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Abslmel-Image matching via multiresolution critical- 
point hierarchies has been shown to be useful in feature point 
selection, real-time tracking, volume rendering, and image 
interpolation. Drawbacks of the method include compula- 
tional complexity and a lack of constraints on rigid motion. 
In this paper we present B method by which robot end-eEector 
velocities are tracked using the Condensation algorithm and 
critical-point image observations. By using a window-based 
approach, we immediately reduce complexity while imposing 
constrainls on camera motion. We show that the critical.point 
observations are successful in estimating camera motion by 
evaluating the similarity of sample windows. 

I. INTRODUCTION 

The problem of tracking has been a focus of computer 
vision research for many years now. One of the first 
applications was in radar imagery, but many modem-day 
tasks benefit from fast and efficient tracking algorithms that 
are robust to the uncertainties inherent to these environ- 
ments. Throughout its evolution, tracking research has been 
focused on two vital areas: object definition (appearance), 
and object estimation (parameter estimation). Methods of 
modeling and evaluating object appearance and methods of 
estimation vary widely and depend on the problem space 
and available assumptions. 

There are three basic approaches for defining an object’s 
appearance for the purposes of tracking: segmentation- 
based, contour-based, and template-based. The approaches 
range from dealing with the problem at a low level (seg- 
mentation) to a high level (template) and each has its own 
advantages and disadvantages. Segmentation-based mck- 
ers, or “blob trackers,” are in general easy to implement 
and fast to operate, but may lack in accuracy for some 
applications. Templates are computationally expensive but 
offer a great deal of accuracy [1]-[3]. Active contours 
or “snakes” are often a good compromise of speed and 
robustness and are weU-suited to deformable objects 141. 

Kalman filtering [5] has been a mainstay in tracking and 
estimation. With the introduction of the Condensation algo- 
rithm (a particle filter) [61, many tracking researchers have 
shifted their focus to this approach that uses multimodal 
probability densities and allows for multiple hypotheses of 
predicted parameters. Both Kalman filtering and Conden- 
sation have shortcomings; however, and addressing these 
issues has been a priority. Condensation can be improved 
using importance sampling to prevent wasted samples due 
to bad proposal dislributions [7]. 
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Normalized weights of two face tracking algorithms [SI, 
[91 are used to form the observation model for a Con- 
densation wcker  in [lo]. The use of two observations in 
tandem is beneficial because the layer of redundancy covers 
shortcomings of either one of the individual observations 
when used alone. Recently, researchers have exploited the 
advantages of the different methods by combining trackers 
so that where one tracker may fail another tracker will 
excel [71, [Ill, [121. 

Image matching via multiresolution critical-point fil- 
ters (CPFs) [I31 has been shown to be useful in real- 
time tracking, volume rendering, object recognition, stereo 
photogrammetry, and image interpolation. The CPFs are 
nonlinear filters that preserve critical-pints in images, 
keeping them crisp rather than blurring the image. We 
present a new window-based image matching method that 
makes fundamental use of CPFs. This approach tracks 
image features from a different topological standpint than 
our previous point-based method [ 141. The point-based 
matching method uses the hierarchical stlllcture of the 
CPFs to iteratively search for individual point correspon- 
dences. Each of these mappings carries an energy that we 
can then use to indicate the quality of the mapping. The 
window-based matching method operates at an arbitrary 
resolution, within the hierarchies, to match small regions 
between images. 

Visual servo control is the use of image data in the 
closed loop control of a robot end-effector’s position or 
velocity. There are three general approaches to visual servo 
control: image-based visual servo (IBVS), position-based 
visual servo (PBVS) [14]-[17], and hybrid methods that 
incorporate techniques from both lBVS and PBVS [18]- 
[22]. Our new method of visual tracking makes use of 
many of the well-understood parameters of the visual servo 
controller to improve tracking performance. 

We have shown that image pixels can be matched 
between two images in a manner that reduces complexity 
compared to previous methods 1141. Because the point 
correspondences are found using an energy function, we 
can use this energy to reflect our certainty in the mapping 
and can rank the mappings accordingly. 

When tracking is performed for visual servoing, there 
is at least a crude estimate describing the motion of the 
camera in 3D. This knowledge of motion in 3D can be used 
as additional information to improve tracking. Because we 
have a motion model, we can use Kalman filtering to 
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predict the motion of the image data. To be more robust 
in general, we will instead use the popular approach of 
condensation for our estimation. Given a region of interest 
or window in an image, the estimate of camera motion 
can he used along with the well-known image Jacobian to 
generate sample windows for image observations in suh- 
sequent frames. CPFs along with an intensity- and color- 
based energy function are used to discriminate between 
these complex image regions. Furthermore. condensation 
allows us to apply a dynamic motion model to robustly 
track the six components of the velocity screw describing 
the displacement of the camera (mounted ou the robot’s 

Details of the CPFs are provided in Section E. Section 

results will be provided in Section IV. Future work and 
conclusions are given in Sections V and VI respectively. 

p(l ,,)) 3) - [ ( l l + l , Z I  (1+1.31 end-effector) from the current frame to the original image. 

III outlines our approach to window-based matching and 

(.” - m =  m= Plmj) .P(,i.zj+*,), 
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11. CRITICAL-POINT FILTERS 
CPFs are a set of nonlinear filters introduced by Shina- 

gawa and Kunii [13]. CPFs can he used to create multires- 
olution hierarchies of images that maintain critical points 
and do not blur the image like typical multisolution 
hierarchies. CPFs have heen shown to be a powerful tool 
in image matching, object recognition, stereo photogram- 
metry, and volume rendering [13]. They have recently been 
used as a means of real-time object tracking hy tracking 
points in the interior of an object and then recovering the 
shape of the object with a painting scheme 1241, 1251. 
This allows for the tracking of an object with no prior 
knowledge of its shape, color, or texture. 

To solve the tracking problem, we require a means 
of finding point correspondences between two images. 
We assume that the images are different, but display a 
reasonable amount of coherence. For example, there should 
only be small changes in pixel position and intensity. The 
point-based matching algorithm described in [I41 searches 
for these correspondences in a hierarchical approach using 
an energy function. The energy function uses pixel inten- 
sity, relation to neighboring pixels, and edge intensities 
to evaluate potential correspondences. The energy function 
we use is detailed in Section II-B. The original CPFs dealt 
only with pixel intensities in the energy function, hut have 
since been modified by Habuka and Shinagawa [26] to 
incorporate color values as well. 

The CPFs are named due to their intuitive similarity 
with the concept of critical points in calculus. Given an 
input image, we create four multiresolution hierarchies that 
represent the maximum, minimum, and saddle points of an 
image determined hy Eqs. (1)-(4) below. We define p{$)  
as the point at ( i , j )  in the current image, where m is the 
type of hierarchy computed, and 1 is the level within the 
hierarchy. Table I summarizes the four hierarchy types. 

A. Hierarchies 

We compute four muliiesolution hierarchies of depth 
d for each input image (we will refer to them as source 
and desrinarion images), where each suhimage within a 
hierarchy is 2’ * ZL (1 5 1 5 d )  pixels, and 1 represents 
the level of the hierarchy. A typical scenario is to use an 
original image of 256 * 256 pixels, allowing d = 8 levels 
in each hierarchy. Figure 1 shows the resulting hierarchies 
m = 0,1 ,2 ,3  (from right to left), at several levels 1 = 
8,3 ,2 ,1  (from top to bottom) after applying these four 
CPFs to the test image. Some images are scaled to improve 
clarity of the illustration. The CPFs preserve critical points 
in each of the respective hierarchies rather than blurring the 
image. The eyes and mouth are seen in the low-resolution 
images of the minimum hierarchy (m = 0). while the sky 
and highlights on the shirt and hair are seen in the low- 
resolution images of the maximum hierarchy (m = 3). 
The saddle point hierarchies preserve the skin tone areas 
in lowresolution images. 

Parent-child relationships are defined in a hierarchy as 
follows. If p denotes the pixel ( i , j )  at level 1, the parent 
P is the pixel (i’,j’) in the level 1 - 1 such that (i’,j’) = 

(1;) I I;]). Conversely. p is a child of P. 

B. Energy in a Pixel Match 
The energy associated with a match hetween a source 

and destination pixel is a function of pixel intensity, hue 
and saturation, and values related to the edge intensities in 
the images. Individual terms are weighted to contribute to 
an overall energy that is a direct indicator of the quality 
of a match. Throughout this section we will refer to the 
point in the source image as p and the candidate point in 

TABLE I 
HIERARCHY TYPES 

saddle p i n !  
saddle point 
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the destination image as q. We drop the previously used 
superscripts and subscripts, but it should be noted that all 
energy terms are computed between p and q for each level 
1 in each hierarchy m. 

The intensity term is based on the difference in intesity 
of p and q. The intensity distance between the two points 
is defined as 

c1 = Im - 1(s)lZ, (5 )  

in which I ( p )  and I ( q )  are the intensity values of p and 
q, respectively. 

We associate a matching energy based on hue and 
saturation by the equation 

C H S  = (S(p)cas ( Z a H ( p ) )  - S@)cos  ( 2 n H ( p ) ) ) 2  + 

+ ( s ( d s i n  ( S r H ( q ) )  - S(q)sin ( 2 n H ( d ) ) ; b )  

in which the hue and saturation ( H  and S) are defined by 
Eqs. (7) and (8): 

) * (7) 
+ ( R -  G) + ( R  - R) 

( ( R  - GI2 + ( R  - B)(G - E ) )  
H = cos-' 

min(R, G :  E )  
R + G + B  

S = l -  

R, G, and B represent the red, green, and blue components 
of the pixels in Eqs. (7) and (8). 

TABLE I1 
COEFFICIENTS USED IN THE FVERGY I:UNCTII)N 

I CDemCient I value 

0 2 

Together the total energy related to pixel intensity, hue, 
and saturation is defined as 

c = CI + W " S ,  (9) 

in which $ is a parameter used to determine the contribu- 
tion of the hue and saturation term to 6. The method of 
[I31 used an autotuning procedure to determine a suitable 
value for $ and other parameters. We will use static 
parameter values summarized in Table E. 

To increase the accuracy of the mapping, we apply two 
edge-detection (Sobel) filters to the source and destination 
images. These two filters create horizontal and vertical 
edge images in both the source and destination images at 
the finest level d. The horizontal and vertical edge images 
are denoted by edge!:;",' and edge!:'.;"), respectively. We 
generate multiresolution hierarchies from edge!:;;) and 
edge!d'u) by averaging the value of the pixels from the 
filter at level I + I, giving 

t % J )  

edge(l.hl - (L+l.bl (I+, h )  
( I . j )  - 4(edQe,, , .zj)  +edge(,&+,) + 

(If1.h) ( i + l . A )  edge(,<+i.2j) + &%i+l,2j+J (10) 

(a) I = 8 

(h) I = 3 

(C) I = 2 

(d) I = 1 

Fig. 1. Grkinal image and resultinp hicmchies after applying C W  
'Rom tap to hottom: I = 8 . 3 . 2 , i :  170m nght to i d :  = 0, i , 2 , 3 .  

for the horizontal and vertical filters respectively at level I 
(1 5 1 < d).  The edge hierarchies should not be thought 
of as structural elements, but rather as spatial derivatives 
that give us variation in intensities, as this is likely to be 
a persistent feature in source and destination images. 

The edge distance between the two points at each level 
of the hierarchy is 

which is the total energy related to the edge for a source 
pixel p at ( i . j )  in the source image and candidate pixel q 
at (z " : j ' )  in the destination image. E is multiplied by $ 
because in Chapter [I41 the edge energy will be included 
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in the total energy four times (once for each CPF hierarchy 
m = 0,1,2,3).  

With the above elements, we can define the total energy 
of the match between p and q for level 1 in hierarchy m 
to be 

U = X C +  RE, (13) 

where X and 0 are constants. Again, these parameters were 
found using an autotuning procedure in [131. In 1141, we 
will list the parameter values used in our experiments. 
We want to find the mapping of a pixel that provides a 
minimum value to this energy function. 

111. WINDOW-BASED MATCHING 
We have shown in [14] how the CPFs can be used to 

match individual points in two images. On average, the 
individual mappings reflect the correct motion between 
frames, hut many points are needed for this estimate 
to be reliable. Rather than compute the energy between 
individual points, we can use a slight variation of OUT 
energy function to compute the energy between image 
regions or window in the source and destination image. 

Given a preselected window in the source image, we 
select the lowest energy window in the destination image 
as the one best representing the current state. We could 
take an exhaustive approach and compute this energy for 
every possible window in the destination image, but this 
is computationally expensive. Instead, we use the conden- 
sation algorithm to represent the conditional density of 
the window's state given image observations. Condensation 
uses factored sampling, a means of representing complex 
distributions with a set of samples. Our sample windows 
are drawn from the prior density, and our energy function 
weights each sample to alter our representation of the 
conditional density. In Section I I -A we will provide an 
overview of the condensation algorithm. Our method of 
tracking using condensation and CPFs is presented in 
Section m. Results are given in Section IV. 

In related work, the probabilistic data association filter 
(PDAF) [ 111 is used to track objects in the presence of 
occlusion, distractors, and agile motion. The method uses 
sample windows to find the hest match h an image to some 
template, perhaps a similar region in a previous frame. The 
Kalman filter is used to generate the sample windows that 
are evaluated Using the methods of homogeneous regions, 
contours, and textures to determine the closest match to 
the template. 

A. Condensarion 
The state parameter x describing our tracked object can 

be a simple representation, such as the z and y location 
of the center of the object, or more complicated as with 
B-spline curves. We will use the six terms of the velocity 
screw common to visual servoing applications: 

r = (T,,T,,T=,W,,W,,~,)~- (14) 

The velocity screw represents the velocity of the camera 
frame, composed of a linear velocity v = (Tz, Tn, Tz)r 
and angular velocity w = ( W ~ , W ~ , W ~ ) ~ .  

In many prediction strategies we assume an n-variate 
Gaussian distrihution for x .  This approach often works 
well, hut the Gaussian assumption leads to failure in a 
number of situations. For example, when the object is 
fully or partially occluded for several frames, or when 
other forms of visual clutter are present, trackers such as 
Kalman-based trackers may lose the tracked object. This 
is because a measurement unrelated to the actual object is 
prewnt and hence affects future predictions. 

Condensation is a variation of particle filtering developed 
by Isard and Blake [6] for tracking of curves amongst 
visual clutter. Condensation achieves this by representing 
the conditional density p(x1z) of the target object's state 
x given image observations z. This distribution is often 
multimodal and difficult at best to represent in closed- 
form. Instead, we can use the prior p ( x )  and measurement 
density p(z lx )  to approximate the distribution using fac- 
tored sampling, a way of representing the distrihution with 
a set of samples. Since its publication, condensation has 
been a popular approach to tracking thanks to its ability to 
represent multimodal distributions of p(xlz)  using factored 
sampling, which proves particularly useful in visual clutter. 

The state of the modeled object at a discrete time t 
is denoted x t  and the set of image features is 2,. The 
history of each of these random variables is denoted Xt = 
{ X I , .  . . , x t }  and 2, = {zl . ._ . ,  2,). An assumption is 
made that the object dynamics form a temporal Msrkov 
chain so that 

p(xtJXt-1) = p(xt1xl-l). (15) 

Therefore, object dynamics are defined hy the conditional 
density p ( ~ ~ l x ~ - ~ ) .  

The conditional density p ( z t / x t )  defines the observation 
process at time t. Because the ohservatioo density is in 
general multimodal, the state density p(x , l2 , )  is also 
non-Gaussian. To evaluate the state density over time 
without incurring excessive computational load, a factored 
sampling approach can be taken. 

In the iterative approach of the condensation algorithm, 
each weighted sample-set that represents p ( x l z )  at time 
t consists of { ( s p ) , a ~ ' , c ~ ) ) , n  = 1 , .  . . : N}. At each 
iteration, a sample SI") is chosen with probability xi"' 

The cumulative weight cy)  is the sum of all measurement 
weights TI"' up to sample n: 

$1 = 0 (17) 
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A random number T E [0,1] is generated, and sp' is 
selected by the first n for which c::'~ exceeds r. In this 
way samples carrying high probabilities may be selected 
multiple times, and those with low probabilities may not 
be selected at all. We then apply a motion model to the 
selected sample to reflect its predicted change in state f" 
the revious iteration. According to the observation model, 
7rpp is recalculated based on currect image observations. 
N must be picked appropriately for the problem space; 
a large value may give increased robustness but will he 
computationally inefficient, whereas a small value will give 
fast performance but will lead to failure more easily. 

B. Our Implernenrarion 

We will assume that ow target is static and that motion 
only occurs by moving the camera, which is mounted on a 
robotic arm end-effector. Our tracking will be constrained 
and improved by our estimated motion of the camera. 
We will propose and show experimental results for an 
observation model based on the CPFs. 

We are interested in the CPFs' ability to measure the 
quality of a match on a small image region or window. This 
is beneficial in two senses: the size of the window will be 
smaller than the entire image, and we can use the concept 
of spatial and temporal coherence to only consider a direct 
mapping of points from one window to another (i.e., we 
will not be searching for matching points, only measuring 
the quality of each match among a number of samples). 
Because we assume rigid body motion and have an estimate 
of that motion, we can exploit the motion model and say 
that a window containing the region of interest will also 
undergo this rigid motion and contain roughly the same 
data in subsequent frames. 

When representing the conditional density using factored 
sampling, it is important that the number of samples used 
he large enough to capture an accurate approximation of 
the distribution. yet small enough to minimize complexity. 
To make efficient use of the samples, it is important to 
generate relevant samples from the prior density. Con- 
densation alone does not incorporate observations in the 
transition p r ~ o r p ( x ~ l x ~ - ~ ) .  This fact can lead to creation of 
samples in low likelihood areas. Importance sampling has 
been applied to condensation via an auxiliary tracker as a 
potential remedy to this problem 171. The approach uses an 
auxiliary tracker in an attempt to generate relevant samples. 
Auxiliary trackers still require good proposal distributions 
such as the transition prior however. The unscented particle 
filter (UPF) 1271 is a hybrid of the unscented Kalman filter 
(UKF) 1281 and particle filtering that incorporates image 
observations in the transition prior. The advantage of this 
method is that the particle filter allows for multimodal 
distributions, while the UKF takes into account the most 
recent image observations. Our method uses knowledge of 
camera motion via an end-effector state description in the 
condensation framework to generate samples that will be 
useful in the tracking process. 

~n our implementation, SI"' will be a vector containing 
the sir elements Tz,Ty,T,,wz,w,; and wi of the veloc- 

ity screw common in visual seNoing applications, which 
describes end-effector velocities from one pose to another. 
The measurement weights np' are used to weight each of 
the state samples using a novel observation model defined 
in Section It-B.2. 

In the following sections, we describe our motion and 
observation models as well as define the extent of user 
input needed to initialize the tracker. Pseudocode for the 
'proposed method is shown as Fig. 2. 

I) Motion model: We apply a dynamic motion model 
to the samples to use our knowledge of predicted motion 
to enhance tracking accuracy. Our deterministic element of 
motion simply indicates a predicted motion. Others have 
used offline training or a supplemenmy tracker 171, 1291. 
There is also a stochastic element of the motion model that 
prevents samples from converging to a single state. When 
a new sample set is generated from the previous step, it is 
possible to pick a sample multiple times, meaning it carries 
a high probability. The new samples will move together 
after we apply the deterministic portion (also known as 
drijij of our motion model, but the stochastic element 
(diffusion) works to separate these samples and help avoid 
local minima. 

The drift is a product of the object's estimated motion. 
Conveniently, the tracked parameters (the velocity screw) 
directly describe the camera motion. We use the highest 
weighted sample from the previous iteration s;?: as our 
state to update all samples and multiply each element 
according to a gain matrix K to come up with the next 
predicted position for each sample: 

5:") =si?), ~ Ks;??. (19) 

If individual samples from the previous iteration are 

Given two images (source and destination) 
of size zd * ?d pixels, an initial estimate 
of the velocity screw re, and a source 
window R of size 2' 2'. where 1 < d .  we 
can generate our initial sample-set s p '  by 
sampling from N(ri ,Cz)  

fo r  all t do 
for a l l  n do 
1. Project source window vertices into 
destination image 

with SI"' to obtain sample window 
2. Apply CPF to R'I") at level, I;. where 
k < 1  
3. Compute energy El") between R and 

4. Update weight Ti"' = $ 
5. Apply motion model to sample states 

R'(") 

&) 

end for 
Acquire new destination image 

end for 

Fig. 2. Velocity SCTCW lracking algorilhm. 
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selected multiple times to serve as new samples, they 
will undergo the same drift. After applying the drift, we 
separate samples and account for the uncertainty of the 
uue distribution by letting each sample undergo a random 
walk. In our experiment, we use a Brownian motion model 
for this random walk. 

We will not estimate depth at each iteration. Rather, we 
will select the depth as a constant that corresponds to the 
depth in the source pose, which is assumed to be known. 
By creating sample windows of various scales (a result 
of our random motion), we should be able to capture the 
correct depth over time. 

We use our velocity screw estimate and source window 
vertices to come up with sample window vertices in the 
destination mage according to 

f =  J,,(u,a,z)sP), (20) 

where Jt,(u. U, z )  = 

is the image Jacobian in which X is the focal length of the 
camera. Derivations of this can be found in a number of 
references including [151- [311. We will use f = ( t ~ , . ) ~  
to represent the source window vertices and f' = f + f to 
represent the corresponding destination window velocities. 

2) Obsenmion model: We propose an observation 
model that indicates the likelihood p(z1x) of an ohserva- 
tion coming from the predicted state. Samples from the 
distribution are weighted by image observations at each 
iteration such that samples with a large weight represent 
observations with a high probability of coming from the 
predicted state. Those samples that do not gain support 
over time (i.e., brief occlusions) will eventually die out 
and the true distribution will remain. 

To compare our 2' I 2' source window with a sample 
window that is defined by our sample velocity screw and 
is a projective transformation of the first, we must compute 
the inverse uansfomiation and warp the destination window 
to also be 2' t 2'. We use bilinear interpolation to generate 
these synthetic views. Given warped sample windows, we 
can compute the energy of pixel intensity and color across 
each hierarchy m at a given level 1. A low total energy 
indicates a close matching of windows. 

The energy E is a simple function of intensity and color 
differences between windows in the source and destination 
images. We drop the previously used edge intensity term 
because in this window-based approach we sum the indi- 
vidual energy terms across the region and the variation 
in intensity becomes less meaningful in discriminating 
between windows. 

Critical-point filters are applied to a specified level in 
each window, but the full hierarchy does not need to he 
computed. The energy function is given by 

where Cj:' and C$'i,, are the intensity and hue and 
saturation terms, respectively, of the nth sample at time 
t, as defined by Eqs. (23) and (24): 

-s d ( t , j ,  ' ' m) sin ( l a  * l H d ( i r j ;  m)]))', (24) 

where i and j are the coordinates of a pixel in the image, 
and m is the hierarchy. H,, Hd, Sa, and Sd are the hue 
and saturation at ? , j >  and m in the source and destination 
windows, respectively, as defined by Eqs. (7) and (8). 

Furthermore, each term is normalized (Eqs. (25) and 
(26)) so that we have a more accurate representation of 
the term's influence when weighting the sample as in [IO]: 

c cr3.., = 
n 

The value used to weight samples should be large if the 
sample is good. The CPF energy function is minimized 
when two 'mages are alike. Therefore, we weight our 
samples as in Eq. (27): 

The energy should he zero if a window is an exact match, 
hut in practice we will look to minimize the energy. By 
definition, the weights are normalized as in Eq. (28): 

3) hiirializarion: In our experiments, we will use the 
known velocity screw we use to generate the destination 
image as the initial velocity screw r.. To generate the 
initial sample-set sp', we sample directly from a Gaussian 
distribution with mean equal to the initial velocity screw 
r% and covariance C. IV samples are generated for each 
degree of freedom Tz,Ty,Tx,uz.wv, and wz. We will 
select a template window (2' * 2') in the source image, 
where 2' < Zd and 2d equals the width of the source and 
destination images. 



IV. RESULTS 

Our experimental setup involves a PUMA 560 robotic 
arm with Sony DFW-VSOO digital camera mounted on the 
end-effector. Computation is performed on a 2.4 GHz F'C 
running uncompiled Matlab code. The camera is assumed 
to be calibrated. A source image is obtained at this point 
before the end-effector is then displaced to an offset posi- 
tion where the first destination image is obtained and the 
servoing will begin. Figure 3(a) shows our source image, 
with the manually selected 64 li 64 pixel source window 
outlined. 

We will now evaluate a simple translation of 10 nun 
in the x and -10 mm in the y directions of the robot's 
world coordinate frame. Using our estimate of the camera 
motion, we will generate n = 200 sample windows in the 
destination image that should contain similar data to that 
of the source window. 

Our first iteration is shown in Fig. 3(b) where we see 
that many samples are generated with a large variance (in 
x and y) to express some doubt in our initial prediction of 
the camera's motion between the first and second frame. 
Because we are evaluating only the simple translation nith 
no scaling, we set the variances of the i translation and 
all rotations to zero for now. These variances are only 
used with the Gaussian distribution which provides sample 
windows at the initialization step. The best match window 
is outlined in hold 

A. CPF ar different resolutions 

Figure 4 shows the energy of the two hundred 64 * 64 
pixel sample windows plotted against the error between the 
estimated pose describing each sample and the known pose 
used to generate the test images for I = 1 ,2 ,3 ,4 ,5 :  and 6.  

In each case we see that there is little visible discrimi- 
nation between the energy of samples with a small error, 
but at all levels there is a clear cutoff at about IO-nun 
error where samples energies clearly indicate a poor match. 
The low energy samples appear to have a generally linear 
and increasing behavior with increase in error. Though a 
distinctly low energy sample corresponding to a distinctly 
small error is not always evident, each of these samples 
lends suppon to multiple hypotheses of the actual camera 
pose in subsequent frames as the condensation algorithm 
takes over. We can conclude from this that tracking may 
perform as accurately at low levels of resolution which 
offers much reduced computational complexity. 

V. FUTURE WORK 

In future work, we would like to further investigate 
the abilities of our window-based matching scheme by 
presenting more complex target object motions. To this 
point, we have not shown results for translations about 
x, y. and z in the world coordinate frame, nor have 
we demonstrated the ability of the sampling method to 
accurately capture scale changes. 

Lzi? I i. i-,. .:-. . 
(a) Source window shown in hold ouilinc. 

(h) Iniiial samples and hest mach in hold outline (some ample 
windows omilrcd far clarity). 

Pig. 3. Source and dcstinaiion images with ramplcs. 

(a) 1 = 6 (h) I = 5 (C) I = 4 
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VI. CONCLUSION 

To address this flaw, we proposed a window-based 
matching method. Because we are considering rigid body 
motion and a window can be considered a rigid body, 
we can take into account neighboring energies produced 
by the CPF energy function. We only need to define a 
region of interest or window around a pan of tbe source 
image. We can then evaluate potential mappings of that 
window in subsequent frames. Furthermore, we exploit 
our knowledge of camera motion in 3D by using it in 
our motion model of the condensation algorithm. We 
can propagate the probability densities representing our 
estimate of the camera motion through a video sequence 
and reliably track the window. 

We have shown once again that condensation is a 
powerful tracking tool. The generality of the algorithm 
allows us to apply novel motion and observation models to 
our chosen state parameterization. Our choice of parame- 
terizing the rigid body motion by end-effector velocities 
allows a more meaningful description of the motion of 
the target. The limitations imposed on motion by the 
robotic a m  allow us to generate samples that will not he 
wasted and eliminates tbe need for an auxiliary tracker. The 
observation model allows tracking of more complex and 
a priori unknown objects with minimal user initialization. 
The measurement also performs similarly at coarse and 
fine resolutions allowing for fast running implementations. 
Finally, the redundancy inherent in using four hierarchies 
to contribute to an overall matching score leads to a robust 
means of discriminating between candidate samples. 
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