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Abstract—Image matching via multiresolution critical-
point hierarchies has been shown to be useful in feature point
selection, real-time tracking, volume rendering, and image
interpolation. Drawbacks of the method include computa-
tional complexity and a lack of constraints on rigid motion.
In this paper we present a method by which robot end-effector
velocities are tracked using the Condensation algorithm and
critical-point image observations. By using a window-based
approach, we immediately reduce complexity while imposing
constraints on camera motion. We show that the critical-point
observations are successful in estimating camera motion by
evaluating the similarity of sample windows.

I. INTRODUCTION

The problem of tracking has been a focus of computer
vision research for many years now. One of the first
applications was in radar imagery, but many modern-day
tasks benefit from fast and efficient tracking algorithms that
are robust to the uncertainties inherent to these environ-
ments. Throughout its evolution, tracking research has been
focused on two vital areas: object definition (appearance),
and object estimation (parameter estimation), Methods of
modeling and evaluating object appearance and methods of
estimation vary widely and depend on the problem space
and available assumptions.

There are three basic approaches for defining an object’s
appearance for the purposes of tracking: segmentation-
based, contour-based, and template-based. The approaches
range from dealing with the problem at a low level (seg-
mentation) to a high level (template) and each has its own
advantages and disadvantages. Segmentation-based track-
ers, or “blob trackers,” are in general easy to implement
and fast to operate, but may lack in accuracy for some
applications, Templates are computationally expensive but
offer a great deal of accuracy [1]-{3]. Active contours
or “snakes” are often a good compromise of speed and
robustness and are well-suited to deformable objects [4].

Kalman filtering [5] has been a mainstay in tracking and
estimation. With the introduction of the Condensation algo-
rithm (a particle filter) [6], many tracking researchers have
shifted their focus to this approach that uses multimodal
probability densities and allows for multiple hypotheses of
predicted parameters. Both Kalman filtering and Conden-
sation have shortcomings, howevér, and addressing these
issues has been a priority. Condensation can be improved
using importance sampling to prevent wasted samples due
to bad proposal distributions [7].
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Normalized weights of two face tracking algorithms [8],
[9] are used to form the observation model for a Con-
densation tracker in [10]. The use of two observations in
tandem is beneficial because the layer of redundancy covers
shortcomings of either cne of the individual observations
when used alone. Recently, researchers have exploited the
advantages of the different methods by combining trackers
so that where one tracker may fail another tracker will
excel [7], [11], [12]. -

Image matching via multiresolution critical-point fil-
ters (CPFs) [13] bas been shown to be useful in real-
time tracking, volume rendering, object recognition, siereo
photogrammetry, and image interpolation, The CPFs are
nonlinear filters that preserve critical-points in images,
keeping them crisp rather than blurring the image. We
present a new window-based image matching method that
makes fundamental use of CPFs. This approach tracks
image features from a different topological standpoint than
our previous point-based method [14]. The point-based
matching method uses the hierarchical structure of the
CPFs to iteratively search for individual point comespon-
dences. Each of these mappings carries an energy that we
can then use to indicate the quality of the mapping. The
window-based matching method operates at an arbitrary
resolution, within the hierarchies, to match small regions
between images.

Visual servo control is the use of image data in the
closed loop control of a robot end-effector’s position or
velocity. There are three general approaches to visual servo
control: image-based visual servo (IBVS), position-based
visual servo (PBVS) [14]-[17], and hybrid methods that
incorporate techniques from both IBVS and PBVS [18]-
£22]. Our new method of visual tracking makes use of
many of the well-understood parameters of the visual servo
controller to improve tracking performance,

We have shown that image pixels can be matched
between two images in a manner that reduces complexity
compared to previous methods [14]. Because the point
correspondences are found using an energy function, we
can use this energy to reflect our certainty in the mapping
and can rank the mappings accordingly.

When tracking is perfermed for visual servoing, there
is at least a crude estimate describing the motion of the
camera in 3D. This knowledge of motion in 3D can be used
as additional information to improve tracking. Because we
have a motion model, we can use Kalman filtering to
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predict the motion of the image data. To be more robust
in general, we will instead use the popular approach of
condensation for our estimation. Given a region of interest
or window in an image, the estimate of camera motion
can be used along with the well-knewn image Jacobian to
generate sample windows for image observations in sub-
sequent frames. CPFs along with an intensity- and color-
based energy function are used to discriminate between
these complex image regions. Furthermore, condensation
allows us to apply a dynamic motion model to robustly
track the six components of the velocity screw describing
the displacement of the camera (mounted on the robot’s
end-effector) from the current frame to the original image,
Details of the CPFs are provided in Section II. Section
TIT outlines our approach to window-based matching and
results will be provided in Section IV, Future work and
conclusions are given in Sections V and V1 respectively.

II. CRITICAL-POINT FILTERS

CPFs are a set of nonlinear filters introduced by Shina-
gawa and Kunii [13]. CPFs can be used to create multires-
olution hierarchies of images that maintain critical points
and do not blur the image like typical multiresolution
hierarchies. CPFs have been shown to be a powerful tool
in image matching, object recognition, sterec photogram-
metry, and volume rendering [13]. They have recently been
used as a means of real-time object tracking by tracking
points in the interior of an object and then recovering the
shape of the object with a painting scheme [24], [25].
This allows for the tracking of an object with no prier
knowledge of its shape, color, or texture,

To solve the tracking problem, we require a means
of finding point correspondences between two images.
We assume that the images are different, but display a
reasonable amount of coherence. For example, there should
only be small changes in pixel position and intensity. The
point-based matching algorithm described in [14] searches
for these correspondences in a hierarchical approach using
an energy function. The energy function uses pixel inten-
sity, relation to neighboring pixels, and edge intensities
to evaluate potential correspondences. The energy function
we use is detailed in Section TI-B. The original CPFs dealt
only with pixel intensities in the energy function, but have
since been modified by Habuka and Shinagawa [26] to
incorporate color values as well.

The CPFs are named due to their intuitive similarity
with the concept of critical points in calculus. Given an
input image, we create four multiresolution hierarchies that
represent the maximum, minimum, and saddle points of an
image determined by Egs. (1)—{4) below. We define pﬁ;';)
as the point at (%, 7) in the current image, where m is the
type of hierarchy computed, and [ is the level within the
hierarchy. Table I summarizes the four hierarchy types.
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A. Hierarchies

We compute four multiresolution hierarchies of depth
d for each input image (we will refer to them as source
and destination images), where each subimage within a
hierarchy is 2' + 2! (1 <! < d) pixels, and { represents
the level of the hierarchy. A typical scenario is to use an
original image of 256 * 256 pixels, allowing d = 8 levels
in each hierarchy. Figure 1 shows the resulting hierarchies
m = 0,1,2,3 (from right to left), at several levels [ =
8,3,2,1 (from top to bottom) after applying these four
CPFs to the test image. Some images are scaled to improve
clarity of the illustration. The CPFs preserve critical points
in each of the respective hierarchies rather than blurring the
image. The eyes and mouth are seen in the low-resolution
images of the minimum hierarchy (e = (), while the sky
and highlights on the shirt and hair are seen in the low-
resolution images of the maximnm hierarchy (m = 3).
The saddle point hierarchies preserve the skin tone areas
in low-resolution images.

Parent-child relationships are defined in a hierarchy as
follows. If p denotes the pixel (7,7} at level I, the parent
P is the pixel (#, ') in the level { — I such that (i, 5') =
([{.;_] [%j) Conversely, p is a child of P.

B. Energy in a Pixel Match

The energy associated with a match between a source
and destination pixel is a function of pixel intensity, hue
and saturation, and values related to the edge intensities in
the images. Individual terms are weighted to contribute to
an overall energy that is a direct indicator of the quality
of a match. Throughout this section we will refer to the
point in the source image as p and the candidate point in

TABLE 1
HIERARCHY TYPES.

m ] e
0 minimuin

1 saddle point

2 | saddle point
3 maximur
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the destination image as g. We drop the previously used
superscripts and subscripts, but it should be noted that all
energy terms are computed between p and g for each level
[ in each hierarchy m.

The intensity term is based on the difference in intesity
of p and ¢. The intensity distance between the two points
is defined as

Cr=\1(p) - Ig)|*. 5

in which I(p) and I(g)} are the intensity values of p and
g, respectively.

We associate a matching energy based on hue and
saturation by the equation

Chus =

(S(p) cos (QwH(p)) — 5(p) cos (Q'rrH (p)))2 +
+ (S(q) sin (QWH(Q)) — S(g)sin (Qn-H(q)) ) 2(6)

in which the hue and saturation (H and $) are defined by
Eqgs. (7) and (8):

-1 HR-G)+ (R~ B)

H =cos ( ) * «1-?-9 D
J(R-GP+(R-B)G-B)/ T
_ min{R, G, B)
S=1-Ri¢+B ®

R, G, and B represent the red, green, and blue components
of the pixels in Egs. {7) and (8).

@ i=28

i=1

Fig. 1. Original image and resuliing hicrarchics after applying CPE
“Frem top to hotiom: ! = 8, 3,2, 1; from right 1o lefi: m = 0,1,2,3.

TABLE II
COEFFICIENTS USED IN THE ENERGY FUNCTION.,

Coeflicient | Value
[ 0.0125
7 0.5
A 1
[ 2

Together the total energy related to pixel intensity, hue,
and saturation is defined as

C =Ct +yChs, &)

in which 4 is a parameter used to determine the contribu-
tion of the hue and saturation term to . The method of
[13] used an autotuning procedure to determine a suitable
value for 3 and other parameters. We will use static
parameter values summarized in Table IL
To increase the accuracy of the mapping, we apply two
edge-detection (Sobel) filters to the source and destination
images. These two filters create horizontal and vertical
edge images in both the source and destination images at
the finest level d. The horizontal and vertical edge images

are denoted b, edge(d A) and edge(d ) , Tespectively. We
Y {1.9) )

(1.5}
edgegd ;')) by averaging the value of the pixels from the
filter at level { + 1, giving

generate multiresolution hierarchies from edge and

(Lh) __ (I+1.h) (41,k)
edge(l.‘j) 1 (edgeui oy +edge, 2ty T

14+1,
E"~I§"3(2:+1 25 T Edge:2:+l.%j+1)) (10
and
() v) (I+1.v)
edge ) = 1 (ed? eloiayy + edge s 5iin) T
(1) (+1.v)
edgepisy 25 6d96(2i+1.2j+1)) an

for the horizontal and vertical filters respectively at level I
(1 €1 < d). The edge hierarchies should not be thought
of as structural elements, but rather as spatial derivatives
that give us variation in intensities, as this is likely to be
a persistent feature in source and destination images.

The edge distance between the two points at each level
of the hierarchy is

2
(.m) _ (L.h} (i.h}
B o = [(edge(l.j) — edge(i,_j,)) +

2
(edgeﬁj;; - edgeg'.‘_'})) ], (12)

which is the total energy related to the edge for a source
pixel p at (7, 7) in the source image and candidate pixel ¢
at (¢, ') in the destination image. E is multiplied by %
because in Chapter [14] the edge energy will be included
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in the total energy four times (once for each CPF hierarchy
m=0,1,2,3).

With the above elements, we can define the total energy
of the match between p and ¢ for level { in hierarchy m
to be

U=xC+8E, (13)

where A and @ are constants. Again, these parameters were
found using an autotuning procedure in [13]. In [14], we
will list the parameter values used in our experiments.
‘We want to find the mapping of a pixel that provides a
minimum value to this energy function.

III. WINDOW-BASED MATCHING

We have shown in [14] how the CPFs can be used to
match individual points in two images. On average, the
individual mappings reflect the correct motion between
frames, but many points are needed for this estimate
to be reliable. Rather than compute the energy between
individual points, we can use a slight variation of our
energy function to compute the energy between image
regions or windows in the source and destination image.

Given a preselected window in the source image, we
select the lowest energy window in the destination image
as the one best representing the current state. We could
take an exhaustive approach and compute this energy for
every possible window in the destination image, but this
is computationally expensive. Instead, we use the conden-
sation algorithm to represent the conditional density of
the window’s state given image observations. Condensation
uses factored sampling, a means of representing complex
distributions with a set of samples. Our sample windows
are drawn from the prior density, and our energy function
weights each sample to alter our representation of the
conditional density. In Section III-A we will provide an
overview of the condensation algorithm. Our method of
tracking using condensation and CPFs is presented in
Section TTI. Results are given in Section IV.

In related work, the probabilistic data association filter
(PDAF) [11] is used to track objects in the presence of
occlusion, distractors, and agile motion. The method uses
sample windows to find the best match in an image to some
template, perhaps a similar region in a previous frame, The
Kalman filter is used to generate the sample windows that
are evaluated using the methods of homogereous regions,
contours, and textures to determine the closest match to
the template.

A. Condensation

The state parameter x describing our tracked object can
be a simple representation, such as the x and y location
of the center of the object, or more complicated as with
B-spline curves. We will use the six terms of the velocity
screw common 1o visual servoing applications:

= (Ty, Ty, Ta, i, wys ws) - (14)

The velocity screw represents the velocity of the camera
frame, composed of a linear velocity v = (TI.Ty,Tz)T
and angular velocity w = (wy,wy,w; )7

In many prediction strategies we assume an n-variate
Gaussian distribution for x. This approach often works
well, but the Gaussian assumption leads to failure in a
number of situations. For example, when the object is
fully or partially occluded for several frames, or when
other forms of visval clutter are present, trackers such as
Kalman-based trackers may lose the tracked object. This
is because a measurement unrelated to the actual object is
present and hence affects future predictions.

Condensation is a variation of particle filtering developed
by Isard and Blake [6] for tracking of curves amongst
visual clutter. Condensation achieves this by representing
the conditional density p(x|z) of the target object’s state
X given image observations z. This distribution is often
multimodal and difficult at best to represent in closed-
form. Instead, we can use the prior p(x} and measurement
density p(z|x) to approximate the distribution using fac-
tored sampling, a way of representing the distribution with
a set of samples. Since its publication, condensation has
been a popular approach to tracking thanks to its ability to
represent multimodal distributions of p{x|z) using factored
sampling, which proves particularly useful in visual clutter.

The state of the modeled object at a discrete time ¢
is denoted x; and the set of image features is z, The
history of each of these random variables is denoted 4z =
{x1y...,x;} and Z; = {zy,...,2:}. An assumption is
made that the object dynamics form a temporal Markov
chain so that

p(xe}X—1) = p(xelxi 1) (15)

Therefore, object dynamics are defined by the conditional
density p(x:|x¢—_1).

The conditional density p(z,|x;) defines the observation
process at time £, Because the observation density is in
general multimodal, the state density p(x|Z;) is also
non-Gaussian. To evaluate the state density over time
without incurring excessive computational load, a factored
sampling approach can be taken.

In the iterative approach of the condensation algorithm,
each weighted sample-set that represents p(x|z) at time
¢ consists of {(s{™ 7{™,c™),n = 1,...,N}. At each

iteration, a sample s;"" is chosen with probability Trt(")

plz/s™)

ﬂin) = _-_(_j_ .
N
i plzis)

(16)

The cumulative weight cﬁn) is the sum of al! measurement
weights (™ up to sample n:

D=0 (7

o4 =

(18)
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A random number r € [0,1] is generated, and s;(n} is
selected by the first n for which cE’_"l exceeds r. In this
way samples carrying high probabilities may be selected
multiple times, and those with low probabilities may not
be selected at all. We then apply a motion model to the
selected sample to reflect its predicted change in state from
the jprevious iteration. According to the observation model,
ﬂt(" is recalculated based on currect image observations.
N must be picked appropriately for the problem space;
a large value may give increased robustness but will be
computationally inefficient, whereas a small value will give
fast performance but will lead to failure more easily.

B. Our Implementation

We will assume that our target is static and that motion
only occurs by moving the camera, which is mounted on a
robotic arm end-effector, Qur tracking will be constrained
and improved by our estimated motion of the camera.
We will propose and show experimental results for an
observation model based on the CPFs.

We are interested in the CPFs’ ability to measure the
quality of a match on a small image region or window. This
is beneficial in two senses: the size of the window will be
smaller than the entire image, and we can use the concept
of spatial and temporal coherence to only consider a direct
mapping of points from one window to another (ie., we
will not be searching for matching points, only measuring
the quality of each match among a number of samples).
Because we assume rigid body motion and have an estimate
of that motion, we can exploit the motion model and say
that a window containing the region of interest will also
undergo this rigid motion and contain roughly the same
data in subsequent frames.

When representing the conditional density using factored
sampling, it is important that the number of samples used
be large enough to capture an accurate approximation of
the distribution, yet small encugh to minimize complexity.
To make efficient use of the samples, it is important to
generate relevant samples from the prior density. Con-
densation alone does not incorporate observations in the
transition prior p{x:|X¢—1}. This fact can lead to creation of
samples in low likelihood areas. Importance sampling has
been applied to condensation via an auxiliary tracker as a
potential remedy to this prcblem [7]. The approach uses an
auxiliary tracker in an attempt to generate relevant samples.
Auxiliary trackers still require good proposal distributions
such as the transition prior however, The unscented particle
filter (UPF) [27] is a hybrid of the unscented Kalman filter
(UKF) [28] and particle filtering that incorporates image
observations in the transition prior. The advantage of this
method is that the particle filter allows for multimodal
distributions, while the UKF takes into account the most
recent image observations. Our method uses knowledge of
camera motion via an end-effector state description in the
condensation framework to generate samples that will be
useful in the tracking process.
In our implementation, sg") will be a vector containing
the six elements T3, T, T,,wy,wy, and w, of the veloc-

ity screw common in visual servoing applications, which
describes end-effector velocities from one pose to another.
The measurement weights wt(") are used to weight each of
the state samples vsing a novel observation model defined
in Section 1I1-B.2.

In the following sections, we describe our motion and
observation models as well as define the extent of user
input needed to initialize the tracker. Pseudocode for the
‘proposed method is shown as Fig. 2.

1) Motion model: We apply a dynamic motion model
to the samples to use our knowledge of predicted motion
to enhance tracking accuracy. Qur deterministic element of
motion simply indicates a predicted motion. Others have
used offline training or a supplementary tracker [7], [29].
There is also a stochastic element of the motion medel that
prevents samples from converging to a single state. When
a new sample set is generated from the previous step, it is
possible to pick a sample multiple times, meaning it carries
a high probability. The new samples will move together
after we apply the deterministic portion (also known as
drift) of our motion model, but the stochastic element
(diffusion) works to separate these samples and help avoid
local minima.

The drift is a product of the object’s estimated motion.
Conveniently, the tracked parameters (the velocity screw)
directly describe the camera motion. We use the highest
weighted sample from the previous iteration s>% as our
state to update all samples and multiply each element
according to a gain matrix K to come up with the next
predicted position for each sample:

s =™ — Ksi

(19)

If individual samples from the previous iteration are

Given two images [source and destinatiomn)
of size 2¢ % 29 pixels, an initial estimate
of the veleocity screw r;, and a source
window R of size 2 +« 2!, where !l < d, we
can generate our initial sample-set SO" by
sampling from N(r,—,ZQ)

for all t do
for all n do
1. Project source window vertices into
destination image
with sr) to obtain sample window
R0
2. apply CPF to R''™ at level, k, where
k<l
3. Compute energy Eﬁm between R and
Pl
. n
4, Update weight rf)::zfﬁ
5. Apply motion model to sample states
end for
Acquire new destination image
end for

Fig. 2. Velocity screw tracking algorithm.
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selected multiple times to serve as new samples, they
will undergo the same drift. After applying the drift, we
separate samples and account for the uncertainty of the
true distribution by letting each sample undergo a random
walk. In our experiment, we use a Brownian motion model
for this random walk.

We will not estimate depth at each iteration. Rather, we
will select the depth as a constant that corresponds to the
depth in the source pose, which is assumed to be known.
By creating sample windows of various scales (a result
of our random motion}, we should be able to capture the
correct depth over time.

We use our velocity screw estimate and source window
vertices to come up with sample window vertices in the
destination image according to

f = Jim(u,v,2)8{™, (20)
where Jim(t,v,2) =
Ay v _w N
+ -
i A . — At uv @b
oz = X

is the image Jacobian in which X is the focal length of the
camera. Derivations of this can be found in a number of
references including [15]- [31]. We will use f = (u,p)T
to represent the source window vertices and £/ = f + f 1o
represent the corresponding destination window velocities.

2) Observation model: We propose an observation
model that indicates the likelihood p(z{x) of an observa-
tion coming from the predicted state. Sampies from the
distribution are weighted by image observations at each
iteration such that samples with a large weight represent
observations with a high probability of coming from the
predicted state. Those samples that do not gain support
over time (i.e., brief occlusions) will eventually die out
and the true distribution will remain.

To compare our 2! * 2 source window with a sample
window that is defined by our sample velocity screw and
is a projective transformation of the first, we must compute
the inverse transformation and warp the destination window
10 also be 2' + 2. We use bilinear interpolation to generate
these synthetic views. Given warped sample windows, we
can compute the energy of pixel intensity and color across
each hierarchy m at a given level I. A low total energy
indicates a close matching of windows.

The energy E is a simple function of intensity and color
differences between windows in the source and destination
images. We drop the previously used edge intensity term
because in this window-based approach we sum the indi-
vidual energy terms across the region and the variation
in intensity becomes less meaningful in discriminating
between windows,

Critical-peint filters are applied to a specified level in
gach window, but the full hierarchy does not need to be
computed. The energy function is given by

UM =cfn) + Cf, (22)
(n) (n) ; ;
where C;,' and Cprg, are the intensity and hue and

saturation terms, respectively, of the n'"* sample at time
t, as defined by Egs. (23) and (24):

3 (Bl dom) = Lti, 5,m))°

ij m=0

ol =

{23)

Cird,

Ty

i,J m=0

_54(i, j,m) cos (2“ [Hs(i,j,m)'))Q +

(Ss(i,j, m)cos (217 * |Hs(e’,j,m)|) -

+ (Sd('i,j, m) sin (27r * | Hali, 2, m);) -
—Suli, j,m) sin (2« « | Hald, 4, m)|))2, 24)

where 7 and j are the coordinates of a pixel in the image,
and m is the hierarchy. Hy, Hy, S,, and Sy are the hue
and saturation at 7, §, and m in the source and destination
windows, respectively, as defined by Eqgs. (7) and (8).
Furthermore, each term is normalized (Eqs. (25) and
(26)) so that we have a more accurate representation of
the term’s influence when weighting the sample as in [10]:

S =1 (25)
S cii=1 (26)

n

The valoe used to weight samples should be large if the
sample is good. The CPF energy function is minimized
when two images are alike. Therefore, we weight our
samples as in Eq. (27):

() _ _1
) - Ut(n) (27)
The energy should be zero if a window is an exact match,
but in practice we will look to minimize the energy. By
definition, the weights are normalized as in Eq. (28):

ZWE") =1

3) Initializarion: In our experiments, we will use the
known velocity screw we use to generate the destination
image as the initial velocity screw r;. To generate the
initial sample-set sé"), we sample directly from a Gaussian
distribution with mean equal to the initial velocity screw
r; and covariance ¥, N samples are generated for each
degree of freedom T, T, T, wz. wy, and w,. We will
select a template window (2! x 2!) in the source image,
where 20 < 2% and 2¢ equals the width of the source and
destination images.

(28)
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IV. RESULTS

Our experimental setup involves a PUMA 3560 robotic
arm with Sony DFW-V500 digital camera mounted on the
end-effector. Computation is performed on a 2.4 GHz PC
running uncompiled Matlab code. The camera is assumed
to be calibrated. A source image is obtained at this point
before the end-effector is then displaced to an offset posi-
tion where the first destination image is obtained and the
servoing will begin. Figure 3(a) shows our source image,
with the manually selected 64 = 64 pixel source window
outlined.

We will now evaluate a simple translation of 10 mm
in the z and -10 mm in the y directions of the robot’s
world coordinate frame. Using our estimate of the camera
motion, we will generate n = 200 sample windows in the
destination image that should contain similar data to that
of the source window.

Our first iteration is shown in Fig. 3(b) where we see
that many samples are generated with a large variance (in
z and y) to express some doubt in our initial prediction of
the camera’s motion between the first and second frame.
Because we are evaluating only the simple translation with
no scaling, we set the variances of the z transiation and
all rotations to zero for now. These variances are only
used with the Gaussian distribution which provides sample
windows at the initialization step. The best match window
is outlined in bold.

A. CPF at different resolutions

Figure 4 shows the energy of the two hundred 64 * 64
pixel sample windows plotted against the error between the
estimated pose describing each sample and the known pose
used to generate the test images for [ =1,2,3,4,5, and 6.

In each case we see that there is little visible discrimi-
nation between the energy of samples with a small error,
but at all levels there is a clear cutoff at about 10-mm
error where samples energies clearly indicate a poor match.
The low energy samples appear to have a generally linear
and increasing behavior with increase in error. Though a
distinctly low energy sample corresponding to a distinctly
small error is not always evident, each of these samples
lends support to multiple hypotheses of the actual camera
pose in subsequent frames as the condensation algorithm
takes over. We can conclude from this that tracking may
perform as accurately at low levels of resolution which
offers much reduced computational complexity.

V. FUTURE WORK

In future work, we would like to further investigate
the abilities of our window-based matching scheme by
presenting more complex target object motions, To this
point, we have not shown results for translations about
z, y, and z in the world coordinate frame, nor have
we demonstrated the ability of the sampling method to
accurately capture scale changes.
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VI. CONCLUSION

To address this flaw, we proposed a window-based
matching method. Because we are considering rigid body
motion and a window can be considered a rigid body,
we can take into account neighboring energies produced
by the CPF energy function. We only need to define a
region of interest or window around a part of the source
image. We can then evalvate potential mappings of that
window in subsequent frames. Furthermore, we exploit
our knowledge of camera motion in 3D by using it in
our motion model of the condensation algorithm, We
can propagate the probability densities representing our
estimate of the camera motion through a video sequence
and reliably track the window.

We have shown once again that condensation is a
powerful tracking tool. The generality of the algorithm
allows us to apply novel motion and observation models to
our chosen state parameterization. Our choice of parame-
terizing the rigid body motion by end-effector velocities
allows a more meaningful description of the motion of
the target. The limitations imposed on motion by the
robotic arm allow us to generate samples that will not be
wasted and eliminates the need for an auxiliary tracker. The
observation model allows tracking of more complex and
a priori unknown objects with minimal user initialization.
The measurement also performs similarly at coarse and
fine resolutions altowing for fast running implementations.
Finally, the redundancy inherent in using four hierarchies
to contribute to an overall matching score leads to a robust
means of discriminating between candidate samples.

REFERENCES

[1] F Jure and M, Dhome, “Hyperplane approximation for template
maiching.” fIEEE Trans. on Faitern Analysis and Machine Inzelli-
gence, vol. 24. no. 7, pp. 996-1000, July 2002.

2] T. Kaneko and O. Hori, *Fealure selection for relisble tracking using
template maiching,” in Proc. TEEE Intl. Conference on Compurer
Vision and Fatiern Recognition (CVPR'03), vol. 1, June 2003, pp.
796-802.

{3] G. Hager and P. Belhumeur, “Efficient region tracking with paramet-
ric models of geometry and illumination,” JEEE Trans. on Paitern
Analysis and Machine inrelligence, vol. 20, no. 10, pp. 1025-1039,
Oct. 1998,

[4] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes-aclive contour
models.” Inrl. Journal of Compuster Vision, vol. 1, no. 4, pp. 321-
331, 1987,

[51 R. Kaltman. “A new approach to linear filtering and prediction
problems,” Trans, ASME, Journal of Basic Engineering, vol. 82
(Scries D}, pp. 35-45, Mar. 1960,

[61 M. Isard and A. Blake, “Condensation—conditional density propaga-
tion for visual wracking.” Intl. Jeurnal of Computer Vision, vol. 29,
no. 1, pp. 5-28, 1998.

[7] ——, “Icondensation: Unifying low-level and high-level tracking
in a stochastic framework,” in Proc. of European Conference on
Computer Vision, vol. 1, 1998, pp, 893-908.

18] B. D. Lucas and T. Kanade, “An iterative image registration tech-
nique with an application to stcreo vision {darpa).” in Proceedings
of the 1981 DARFA Image Understanding Workshop, Apr. 1981. pp.
121-130.

[9] J. Yang, W. Lu, and A. Waibcl, “Skin-color modeling and adapta-
tion,” in Proceedings of ACCV'98, vol. H, 1998, pp. 687694,
{10) C. Luo, T. Chua, and T. Ng, “Face tracking in video with hybrid
of Lucas-Kanade and condensation algerithm,” in Proc. of Jmil,
Conference on Muliimedia and Expe (ICME'03), vol. 3, July 2003,

pp. 293-296,

[11] C. Rasmussen and G. Hager, “Probabilistic data association meth-
ods for tracking complex visual objects,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 23, no. 6, pp. 560-576, June
2001.

{12] M. Guptz, P. Mittal, 5. Roy, 5. Chaudhury, and S. Bancrjee,
*Condensation-based predictive cigentracking,” in Indian Confer-
ence on Computer Vision, Graphics and Image Processing, Dec.
2002, pp. 49-54.

{131 Y. Shinagawa and T. L.. Kunii, “Unconsirained automatic image
matching vsing multiresolutional critical-point Ghers,” IEEE Trans,
on Pattern Analysis and Machine Intelligence, vol. 20, no. 9. pp.
994-1010, Sept. 1998.

{14] B. Chambers, ). Durand, N. Gans, and 5. Hutchinson, “Dynamic

feature point allocation using muitiresolutional critical-point filters.”

in Proc. IEEE/RSJ Int. Conf. Intelligemt Robots and Systems, Qct.

2003, pp. 504-509,

5. Huichinson, G. Hager, and P. Curke, “A tutorial on visual servo

control,” IEEE Trans. on Roborics and Auromarion, vol. 12, no. 5.

pp. 651-670, Oct. 1996.

[16] L. E. Weiss, A. C. Sanderson, and C. P Neuman, “Dynarnic sensor-
based conlrol of robots with visual feedback,” IEEE Journal of
Robotics and Auromation, vol. RA-3, no. 5, pp. 404-417, Oct. 1987.

[17} J. Feddema and O. Mitchell, “Vision-guided serveing with feature-
based wrajectory generation,” IEEE Trans. on Robotics and Aufoma-
tion, vol. §, no. 5, pp. 691-700, Oct. 1989.

[18] P, Maninei, ), Gallice, and I>. Khadraoui, “Vision based control
law using 3D visual features,” in Proc, of the World Amomation
Congress, vol. 3, May 1996, pp. 497-502,

[19] E. Malis, F. Chaumette, and 5. Boudet, “2-1/2I3 visual servoing,”
TEEE Trans. en Robotics and Automation, vol. 15, no. 2, pp. 238-
250, Apr. 1999.

[20] G. Morel, T. Liebereit, I. Szewezyk, S, Beudet, and J. Pot, “Explicit
incorporation of 2D constraints in vision based control of robot
manipulators,” in Experimental Robotics VI, ser. Lecture Notes in
Cont. and Info. Sci., P. Corke and J. Trevelyan, Eds.  Berlin
Heidelberp: Springer-Verlag, 2000, vol, 250, pp. 99-108.

121] K. Deguchi, “Optimal motion contrel for image-based visual servo-
ing by decoupling translation and rotation,” in Proc. IEEE/RST Int,
Conf. Intelligent Robots and Systems (IROS'98), vol. 2, Victoria,
BC, Canada, Oct. 1998, pp. 705-711.

[22] P Corke and S. Hulchinson, “A new partitioned approach (o
image-based visual servo comirol” IEEE Trans. on Robotics and
Awtomation, vol. 17, no. 4, pp. 507-515, 2001.

[23] N. Gans and S. Huichinson, “An experimental study of hybrid
switched system approaches 1o visual servoing,” in Proc. IEEE Int.
Conf. Robots and Automarion (ICRA'03), vol. 3, May 2003, pp.
3061-3068.

[24] J. Durand and S. Huichinsen, “Real-lime object trucking using
multi-resolution critical point filers,” in Proc. IEEE Int. Conf.
Robots and Automarion (ICRA'03). vol. 2, Sept. 2003, pp. 1682-
1687,

[25] J. Durand, “Real-time objcct tracking using multi-resolution ¢ritical
point fiters,” Master’s thesis, University of Illincis at Urbana-
Champaign, 2002.

[26] K. Habuka and Y. Shinagawa, “Image interpolation using cnhanced
multircsolution  critical-point filters,” fmil. Jowrnal of Computer
Wision, (o be published.

127] Y. Rui and Y. Chen, “Better proposal distributions: Object tracking
using unscented particle filter,” in Proc, IEEE Imil. Conference on
Computer Visioit and Pattern Recognition (CVPR'01), vol. 2, Dec.
2001, pp. 786-793.

[28] S. Julicr and J. Uhlmann, “A general method for approximating
nonlincar transfermations of probability distribnions,” Dept. of
Engineering Science. University of Oxford,” Tech. Rep. RRG, Nov.
1996.

[29] H.Kang, D. Kim, and §. Bang, “Real-time multiple people tracking
using compelitive condensation,” in Proc. of the Intl. Conference on
Partern Recogririon, vol. 1, Aug. 2002, pp. 413-416.

130] 1. Aloimonos and D. P. Tsakiris, “On the mathematics of visual
tracking,” Image and Vision Compuring, vol. 9, no. 4, pp. 235-251,
Aug. 1991,

[31] R. M. Haralick and L. G. Shapiro, Compurer and Robor Vision.
Reading, MA: Addison-Wesley, 1993,

[15

—

956



