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Abstract- Visual servoing methods are mmmonly classified as im- 
age based or position based, depending on whether image features or 
the robot pose is used in the feedback loop of the control law. Choos- 
ing one method over the other gives stability in the chosen state but 
surrenders all control over the other, which can lead to system failure 
if feature points are lost or the robot moves to the end of its reachable 
space. We present a hybrid switched system visual servo method that 
utilizes both image based and position based control laws. Through 
a switching scheme we present, this method wil l  pmvide asymptotic 
stability in both the image and pose and prevent system failure. 

1. INTRODUCTION 

Visual servo control allows for the closed loop control 
of a robot end-effector through the use of image data. 
It provides a high degree of accuracy using even simple 
camera systems and offers robustness in the face of sig- 
nal error and uncertainty of system parameters. There are 
two approaches to visual servo control: Image-Based VI- 
sual Servoing (IBVS), and, Position-Based Visual Servo- 
ing (PBVS). In IBVS, an error signal is measured in the 
image, and is mapped directly to actuator commands. In 
PBVS systems, features are detected in an image, and used 
to generate a 3D model of the environment. An error is 
then computed in the Cartesian task space, and it is this er- 
ror that is used by the control system. There are extensive 
resources detailing these methods [ll, [21, [31,[41. 

It is well known that both methods have specific 
strengths and shortcomings [5]. While many of these can 
be overcome by a proper set up of the task, some are funda- 
mental to the control law and cannot be easily detected or 
overcome. Specifically, by zeroing the error in the image 
space, IBVS provides no control over the specific position 
or velocity of the camera and may perform unnecessary 
motions which can even lead to system failure. Likewise, 
PBVS surrenders control of the image features which may 
allow them to leave the image and cause the system to fail. 

We have proposed a switched system approach to visual 
servoing, and experimentally verified its potential [6] . We 
will now provide a mathematical proof of stability under a 
state dependent switching rule. Section I1 contains a brief 
introduction to Hybrid Switched Systems, and Section 111 
will discuss image based and position based visual servo- 
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ing, the two systems which comprise our switched system. 
Section N then details our switched system control method 
and offers a proof of asymptotic stability. Finally, Section 
V will present some experimental and simulated results. 

11. HYBRID SWITCHED SYSTEM CONTROL 

The theory of hybrid switched control systems, i.e., sys- 
tems that comprise a number of continuous subsystems and 
a discrete system that switches between them, has received 
notable attention in the control theory community [7], [SI, 
[9]. In general, a hybrid switched system can be repre- 
sented by the differential equation 

(1) 

where f, is a collection of n distinct functions. For our 
purposes, it is convenient to explicitly note that the switch- 
ing behavior directly affects the choice of the control input 

(2) 
A useful interpretation is to consider U to be a discrete 

signal, switching among discrete values in 1.a. The value 
U at time t determines which function f (2, U,) is used. The 
signal U is typically classified as state-dependent or b e -  
dependent, depending on whether switches are caused by 
the state of x or the time t, although overlap does exist be- 
tween these classes. We explored state-dependent switch- 
ing method contingent on the state of the image plane or 
camera pose. 

The systems we present are each comprised of two visual 
servo controllers; each visual servo controller provides a 
velocity screw, i = [T,, Ty, T,, U=, uyr w , ] ~ ,  and a switch- 
ing rule determines which is used as the actual control input 
at each control cycle. 

The stability of a switched system is not insured by the 
stability of the individual controllers. Indeed, a collec- 
tion of stable systems can become unstable when inappro- 
priately switched. As an illustration, Figure 1 (from [9]) 
shows trajectories for two asymptotically stable subsys- 
tems in (a) and @). A set of switches resulting in a stable 
system is shown in (c), while a series of switches resulting 
in an unstable system are shown in (d). 

5 = f&) : U E {1..n} 

U 

S = f,,(x,u;) : U E {l..n}. 
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111. VISUAL SERVOING 

Visual servoing is the use of image data in closed loop 
control of a robot. There generally considered to be two 
basic methods of Visual servoing, Image Based Visual Ser- 
voing (IBVS) and Position Based visual Servoing (PBVS). 
There exists a large body of work regarding these tech- 

The task in PBVS is to regulate the error between the 
current camera pose and the goal pose. Given a current 
camera position X and goal position X' (from here on, 
variables in the goal configuration will.be denotes with *), 
the transformation relating them is described by a transla- 
tion and rotation of the camera frame. The translation and 
rotation are quantified by "T, E R3 and "R, E S0(3), 
respectively. There are a number of ways to decompose 
the rotation matrix, we will use R [w,, wu,~.IT, which 
gives a measure of rotation about each 3D axis, and R 
u8, where 8 is a measure of rotation about the vector U. 

niques. 111, VI,  [31, P I .  

With X and X', we define the pose error as 

'e, = I"T,,u0lT. (3) 

Given a collection of feature points in the image, there are 
numerous methods to extract the rotation and translation 
[12], 1131, [14]. These methods differ in speed, accuracy 
and the number of feature points required. Some require a 
CAD model of the 3D points as well 

The time derivative of ep can be defined as 

a b 

I \  b I-.. 7- T- 7.. ...._ 
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Rg. 1. trajectories of switched systems 

Fig. 2. stable family of Lyapunov function 

Stability of a switched system can be extremely difficult 
to prove. Stability under arbitrary switching is often elu- 
sive. Generally this requires establishing a common Lya- 
punov function that works for all subsystems [91, [lo]. Al- 
ternately, one can establish asymptotic stability under spe- 
cific switching rule by establishing a family of Lyapunov 
functions for the systems such that at each switch, the value 
of their function at the end of that interval is less than the 
value of the function of the interval that proceeded it, as 
illustrated for a one dimensional family of two functions in 
Figure 2.2. 

Given two linear subsystems, j, = Alx and k = Azx 
a sufficient condition for the existence of a family of Lya- 
punov function is the existence of a stable convex combi- 
nation A, = aA, + (1 - a)Az; a E (0 , l ) .  Likewise, 
proof of stability for all convex combinations is sufficient 
to establish the existence of a common Lyapunov function 
and asymptotic stability under arbitrary switching. Iden- 
tifying stable convex combmations known to be "-hard 
[I I]. Thus it is often necessary to establish proof of stabil- 
ity through less direct methods by proving boundedness of 
the system by appropriate switching. 
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8, = L,i, L, = [ '2 L,OR, O I  

where O R ,  is the rotation matrix relating the orientation of 
the camera frame with the world frame. By choosing the 
goal pose to be the origin of our system, we get L, = Is 
and the system reduce to 

We can solve for C'T, and C'R, = U8 using the com- 
putationally methods listed above and move the camera as 
follows 

giving the proportional control law 

=- T, (6)  8, = -A,L,L,-~ [ ] 
= -Apep. (7) 

The matrix "R, is an element of SO(3)  and thus has a 
detmerminant of one and L, is always invertible. 

Clearly, the error will tend to zero with time, thus the 
system is Globally Asymptotically Stable (GAS). While 
the position error tends monotonically to zero, but we have 



I. 

1. 

Fig. 3. Example Of Spital Motions Far Feaiure Poinfs And Camera In 
PBVS 

. 

no control over the position of the image points. If there 
is any rotation present the feature points will move along 
cum% as the camera undergoes rotation and translation, 
this is seen in Figure 3. In aphysical system we have a lim- 
ited imaging surface and it is possible for the feature points 
to leave the image. In this case the system can no longer 
reconshuct the motion parameters and we cannot complete 
the task. We will define failure of a visual servo system to 
be any situation in which it does not successfully zero the 
error. 

In Image Based Xsual Servoing, the task we are regulat- 
ing exists in the image space. Given collection of n image 
point, pj, j E {l ... n}, we can define the error between a 
point pj and its position in a goal image 

( 8 )  

The motion of an image point is related to the motion of 
the camera by 

x = Lii  

ei) = xj' - xj. 

where Li is theimage Jacobian[l], [2]. 

with (9) to get 

If we have three or more feature points, we can stack the 
vectors and matrix of equation (10) to build a full rank Im- 
age Jacobian, and solve for the robot motion as 

We can take the time derivative of (8) and combine it 

c.i, = Lit. (10) 

i = XiLi+ei. (11) 
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Fig. 4. Example Of Camera Retreat Under IBVS With Large Rotation 

This gives the proportional control law 

&i = -XiLiLi+ei 

= -X;ei (12) 

This system is clearly Asymptotically Stable (AS). It 
would appear to be GAS, but there are known to be sin- 
gularities that can arise in the image Jacobian: there also 
can exist local minima since the ambiguity of depth during 
projection means it is possible that more than one pose may 
give rise to the same image Jacobian. 

The singularities and local minima generally occur only 
with very specific feature point configuration and specific 
camera motions and are generally regarded as a class of 
non-general configurations. These configurations would 
also likely prevent the PBVS system from correctly com- 
puting the pose, but since they manifest themselves directly 
in the control law here, we limit the claim of IBVS to be 
Locally Asymptotically Stable (LAS). The region of con- 
vergence is very difficult to obtain, but the non-generd con- 
figurations constitute a region of measure zero. 

More troubling than the potential singularities or local 
minima is the phenomenon of camera retreat. Since the 
image trajectories will follow a straight l i e  to their goal 
configuration, a change of scale must take place to turn the 
normally elliptical trajectories into straight lines. This scal- 
ing is achieved by pulling the camera hack along it's z-axis. 
An illustration of this phenomenon is given is Figure 4. 

= 
cos [151. This analysis is illustrated in Figure 5, where 
dtaPg is the depth to the feature point at the goal configura- 
tion, d,,, is the maximum depth caused by camera retreat, 
and cy is the angle in the image plane between lines from 
the point's goal position and current position to the image 
center. Note that during zero rotation the ratio is one, while 
an angle of pi will cause an infinite retreat. 

Corke and Hutchinson quantified this scaling as 



Fig. 5. Camera reheal model 

Obviously a physical robot cannot perform an infinite 
camera retreat, most robot systems have a reachable space 
on the order of meters. Thus it is possible for the robot to 
extend to its joint limits during visual servoing, resulting 
in failure. Another scenario is that pull back can seriously 
effect the camera, causing the focus to be incorrect and ad- 
versely affecting the system, possibly resulting in failure. 

IV. THE SWITCHED SYSTEM AND PROOF OF 
STABILITY 

Since the strengths of PBVS compliment the weakness 
of IBVS and vice versa, it seems natural to design a system 
that switches between them to capture these strengths and 
minimize the weaknesses. Through this we hope to attain 
an asymptotically stable system. Furthermore, we seek to 
keep the system from ever failing due to lost feature points 
or the robot moving to the end of its reachable space. To 
achieve this we devised a switching rule that prevents fail- 
ure, and prove that a finite number of switches must take 
place before we reach a position where both the position 
error and image error both decrease under either one of the 
visual servo systems. 

Our method is basically to switch whenever the current 
system is in danger of failing. We define a threshold region 
for each system. For PBVS, this threshold will be a region 
in the image plane containing the image center that smaller 
than the image. The simplest region is defined by a circle of 
radius zp  from the image center. For IBVS, the threshold 
will be a region within the robot configuration space that 
contains the object (by object we mean the rigid configu- 
ration of 3D points used for feature points) . The simplest 
such region is a portion of sphere of radius E, and centered 
at a point on the object. 

We also define two switching metrics. Define m a s f  as 
the greatest Euclidean distance in !& of each feature point 
to the image center. Define do as the distance from the 
camera to the object. If is greater than $ then begin 
servoing with IBVS in order to reduce the feature point er- 
ror and in turn prevent maxf from becoming higher than 
it’s final value. If $is greater, then we begin with PBVS. 
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If the system we choose initially reduce has a ratio greater 
than one, reset the threshold to be equal to the current value 
of max f or do as appropriate. 

The system currently in use may see its switching met- 
ric rise. Whenever a metric reaches its threshold, switch to 
the other system. Neither system can fail, and furthermore 
there will be a finite number of switches before we con- 
verge to zero. 

We make the following assumptions: 
ASSUMPTION 1: The image features are well posed so as 
to rule out the existence of a local minimum. 
ASSUMPTION 2: The feature points are static with re- 
spect to the world frame. 
A S S W O N  3: One system, PBVS or IBVS, starts be- 
low its threshold. 
ASSUMPTION 4: The goal image and pose are withi  the 
thresholds for both IBVS and PBVS. 

The following Lemmas are stated without proof. Proofs are 
given in Appendix A 
Lemma 1: The pose error ep = 0 ifand only ifthe image 
error ej = 0 
Lemma Za: During PBVS the pose error ep decreases 
monotonically while the image error q may increase or 
decrease 
Lemma 2b: During IBVS the image error ei decreases 
monotonically while the pose error ep may increase or de- 
crease 
Lemma 3: For both IBVS and PBVS, there exisis a range 
of camera positions where, under visual servo control, both 
the pose error em and image error ei decrease ro 0 as rime 
goes to infinity Additionally, if the difference between the 
goal and currenr pose consists of rranslarion with a sujji- 
ciently small rotation, then we are wiihin this region. 
Lemma 4: During IBVS, the rotation component of the po- 
sition error will be strictly non-increasing. 

Theorem: Asymptotic srabiliry can be achieved by 
switching between IBVS and PBVS systems. Furthermore, 
the switched system can zero the error in situations when 
IBVS, PBVS, or both would fail due to lost feature points 
or robot pose constraints. 

PROOF. If if the initial position is related to the goal po- 
sition by a translation and sufficiently small rotation, then 
the system will be in the region where both errors decrease 
monotonically, as per Lemma 3. Since the goal configu- 
ration lies within both original threshold regions, and both 
errors are moving towards 0 monotonically, we have con- 
vergence to the goal position and neither of the metrics can 
reach their threshold level. 

If the system is not in the region described by Lemma 3, 
the system we choose will monotonically decrease its error 
and the other system will increase its error. The decreas- 



ing error will see its switching meuic converge towards the 
goal value. The increasing error may be accompanied in 
an increase in the switching metric chosen for the current 
system. If the camera moves into the set of poses defined 
by Lemma 3, then again both errors will converge to 0 and 
we will have convergence. 

If the system does not enter the region described in 
Lemma 3, the increasing error will eventually force the 
switching metric to reach its threshold. We then switch to 
the other visual servo system. The metric at its threshold 
must go down as its corresponding error will be decreasing 
towards zero. The error which was previously decreasing 
will begin increasing with a likely increase in its switch- 
ing metric. At this point the system can enter the region 
described in Lemma 3 and converge to the origin or the in- 
creasing metric can increase to its threshold, in which case 
we switch again. 

Repeating this process gives two possible results. The 
systems may eventually stop switching and converge to the 
origin and the switching metrics converge to their goal val- 
ues, or the system can switch often and the metrics will 
converge towards their thresholds and the errors converge 
to some non-zero point. However, in the worst case sce- 
nario of rapid switching, neither system can increase its 
metric beyond its threshold so neither can fail. Moreover, 
PBVS will always reduce the rotational portion of the pose 
error, and by Lemma 4, IBVS will never increase the rota- 
tional pose error and may reduce it. Therefore, even in the 
case of rapid repeated switching, there can only be a finite 
number of switches before the majority of rotation will be 
completed and the current pose will lie in the region de- 
scribed by Lemma 3 and the error will converge to zero. 

0 
We have thus proven the stability of our system under 

a specific switching rule. To achieve a stronger result, we 
must prove stability under arbitrary switching. This is a dif- 
ficult problem for all but the simplest hybrid switched sys- 
tems, and we have not finalized a proof at this time. How- 
ever, the structure of our switched system lends hope that 
we can achieve this goal in the near future. We thus present 
partial results of our attempt to prove stability under arbi- 
traty switching, and the avenues of our future investigation. 

Firstly, since the error exists in two different spaces, we 
must build a common state space by combining them. This 
is accomplished mathematically by concatenating the state 
vectors and building appropriate plant matrices as seen in 
Equations (13) and (14), where we consider on the simpler 
situation of three feature points used for IBVS, providing a 
6 x 6 image Jacobian. 

o L,L~+ [ 0 Ia ] (14) 

We can investigate the stability of convex combinations 
of the form 

A, = a A , + ( ~ - a ) A i ;  a €  (0,l) 

] (15) 
-de - a ) ~ , ~ i +  

-a~i~,-l -(1 - cl)& 

Asymptotic stability of a system described by Ac could 
be proved if the real parts of all its eigenvalues are nega- 
tive (a matrix that meets this criteria is said to be Hunvirz). 
However, the upper comer of the matrix is the inverse of 
the lower comer, which creates a linear dependence. This 
system will always have six negative eigenvalues and six 
eigenvalues equal to zero. In a linear time invariant system, 
the presence of zero eigenvalues would not rule out the pos- 
sibility of stability, but hybrid systems require the stronger 
condition of asymptotic stability of the convex combina- 
tion. Thus these results are inconclusive. They do not prove 
the existence of a Lyapunov function, but since no eigen- 
value is positive, they do not rule out the existence either. 

Further complicating the exploration is the fact that, the 
L, and Lj matrices are typically time varying (due to con- 
cerns regarding time of amputation, early experiments in 
visual servoing often kept the Jacobians constant but this 
practice is no longer common). This requires us then to 
seek a solution P(t) to the equation 

AT(t)P(t) + P(t )Ac( t )  + P(t)  C -Q(t) (16) 

where P(t) and Q(t) are continuous, bounded and positive 
definite for all time and P(t) is symmetric. Finding such a 
solution is quite difficult; in our preliminary investigations 
the existence of a solution P ( t )  appears to be dependent 
upon the structure and condition of the image Jacobian, 
which in tum may be dependent on the camera motion and 
the properties of the feature being used. To our howledge, 
an in depth investigation into the properties of the image 
Jacobian has not been performed. 

V. RESULTS 
We have tested the switched system extensively in simu- 

lations and experiments. These results have appeared pre- 
viously in [6]; we reproduce a select few to demonstrate the 
performance of OUT system under the described switching 
law. 

A. Simulations 
We simulated the system with a typical camera, but al- 

lowed for ideal camera performance, robot performance, 
and depth estimation. We begin with a situation in which 
either PBVS or IBVS will likely fail to zero the error, a ro- 
tation of 160'' about the optical axis with the feature points 
far from the image center. For all simulations, trajecto- 
ries with black lines are motions performed by IBVS, while 
cyan lines are performed by PBVS. 

The results of PBVS are seen in Figure 6. The first graph 
shows the feature point tmjectories. The feature start too 
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close to the edge of the image, thus while the camera tra- 
jectory is smooth, feature points are lost. 

The results of IBVS under the same motion are seen 
in Figure 7. The feature point trajectories are well be- 
haved, but the camera retreat is very extreme. In this case it 
would retreat almost three meters, likely out of the reach- 
able space of many robots. 

Finally we see the results of the switched system in Fig- 
ure 8. The feature points are near the edge of the image, so 
we use IBVS to pull the feature points towards their goals. 
When the camera retreat becomes too extreme we switch 
again to PBVS. 

E. Experimental Results 
We now present experimental results. We used a Puma 

560 robot arm and a Sony DFW-V500 color camera. The 
feature points are colored dots that allowed us to find the 
center points using each color channel. The pose differ- 
ence between initial and goal is a large rotation about the 
optical axis, and the camera is physically near the feature 
points so they appear close to the edge of the image. This is 
arguably one of the most difficult visual servoing tasks for 
either PBVS or IBVS. The goal and initial images are seen 
in Figure 9. In the result figures, trajectories with a black 
"shadow" are performed by PBVS. 

Results using PBVS are seen in Figure 10. The features 
follow very circular trajectories, but the physical system 
clearly suffers from minor estimation errors. There is neg- 
ligible translation motion, and the feature points quickly 
leave the image. 

In contrast, IBVS begins with large camera retreat, 
pulling the feature points in towards the center of the im- 
age, as seen in Figure 11 .The camera retreats over a meter 
before the robot encounters its joint limits. During this time 
the image becomes severely out of focus, but the symmet- 
ric shape of the feature points allowed the system to still 
calculate their position well. 
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Fig. 11. IEVS Experimental Results 

For the switched system we set thresholds of cp  = 220 
pixels and E; = one (1) meter. The first threshold is 
slightly less than the height of the image minus the width 
of a feature dot. The second threshold is approximately 
75switched system begins with IBVS and camera pull back 
moves the feature points towards the center of the image. 
However, when it hits the retreat threshold of one meter it 
switches to PBVS and completes the majority of the mo- 
tion with well behaved rotation and undoing the effects of 
camera pull hack. Eventually the feature points again ap- 
proach the edge of the image and the system switched again 
to ibvs. However at this point we are in the region where ei- 
ther system will successfully complete visual servoing and 
ibvs completes the motion. 

Fig. 12. Switched System Experimental Results 

APPENDIX 

I. PROOFS OF LEMMAS 

Lemma 1: The pose ermr ep = 0 ifand only ifthe im- 
age ermr ei = 0 

PROOF. Given Assumption 1 
TO PROVE I F  

Xj = RX’j + T Zjxj = 2;Rx; + T Vj  E [Lm] 
Xj - X*j = o+Xj = X*jVj E [Lm] 
R=IsandT=O 

then ep = 0 j 

j Zj = 2; and xj = xj 

TO PROVE ONLY IF: 
xj = x‘j implies one of four possibilities: 

l)R = Is a d  T = 0 
2)T is directed along the ray connecting the focal point 

3)R = u6’hasu oriented along the ray connecting focal 

4)both 2) and 3) are me 

to point pj 

point to point pj 

However, if we are given two or more points that do not lie 
on the same ray, it cannot he me that the motion is directed 
along the rays to both points. Smce we are assumed to have 
at least three points for visual servoing, it must he the case 
that option 1) is true and the pose error ep = 0 

Lemma 2a: During PBVS the pose error ep decreares 
monotonically while the image ermr ei = 0 m y  increase 
or decrease 
Lemma 2a: During IBVS the image error ei decreases 
monotonically while the pose ermr ep = 0 m y  increase 
or decrease 
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PROOF, PBVS is a globally asymptotically stable (GAS), 
linear time varying (LTV) system with respect to the pose 
error, the error must decrease exponentially to zero. The 
image error is uncontrolled and so can increase during 
visual servoing. IBVS is also LTV, but is only Locally 
asymptotically stable (LAS) due to the possibilities of sin- 
gularities in the image Jacobian (though these singularities 
are uncommon or impossible in a well posed physical sys- 
tem). The pose error is uncontrolled and can increase dur- 
ing visual servoing. 

Lemma 3: For both IBVS and PBVS, there exisfs a range of 
camera positions where under visual servo control both the 
pose error ep and image ermr q decrease to 0 as time goes 
to injnify Additionally, one can show that ifthe difference 
between the goal and current pose consists of translation 
with a suficiently small mtation, then we are within this 
region. 

PROOF. The first statement proceeds directly from Lem- 
mas 1 and 2. 
For the second statement, the image error for each feature 
point, q, is related to the pose error during a pure transla- 
tion by the equation: 

ei = Lie, with ep = [T, Ty T. 0 0 OIT, ei = [x,y] 

1 

i L 

Thus, if the pose error consists of a pure translation, the 
image error will be an identical vector for each point, and 
the image error for each point will lie on a straight line. 
By the inverse function theorem if the error for each point 
is an identical vector then the pose error is a pure trans- 
lation. If PBVS zeros the error, the pose trajectory will 
follow a straight line to the goal pose and the image errors 
will also remain on straight lines to their goal positions. 
Likewise IBVS will zero the image error along a straight 
line by moving the camera and reducing the pose error on 
a straight line. Thus for pure translations both PBVS and 
IBVS monotonically decrease both the image and the pose 
error. 

Furthermore, by the Initial Condition Theorem, perturb- 
ing the translation with a sufficiently small rotation will still 
result in a stable system and a decrease in both image error 
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and pose error. We can state that the class of rotation with a 
translation and some sufficiently small amount of rotation 
can be zeroed monotonically with respect to both image 
and pose error by either IBVS or PBVS. 

Lemma 4: During IBVS, the mtation component of the 
position error will be strictly non-increasing. 
PROOF, As illustrated in [HI ,  if a point would naturally 
follow a curved path in the image plane due to a camera 
rotation, to constrain that point to a line requires a trans- 
lation backwards along the optical axis (?’,). Furthermore 
the maximum distance the camera will retreat is given by 

dtw, (Y 

dmm S 

where alpha is the angle in the image plane between lines 
from the point’s goal position and current position to the 
image center. Thus the erroneous motions that evolve from 
constraining a feature point trajectory to a l i e  involve only 
translations along the optical axis, never rotations of any 
son. Thus the error in orientation must be decreasing or 
remaining steady. 

- = cos - 
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