the workspace.

While the examples shown in Figure 9 are for robots
with two joints, these same cases also occur for robots
with more joints. In addition, if limits are placed on
the motion of the first joint, then all cells that can be
touched by the first link of the robot will disconnect
the roadmap. Other cases are possible for robots with
more joints. For example, the regions of e where the
robot collides with itself combined with e23 from a
cell in the workspace can also yield isolated pockets of
(? f ree . Another example is shown in Figure 10. This
is a case for planar robots for which the width of a
passage can become arbitrarily narrow, such that it is

1488

I

Figure 10: A problem cell for planar robots.

difficult to represent the connectivity of e,,,, in the
roadmap.

The concept of €-robustness can also be used as
an evaluation tool in robot design, with the goal of
creating robots with fewer pathological obstacles in
the workspace. As an example, consider the robot
used for case I1 in Figure 9 and shown again in Fig-
ure ll(a). A view of its configuration space is shown
in Figure l l(b), which also shows (5'23 for a collection
of seven cells in the workspace. Each of these cells
generates a e-obstacle which contains a pocket that
is separated from the rest of efree, and some of these
pockets trap nodes in the roadmap. A modified ver-
sion of the robot, shown in Figure ll(c), does not have
these pockets. A view of its configuration space with
the same set of obstacles is shown in Figure ll(d). An
additional benefit of the modification to the robot is
that no single cell in the workspace corresponds to case
I1 in Figure 9 (a sufficiently large block will cause this
problem, though).

Shown in Figure 12 is the number of arcs added
to the roadmap as a result of e-robustness processing.
The roadmap was constructed to have a minimum of
five arcs per node. Most of the arcs are added in the
first pass, with the result that the number of arcs per
node becomes linear in the number of joints of the
robot. Table 1 shows the number of individual cells in
the workspace that can disconnect the roadmap, be-
fore and after processing. As can be seen, even though
global e-robustness is not achieved, the number of
obstacles that can cause the roadmap to become dis-
connected has been tremendously reduced by our ap-
proach.

Figure 11: A robot with and a robot without some
pathological cells in the workspace.

Table 1: Number of cells in workspace that disconnect
the roadmap (3D robots).

1277
2800

5 Conclusion

In this paper we have focussed on issues of efficiency
and robustness of representations that can be used for
real-time path planning in changing environments. We
began by developing compression schemes that exploit
the redundancy in the map from robot's Euclidean
workspace to its configuration space. Using these
schemes we were able to obtain compression ratios of
up to 18. We introduced the concept of e-robustness,
and showed how it can be used to enhance the rep-
resentations that are used by the planner. Our en-
hancement stage reduced the number of obstacles that
could disconnect the roadmap to a small fraction of
what would have been the case without enhancement.

1489

16
15

Q l4
U g 13

12
U) 11

-

22

20

,..a Initial - ..' -3
Firstpass ---I

Third pass - Second pass ----.*.-.--

-. Fourth pass *
.. Fifth p a ~ ~

....

-_ -

Initial -
Second passt -.. First pass ---)c- /?.o

_. Third pass -
f

................... _ ! _ ! 2 t

-;.7.. .-
Q ____/
16 - /I <.X.C"- e

6 L
3 6 9 12 15

Number of joints
3D erobustness, 3 passes

Figure 12: Arcs per node in the roadmap after e-
robustness processing (for 2D, e = 2, for 3D, e = l).

6 Acknowledgements
This material is based in part upon work supported
by the National Science Foundation under Award Nos.
CCR-0085917 and 11s-0083275.

References
N. M. Amato, 0. B. Bayazit, L. K. Dale, C. Jones,
and D. Vallejo. OBPRM: An obstacle-based PRM
for 3D workspaces. In Proceedings of Workshop on
Algorithmic Foundations of Robotics, pages 155-168,
1998.

P. BessiBre, J.-M. Ahuactzin, E.-G. Talbi, and
E. Mazer. The "Ariadne's clew" algorithm: Global
planning with local methods. In Proceedings of Work-
shop on Algorithmic Foundations of Robotics, pages
39-47, 1994.

D. Hankerson, G. A. Harris, and P. D. Johnson, Jr.
Introduction to Information Theory and Data Com-
pression. Discrete Mathematics and its Applications.
CRC Press, New York, 1998.

[4] C. Holleman, L. E. Kavraki, and J. Warren. Planning
paths for a flexible surface patch. In Proceedings of
IEEE Conference on Robotics and Automation, pages

[5] T. Horsch, F. Schwarz, and H. Tolle. Motion planning
with many degrees of freedom - random reflections at
c-space obstacles. In Proceedings of IEEE Conference
on Robotics and Automation, pages 3318-3323, 1994.

[6] D. Hsu, J.-C. Latombe, and R. Motwani. Path plan-
ning in expansive configuration spaces. In Proceed-
ings of IEEE Conference on Robotics and Automation,
pages 2719-2726, 1997.

[7] L. E. Kavraki, M. N. Kolountzakis, and J.-C.
Latombe. Analysis of probabilistic roadmaps for path
planning. In Proceedings of IEEE Conference on
Robotics and Automation, volume 4, pages 3020-3025,
1996.

21-26, 1998.

[8] L. E. Kavraki and J.-C. Latombe. Randomized pre-
processing of configuration space for fast path plan-
ning. In Proceedings of IEEE Conference on Robotics
and Automation, volume 3, pages 2138-2145, 1994.

191 L. E. Kavraki and J.-C. Latombe. Probabilistic
roadmaps for robot path planning. In K. Gupta and
P. del Pobil, editors, Practical Motion Planning in
Robotics: Current Approaches and Future Directions,
pages 33-53. John Wiley & Sons LTD, 1998.

[lo] L. E. Kavraki, P. hestka, J.-C. Latombe, and M. H.
Overmars. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE
Thnsactions on Robotics and Automation, 12(4):566-
580, Aug. 1996.

[ll] P. Leven and S. Hutchinson. Real-time path planning
in changing environments: Some preliminary results.
In International Symposium on Robotics, 2000.

[12] P. Leven and S. Hutchinson. Toward real-time path
planning in changing environments. In Proceedings
of Workshop on Algorithmic Foundations of Robotics,
2000.

[13] M. Lin and D. Manocha. Efficient contact deter-
mination in dynamic environments. International
Journal of Computational Geometry and Applications,
7(1):123-151, 1997.

[14] B. Mirtich. V-Clip: Fast and robust polyhedral colli-
sion detection. Technical Report TR97-05, Mitsubishi
Electric Research Laboratory, 201 Broadway, Cam-
bridge, MA 02139, June 1997.

[15] G. van den Bergen. A fast and robust GJK implemen-
tation for collision detection of convex objects. Jour-
nal of Graphics Tools, 4(2):7-25, 1999.

1490

