
Planning and Reasoning in Sensor Based Robotics

A. C. Kak, S. A. Hutchinson and K. M. Andress
Robot Vision Laboratory

School of Electrical Engineering
F'urdue University

West Lafayette, IN 47901

ABSTRACT

This paper surveys the planning and reasoning research being carried out
in the Robot Vision Lab at Purdue. In parlicular, we will describe the workings of
a new planning system called SPAR, which uses a constraint posting approach for
simultaneously fulfilling the operational, geometric and uncertainly reduction
goals, and the PSEIKI system for evidential reasoning in a rangled hierarchy. We
will also mention briefly our other relared research in high precision assembly
under forceltorque confrol and robotic manipulation with structural stereopsis for
depth perception.

1. INTRODUCTION

The aim of this article is to survey the ongoing research in the areas of plan-
ning and reasoning at the Robot Vision Lab at Purdue. In each area, only the key
concepts will be highlighted here, for more detailed information the reader will be
referred to other publications.

Our interest in planning stems from our desire to give an assembly robot the
capability to expand on its own a human supplied top-level assembly plan into a
sequence of manipulations, accompanied by appropriate sensory invocations, to
accomplish an assembly task, it being assumed that the parts to be assembled are
in random positions and orientations. The sensory invocations serve two pur-
poses: they help reduce uncertainties that may be associated with the identities
and placements of the parts: additionally, they can be used to verify the successful
termination of a particular sequence of manipulations. In addition to sensory invo-
cations, some manipulation steps may also be used for uncertainty reduction; for
example, the mere act of gripping an object with a twdingered end-effector
reduces the uncertainty in the location of the object along the direction joining the

Much of the research work done to date on planning is characterized by
unrealistic idealizations about the domain objects, the environment, and the
actions that can be execukd towards the fulfillment of the goals. The domain
objects are perceived as symbolic entities whose behavior is entirely predictable
with respect to the actions. Each action is modeled as a deterministic operation
whose consequences are predictable, too. In most of these planning procedures,
the state of the domain can bc modeled as sentences from a suitable language, and
each action as a transformation that maps a sentence into another sentence. As was
eloquently pointed out in [15], such planning, useful only as ofpine strategic plan-
ning, scrves purpose more as a theoretical exercise for studying important issues
like the frame problem, how to focus search, goal representation. etc.. than as a
tool for aculally planning, say, assembly robols. Idealizations incorporated in this
prior work on planning are tantamount to divorcing from consideration execution
time issues like our lack of knowledge of the precise location of objects in a robot
work cell, uncertainty (representable by an appropriate formalism using some
form of confidence numbers) about the identities of the various objects, etc., and
the need for the invocation of the available sensors and manipulations for reducing
uncertainties to a level that would keep the robot from "freezing" or "thrashing" in
its attempts to reach a goal.

In Section 2, we will describe our approach to task level planning that was
inspired by Chapman's work on the constraint posting method. [A constraint may
be viewed as a specification or a restriction on an action.] In the constraint posting
method, one secks to satisfy a goal by first examining all the actions and the con-
straints previously generated to see if the new goal can be satisfied by the addition
of a new constraint. Only if this strategy fails, is a new action added. Chapman's
planner by itself would be incapable of handling the geometric and uncenainty
caused complexities in a robot work cell. and it$ main virtue lies in the fact that it
possesses some elegant theoretical properties. such as the properly of complete-
ness which implies that if a solution to a planning problem exists the planner
would find it.

Our task planner, described in greater detail in [9]. expands upon
Chapman's constraint posting idca by the inclusion of geomebic and uncertainty
goals; such goals are unavoidable in a robot work cell since in many assembly
operations geometric constraints must be satisfied during the process of parts mat-
ing, and then there is, of course. the ever present uncertainty about the location
and orientation of parts that has to be dealt with. In Section 2, we will briefly out-
line the reasoning architecture on which our planner is based.

We will then separately in Section 3 address that component of planning
that focuses on the selection of an optimum sensor in a multi-sensor environment.
Initial reports on this work a p p w e d in [7,8]. Here we will only highlight the main
concept of sensor selection on the basis of hypothesis disambiguation by the use of
aspect graphs of objects.

In Section 4, we will take up the subject of reasoning over sensory informa-
tion and briefly review our work on PSEIKI, a production system for integrating

two fingers.

knowledge with images. Although expected to be useful for verification vision for
assembly robots. currently PSEIKI's main application is for a near-sighted robot
navigating over a network of roads. Also, PSEIKI serves as a testbed for experi-
menting with hierarchical evidential reasoning. Although, currently, the
Dempster-Shah h r y is used for he. purpose, we see no reason why one could
also not use Bayesian based formalisms, especially using the Bayes-net methodol-
ogy developed by Pearl [14]. Hierarchical reasoning owes its importance to the
general belief among researchers that we humans invoke knowledge and con-
slraints in hierarchies for the purpose of disambiguating hypotheses about the
nature and identity of sensed data. In addition, there is the issue of computational
complexity. which becomes more tractable when the sensed information and the
constraints to be invoked for the interpretation thereof are all organized along
semantically relevant hierarchies. By semantic relevance, we mean that the group-
ings organized at different scales in the sensed data should lend themselves to the
imposition of geometric and topological constraints, also organized along hierar-
chies.

PSEIKI generates initial labels for the elements of the sensed dam by a
direct geometric comparison of the data with the model information. Based on the
strengths of these comparisons, belief values are also assigned to these initial
labels. Subsequently. the belief values are revised on the basis of the consistency
of the assigned labels to neighboring data elements. Also. PSEIKI seeks to form
groupings in the sensed data by paralleling the groupings in the model informa-
tion. The initial labels assigned to data elements may be discarded if these labels
result in higher level groupings that are in conllict with the labels of other group-
ings.

Finally, in Section 5 we have pointed to our other contributions, mostly in
the areas of sensor driven manipulation and depth perception. that will have a
bearing on the intelligent work cells of the future. Our work on force/torque sens-
ing, which incorporates automatic error detection and recovery for pegin-hole
type of assembly experiments, now allows us to accomplish parts mating at toler-
ance levels of less than 0.001". Our work on structural stereopsis has led to mani-
pulation experiments with rod like objects where depth perception was generated
by the enforcement of relational constraints in a scene. Our work on the integra-
tion of CAD with manipulation was a consequence of the realization that an inter-
mediate representation was needed to connect the CAD representation on the one
hand and the representations used for vision processing. Our more recent work on
rule based stereopsis has allowed us to integrate in an opportunistic framework the
various complimentary strategies that have been developed to date for binocular
fusion.

2. SPAR: A PLANNER FOR SlhlULTANEOUS FULFILLMENT OF
OPERATIONAL, GEOMECRIC AND UNCERTAINTY GOALS

Recenlly, Chapman has presented a formal algorithm for domain indepen-
dent planning based on constraint posting [4]. His system, TWEAK, performs
nonlinear planning at a single level of abstraction. Basically, TWEAK continually
refines parual plans, atkmpting to ensure that each goal will be salistied at the
appropriate phase of plan execution. In order to ensure that a goal, g , is satisfied
in a particular world state, s. the planner must ensure that t h m is a step in the
plan which establishes g and that no step in the plan clobbers (undoes the goal) g
before state s is reached. Establishing a goal amounts lo finding an existing step I
(or inserling one) in the plan which establishes g and constraining I to occur before
s. As for dealing with the clobberers, for each action, C. that could clobber g. the
planner must ensum that C occurs after s. or that there is some step w (or one can
be added to the plan) such that C occurs before w. w occurs before s, and when-
ever C clobbers g then w reestablishes g (thus the term "white knight" to describe
such w's).

Allhough TWEAK is ideal for constructing high level task plans, i t isn't
capiblc of thr t y p c of planning r y u i r e d to construct conipletc robot manipulation
plans. The reason for this i s that the representations TWEAK uses are not nearly
powerful enough to allow for planning geometric configurations or for laking the
unccrtainties in the environment into consideration. This is because of the limita-
tions that the plans treat the domain objects as symbolic entities, and that the
effects of actions cannot be influenced by the context in which those actions are
applied. Clearly thew litnilations are too severe for even simple robot task plan-
ning. For example, the act of parts mating will ceminly be affected by the way in
which the manipulator grasps the object to he mated, and is thcrefore conwxt
dependent. Furlhermore, in order to deal with the uncertainties in the environ-
ment, we muat increaw the scope of the planning to include the geometric entities
in the world, since the unccrtainties in the environment are most often manifested
as errors in quantities which descrihe the world's geometry. for example the loca-
tions and orientations of parts in the work cell.

IEEE Catalog Number 88THO234-5 239

Even though this domain independent type of planning cannot create com-
plete robot task plans, it can be useful as a top level planner. In particular, we can
use this type of planning to derive a preliminary set of robot operations which will
be required to perform the desired task, for example, pick up a peg. insert the peg
into a hole, etc. We refer to this level of planning as operatrondplunning. and use
it as the first step in constructing robot manipulation plans. Our approach to
operational level planning is not significantly different from the approach
described by Chapman, so we will not go into the details here.

In order to extend our planning to the geometric and uncertainty levels, we
must extend the representation used for the planner’s actions to include both
geometric and uncertainty preconditions. We must also devise some way to link
the operational level plans to the geometric and uncertainty levels of planning.
For this purpose, in SPAR, which stands for Simultaneous Planner for Assembly
Robot, at the operational level of planning, plan variables are introduced which
can be constrained by the other levels of planning in order to determine how an
action is executed. The geometric and uncertainty preconditions are expressed in
terms of those variables. For example, a traditional STRIPS type action is (pickup
?Object). SPAR’s equivalent action is (pickup ?Object ?Grasp). The variable
?Grasp IS used to define the geomctric configuration which will bc uscd by the
manipulator in grasping the object. At the operational level, ?Grasp is primarily
ignored, but its presence gives that part of SPAR which handles geometric goals a
method of constraining how the pickup operation is actually performed, thus hnk-
ing distinct levels of planning.

In SPAR the preconditions for the geometric and uncertainty levels are not
simple statements (as is the case at the operational level). Instead, each has two
main components. The first is a geometric/uncertainty precondition and the
second IS an operational goal, The meaning of this pair is that the planner is to
establish the operational goal in such a way that the geometric/unceAnty goal is
satisfied. For example, one geometric precondition of the putdown action shown
in Fig. 1 is:

(?CL ?Stepid
(reachable ?Grasp ?Position)
(holding ?Object ?Grasp))

:?stepid
(pickup ?Object ?Grasp)
(Preconditions

(OP)
(gm (?C5 ?stcp-id

(unc (?C6 ?step-id

(reachable ?Grasp ?Position)
(part-location ?Object ?Position)))

(e dx (- GRIPPER-WIDTH ?object-width))
(part-location-error ?Object ?dx ?dy ?dz ?dr))))

(Add-list (holding ?Object ?Grasp))
(Delete-list (pt-location ?Object ?Position)

(part-location-error ?Object . ?OLD-ERROR)))
:?step-id

(putdown ?Object ?Position)
(Preconditions

(op
&eo (?C2 ?step-id

(uric))

(?C1 ?step-id (holding ?Object ?Grasp)))

(reachable ?Grasp ?Position)
(holding ?Object ?Grasp)))

(Add-list (part-location ?Object ?Position))
(Deletelist (holding ?Object ?Grasp)))

(assemble ?Objl ?Obj2 ?M-faces ?Transform ?M-vector)
(Preconditions

(?step-id

(op
(geo (?C2 ?step-id

(?Cl ?step-id (holding ?Objl ?Grasp)))

(member ?Grasp ?Grasp-list)
(holding ?Objl ?Grasp))

(in-position-class ?Pos2 ?Position-list)
@an-location ?Obj2 ?Pos2)))

(?C3 ?step-id

(uric))
(Add-list (assembled ?Objl ?Obj2))
(Delete-list (holding ?Obj 1 ?Grasp)))

(range-scan ?Object)
(Preconditions

(?step-id

(op (?Cl ?step-id (gripper-state open))
(?C2 ?step-id (part-location ?Object . ?Location))

(uric))
(Add-list (part-location-error ?Object 0.5 0.5 0.5 5.0))
(Delete-list (part-locatiori-error ?Object . ?Old-error)))

Fig. 1: A few of SPAR’s actions.

In order to satisfy this condition, the planner searches for an action in the
plan which achieves the goal (holding ?Object ?Grasp) and then attempts to con-
strain the execution of that action so that the condition (reachable ?Grasp ?Posi-
tion) is met. In order to determine whether or not ?Position is reachable, the con-
straint manipulation system is invoked, which in turn invokes the kinematic mu-
tines for the robot. The variables ?C2 and ?Stepid are not important in this dis-
cussion. They are instantiated by the planner when the putdown action is added to
the plan. The variable ?C2 is instantiated to a label that the planner uses to refer to
this specific precondition, and the variable ?Step-id is instantiated to the label
which the planner assigns to the putdown action.

The plans developed by SPAR are not simple, linear sequences of actions.
Instead, plans consist of.an unordered set of actions and a separate set of con-
straints on how and when those actions are to be executed. Therefore, a plan
developed by SPAR actually corresponds to a family of plans. Any specific plan
which can be derived by choosing values for the plan variables so that the con-
straints in the constraint database are satisfied constitutes an acceptable task plan.
The process of planning, then, consists of adding actions and/or constraints to the
plan (i.e. to the plan’s action list or constraint database) until the system’s goals
are satisfied by the plan.

The planner must also keep track of its progress in solving goals. To do
this, SPAR maintains three pending goal stacks (one each for operational,
geometric and uncertainty goals) and a list of goals which have already been
satisfied by the system. Initially, the pending goal stacks contain only those goals
which are entered by a human user, and the list of satisfied goals is empty. During
the planning process, any time an action is added to the plan. its preconditions are
added to the appropriate pending goal slacks. The reawn for the list of satisfied
goals is that the inaoduction of a new action into the plan could possibly undo a
previously satisfied goal. Therefore, whenever a new action is introduced into the
plan, the planner checks the satisfied goals, and any which are undone by the new
action are moved to the list of pending goals.

A great deal of the actual work done during planning is related to the addi-
tion of consmints to the plan. The planner cannot blindly add a new constraint to
the plan’s constraint set. It must first make sure that the new constraint is not
inconsistent with the current constraint set For example, in order to satisfy the
goal that an object is in a certain position on the work table, the planner cannot
simply add such a constraint to the plan. If the object is already in some position
which does not satisfy the constraint, then this new constraint would cause an
inconsistency. Determining whether or not a new constraint is consistent with the
current constraint set is done by the constraint manipulation system (CMS). If a
new constraint is inconsistent with the current constraint set, then the CMS signals
a failure IO the planner so that other options can be explored. Otherwise, the CMS
derives the new constraints on plan variables which are implied by the new
constraint Fig. 2 lists some of the constraints used in our system, along with their
meaning.

Constraints

(prior-to ?step-l ?step-2)
?step1 must be executed prior to ?step2

(reachable ?grasp ?position)
?grasp must be chosen so that ?position is reachable

(member ?item ?list)
?item must be chosen from ?list

(in-position-class ?position ?position-lisr)
?position must be an element of ?position-list

(I ?er;pr-l ? q r - 2)
?expr-1 must be 5 to ?expr-2

Fig. 2: Some of SPAR’s constraints.

The. various components of the planner, and the data sbuctures that it main-
tains. are shown in the block diagram in Fig. 3. Note that the planner does not
directly interact with the constraint database. The planner can only request the
addition of a constraint The CMS determines whether or not that constraint is
consistent with the current constraint set

There are two basic methods in SPAR for satisfying goals. The planner can
add a new action to the plan, or it can constrain the execution of some action
which is already in the plan so that it will achieve the goal. Tbe policy that SPAR
uses to choose between these options is to always awmpt to satisfy a god by
adding appropriate constraints. Only if this fails will a new action be added. The
reason for this is that it is always cheaper to constrain an action than to add an
action, bolh in the planning stage and in the execution stage. In the planning
stage, the introduction of a new action will result in the addition of its precod-
tions to the list of pending goals. Furthermore, the new step could possibly undo
previously satisfied goals.

Ensuring the satisfaction of goals proceeds in two steps: establishing the
goal and dealing with actions that can clobber the goal after it has been esta-
blished. Once a goal has been selected from the list of pending goals, the planner
looks for some action which has already been added to the plan that could possibly

240

I Constraint
Database -

I I I I '\' el

Action
Templates

U
satisfied

Goals

Goal
Stacks

Fig. 3: Block diagram of SPAR,

establish that goal. If such an action exists, then the planner instructs the CMS to
add the constraints which are necessary to ensure that the action will establish the
goal. If these constraints are consistent with the current constraint database, plan-
ning pmeeds. If not. then the planner selects an action to add to the plan (bom its
repertoire of possible actions) which can be constrained to establish the goal. The
necessary constraints on that action are then added to the constraint database.

Once a goal has been established, the planner must ensure that some other
step in the plan does not undo (clobber) the goal before the time at which it must
be satisfied. This consists of locating potential clobberers and either constraining
them to occm before. the establishing action, constraining them to occur after the
time at which the goal must be satisfied. or. adding an action which reestablishes
the goal (such that the action occurs between the clobberer and the time at which
the goal must be satisfied). The order in which these options are listed is also the
order in which they are tried. Again, adding actions to the plan is the last resort.

When dealing with uncertainty goals, there is a slight difference. If there is
no way for the planner to satisfy an uncertainty precondition, the planner does not
backtrack. Since we represent uncertainty in the world using bounded sets (e.g.
the X location of an object would be represented as X+AX), it is quite possible
that the actual e m s in the world description will be small enough that the plan
can be executed without failure. Thus, when uncertainty preconditions cannot be
satisfied, rather than scrap the current task plan, our planner makes a record of the
goals which were not able to be satisfied and the possible assembly errors that
might occur if the errors in the world description are in fact worse than those
which can be tolerated. This information can then be used to aid in error recovery
during the plan execution stage.

In addition to noting the violated uncertainty preconditions, the planner also
posts a verification procedure which will be used at execution time to determine
whether the action succeeded or failed. This is some type of sensing operation,
which is chosen based on the action and on the particular uncertainty precondition
which was left unsatisfied. For example. if the action is grasping an objecr, and
the precondition which ensures that the object is between the fingers is violated, a
simple query of the manipulator can be made, to determine whether the object is in
its grasp. SPAR associates one verilication strategy with each uncertainty precon-
dition a priori. These are generic sensing operations which define the type of
verification to be performed in terms of plan variables. At plan time, these
variables must be instantiated. For example, the width of an object is used to
determine the opening width of the gripper which would verify hat the object had
been grasped successfully.

Merely recognizing that an error has occurred is not sufficient, because there
may be a number of potential errors associated with any single uncertainty precon-
dition. For this reason. the planner not only prescribes verification strategies, but
it also associates possible errors with the possible verification results. Again. these
correspondences are enumerated a priori in (erms of plan variables, The planner
anstantiale$ these variables so that when the verification procedure is executed. the
precise e m is determined.

After the planner has established a verification procedure, it posts a recovery
plan for each of the predicted errors. This consists of determining the appropriate
values with which to instantiate generic recovery plans which have already been
developed. These plans are generally very simple, and are intended only as local
solutions to error recovery. When mrs occur that have global effects (i.e. the

- I
(a) (b)

Fig. 4: a) initial state, block is face down. b) just prior to goal of insedng peg
into block.

emf affects more than just the action which failed). Ihe system m u g "start over",
first by determining the world state using the sensory system, and then developing
new task plans to achieve the unfulfilled system goals.

2.1 An Task Planning Example

SPAR'S flow of control is best illustrated by an example. Consider the
assembly task shown in Fig. 4. The assembly goal is to have the peg inserted into
the block so that the small hole in the block is aligned with the hole in the peg's
base. The user specifies this goal by a statement of the form:

(assembled peg block ?M-surfaces ?TM ?Va)

where ?M-surfaces is instantiated to a two element list, the 6rst element being a
list of the peg's surfaces which will come into contact with the block, and the
second element being a list of the block's surfaces which will come into contact
with the peg. The variable ?Tm is instantiated to a homogeneous uansformation
matrix which represents the goal position of the peg relative to the position of the
block. The variable ?Va is instantiated to a vector which specifies the approach
for the mating operation relative to the position of the block. In other words, the
user specifies the positions of the parts relative to one another in the goal
configuration, as well as the relative locations prior to the goal.

In order to satisfy the assembly goal, SPAR examines its possible actions,
and selects the assemble action shown in Fig. 1. Of course. the assemble action
has both operational and geomeeic preconditions which must now be considered,
so the planner pushes these onto the appropriate goal stacks. This is illustrated in
Fig. 5.

OPERATIONAL GOAL STACK

GEOMETRIC GOAL STACK
nil

(C4 step2

(a step-1

(reachable grasp1 ?Position)
@art-location peg ?Position))

(member grasp-1 @gl pg2 ... PPI)
(holding peg g r a s ~ l))

(C3 step-1
(in-position-class ?Pos2 (bpl bp2 _.. bpm))
(Dart-location block ?PosZ))

UNCERTAINTY GOAL STACK
(C5 step2

(<= ?dx (- GRIPPER-WIDTH PEGWIDTH))
(part-location-em peg ?dx ?dy ?dz I&))

ACTION LIST
(Step2 (Pickup peg grasp-1))
(Step-1 (assemble peg block

((pepface) (block-face)) trans- 1 vec- 1))

Fig. 5: Goal stacks after addition of assemble action.

At this point, a word about the meaning of the preconditions is in order.
Note that in the assemble action there is a precondition of the form:

(?C3 ?Stepid
(in-position-class ?position ?Position-list)
(paa-location ?Obj2 ?position))

SPAR associates a set of stable positions with each object, where, by stable posi-
tion, we mean an orientation in which the object will rest naturally on the table. In
order to mate two objects, SPAR requires that the stationary object be in one of its
stable positions which does not have the maling featura of that object in contact
with the work table. When the planner adds the assemble action to the plan, it
instantiates the variable ?Position-list to a list of the object's stable positions which

24 1

meet this condition. Note that the list of stable positions is actually a list of
pointers to the data smctures for the stable positions.

This same kind of instantiation takes place for the precondition

(?C2 ?Stepid
(member ?Grasp ?Grasp-list)
(holding ?Objl ?Grasp))

In our system, grasping configurations specify not only the geometric
configuration which is used to gmsp the object but also the set of object features
which are obscured by the grasp. When the planner adds the assemble action, it
instantiates the variable ?Grasplist to be the set of grasping configurations which
do not obscure the mating features of the object.

Fig. 5 shows the instantiated vetsions of the preconditions. as they appear on
the goal stack. Note that the variables used to identify the preconditions, ?Cl.?C2,
and ?C3, and Le action to which the pnxonditions correspond, ?stepid, have also
been insclntiated.

The only operational goal is that the gripper be holding the peg in some
valid grasp (remember that at the operational level, the planner is not concerned
with the grasp beyond this condition). Since it is not possible to merely add a con-
straint to the plan to achieve this goal (i.e. there is no existing action in the plan
whose execution can be constrained so that it results in the manipulator holding
the peg), the planner inserts the action (pickup peg grasp-1) into the plan, with the
constraint that the pickup action must occur prior to the mating action. The
preconditions of the pickup action are then pushed onto the appropriate goal
stacks, as shown in Fig. 6. Note that when the planner adds this action, it instan-
tiates the variable ?Grasp to the label grasp-1, and that this instantiation affects all
appearances of ?Grasp on the goal stacks.

OPERATIONAL GOAL STACK
(C1 step-1-step

(holding peg ?Grasp))
GEOMETRIC GOAL STACK

(a step-1
(member ?Grasp (pgl pg2 ... pgn))
(holding peg ?Grasp))

f a stem1 . .
(in-position-class ?Pos2 (bpl bp2 ... bpm))
(padocation block ?Pos2))

UNCERTAINTY GOAL STACK
nil

(Step-1 (assemble peg block
ACTION LIST

((peg-face) (block-face)) trans-1 vec-1))

Fig. 6 Goal stacks after addition of pickup action.

The operational goal stack is now empty, and the planner tums to its
geometric goals. The top goal on the geometric goal slack, C4, is for the pickup
action, and it specifies that the manipulator configuration used to pickup the peg,
grasp-1, be physically realizable by the robot In order to satisfy this goal, the
planner first searches for some action in the plan which adds the fact (pan-location
peg ?Position). If the planner finds such an action, it attempts to constrain the exe-
cuuon of that actton so the reachable condition will be. met.

Since no such action has been added to the plan, the planner checks the ini-
ml description of the world (which is represented by a null acuon in our system)
to see. if specLfies the location of the peg. If not, the planner must invoke the sen-
sory system. Once the sensory system has determined the peg's location, the
planner attempts to add a constraint on the way in whch grasp-1 is chosen, so that
the configuration will be reachable. In order to do this, the CMS examines the
possible grasping configurations in conjunction with the position of the peg and
eliminates all configurations which can not be physically achieved by the robot.
This requires the use of the inverse kinematic solution of the robot, and checking
each of the joint angles to make sure they are within their specified limits. Pro-
vided that there are choices for grasp-1 which are reachable, the CMS adds two
constraints to the constraint database:

(reachable grasp-1 peg-locahon)
(member g a s p 1 @egg1 ... peg-gl2))

These two consminu indicate that grasp-1 must be chosen so that it is reachable
for peg-location, and grasp-I must also be chosen from the set (peg-gl ... peg-
g12). Specifically listing the plausible grasps is not stnctly necessary, but the
CMS does this in order to save time if it must later add constraints on grasp-1.
Since the C4 has now been satisfied, it is moved from the geometric goal stack to
the list of satisfied goals.

The next goal on the geometric goal stack, C2. specifies that grasp-1 must
not obscure any of the mating features of the peg. As we have menuoned earlier,
this precondition is expressed by defining the set of grasping configurations which
do not obscure the mating features. Again, the planner invokes the CMS to add an

* ~ u m n ~ y . SPAR mvokes the suumg a y s u m mly u1 the case when " p a n - l o ~ n o n ~ ldormauon 1s

hdrmg in thc imlial world SUIIC. U we did nu impose this rcs(nc~cn, thc planner would lnvoke the
sensing a y s m to satisfy pan-location g a l s even d the miual pan locaua was known and
u1ruupllau.m WSI q m d

appropriate constraint to the constraint set This time, the CMS examines the
grasping configurations which were not eliminated by adding the reachable con-
straint and eliminates all of those which are not in the set allowed by condition
C2. Note that if adding this constraint resulted in an inconsistent constraint set
(i.e. no possible grasping co&gurations remain), the planner would insen addi-
tional manipulations.

Up to this point, SPAR has been able to satisfy geometric goals merely by
adding constraints on the way in which operations are performed. In some cases,
it will not be possible to satisfy geometric goals this way, and an alternative
approach must be used. This is the case for the remaining geometric precondition,
C3, which constrains the possible positions of the block. Consider the situation
when the block is face down in the initial world state. The planner cannot add a
constraint on the block's initial position, because it is a constant value which is
defined by the initial world slate. Furlhermore, since there is no action currently in
the plan which manipulates the block, SPAR cannot constrain the execution of a
plan action to achieve the goal.

The next option that SPAR investigates is the addition of the action (put-
down block position-1) to the plan. The value of position-1 is conshained so that
no mating features of the block are in contact with the table when the block is in
this position (this constraint is guaranteed to be consistent with the constraint data-
base, since the plan variable position-l is introduced by this step, and therefore has
no other consuaints associated with it). Of course the addition of this plan step
introduces new goals. and so additional planning must be done. This planning,
however, is very similar to the planning which must be done to pick up the peg
appropriately, and so we will not bother to discuss it here. The plan steps, and the
constraint database., for these four steps of the plan are shown in Fig. 7.

Plan Steps
(plan-step4 (pickup block Grasp-2))
(plan-step3 (putdown block Position-2))
(plan-step2 (pickup peg Grasp-1))
(plan-step1

(assemble peg block ((peg-face-A) (block-face-B))
transform-1 vector-1))

(member Grasp-2 (bgl bg2 bg3 bg4 bg5 bg6 bg7))
(member Grasp-1 (pg3 pg8 pgl0 pg12))
(in-positionclass Position-2 (bpl bp4 bp5 bp6))
(reachable Grasp-2 block-position)
(reachable Grasp1 peg-position)
(prior-to plan-step4 plan-step-3)
(prior-to plan-step3 plan-step-2)
(prior-to plan-step3 plan-step-1)
(prior-to plan-step2 plan-step-1)

Constraint Database

Fig. 7: The plan steps and constraints for the assembly plan to assemble the peg
and block.

Once the operational and geometric goals have been satisfied, SPAR consid-
ers the uncertainty goals. Notice that the uncertainty precondition for grasping the
peg is that the uncertainty in the X-position of the peg must be. less than the difler-
ence in the width of the peg and the width of the manipulator opening. Clearly
this is a greatly simplified version of the actual condition which must hold, but it
will serve for this example. In its first attempt to satisfy the condition, the planner
searches through the list of ready been added to the plan
(which includes a null action state) to find an action whose
execution can be constrained such that it will limit the uncertainty in the peg's
location. There is no such action in our plan (let us assume that the initial &rip
tion of the world does not satisfy the uncertainty condition).

The next attempt is to add a sensing operation to the plan. Sensing o m -
tions are treated in the same way as manipulations. In particular, they have a set
of preconditions which must be met before they are applied (e.g. to perform a
range scan, the manipulator must be free) and an add/delete list which specifies the
sensing actions affect on the world description. The "range-scan" sensing action is
shown in Fig. 1. Obviously it is impossible to p r d c t the results of a sensing
action, so the adudelete lists merely characterize the possible reduction in uncer-
tainty for the sensing operation. For example, the part-locationem fact in the
add-list of the range-scan aclion indicates that range-scanning an ObJect will
reduce the uncertainty in the X,Y and Z locations of the pan to an amount less
than 0.5 inches, and the uncertainty in the rotation about the world Z axis to an
amount less than 5.0 degrees. If such a sensing operation can be found, it is
inserted into the plan. If not, the planner attempts to add some robot action to the
plan to reduce the uncertainty.

If SPAR cannot sufficiently reduce the uncertainty in the peg's location, it
must determine a verification strategy. In this case. the verification is to check the
location of the manipulator after operation is attempted. If its height is above the
table by more than an acceptable tolerance. then the manipulator is determined to
have collided with the object If the manipulator is at an acceptable height, a
check is made of the opening width of the gripper fingers. If it is zero (i.e. the
gripper is completely closed), then the gripper has missed the object. These condi-
tions are illustrated in Fig. 8.

Associated with each of these. verification results is a local recovery plan. If
the manipulator has collided with the object, then the torque on the wrist is meas-
ured to determine which of the two fingers is currently in contact with Use object.
This information is used to determine the direction in which the manipulator

242

n if that hypothesis were m m t . Of course we cannot expect that sensing will
always find every feature which might be present. so we assign values to each
object feature which reflect the prominence of that feature. We then evaluate the
quality of the object hypothesis by noting the prominence of the expected feahues
which were (and were not) matched.

In OUT system, we use the Dempster-Shafer @S) theory of evidence to
implement uncertainty reasoning. One advantage of this approach is the built-in
formalism for refining sets of hypotheses. We use this formalism to expand the
frame of discernment as new features are found (which then lead to more specific
object hypotheses). In order to assess the ambiguity in a hypothesis set. we use a
measure of ambiguity which is based on the e n m y measure from information
theory.

Fig. 8: Possible error conditions when the uncertainty goal is not satisfied

should move to get the object between the fingers. F i y , the manipulator is
raised, moved in the appropriate direction and the grasp is retried. If there is no
object in the gripper lingers, then the information about the position of the object
obtained from the sensory system was very bad. In this case, a local sensing
operation (often the 2D overhead camera) is applied to determine the location of
the object.

3. PLANNING SENSING STRATEGIES

In today's robotic work cells, it is not uncOmmon to find a large number of
sensors, which, in many cases, can be manipulated by the robot so that they can
be applied from arbitrary positions in the work space. This presents the system
with the problem, not only of combining information from different sensors, but
also with the problem of selecting pertinent sensing operations so that the system
does not waste time collecting information which is not directly useful. In an ear-
lier paper 171, we described an approach to sensor planning which was based on an
aspect graph representation of objects. We then extended this work in [SI to allow
the system to reason with partial evidence about the objects in the work cell.

We approach the problem of viewpoint and sensor-type selection as follows.
Once the system has a working set of hypotheses (which is initially developed
after application of an arbitrary sensing operation, say the 3-D range scanner),
candidate sensing operations are automatically proposed and evaluated with regard
to their potential effectiveness, given the current hypothesis seL This evaluation is
performed as follows. For each hypothesis in the current hypothesis set, the sys-
tem detennines the set of features that would be observed by the candidate sensing
operation if that hypothesis were correct. Using these predicted features, the sys-
tem determines the hypothesis set that would be formed if these features were
actually found by some sensing operation. The ambiguity of this predicted
hypothesis set is calculated and noted. This is repeated for each hypothesis in the
hypothesis set, and the maximum value of the ambiguities is associated with the
proposed sensing operation. When a proposed sensing operation's maximum
ambiguity is sufficiently low, that sensing operation is selected for application.

The object representation used in our system plays two key roles. First it
allows us to quantize the space of sensing operations. This is a result of the fact
that the representation groups together sets of object features which can be viewed
from a single viewpoint (such a set of features is referred to as an arpecr). This
allows us to group together all viewpoints which can observe the same aspect.
Second, the representation allows us to easily determine the featum of an object
which will be obswved by a particular sensor from a particular viewpoint relative
to the object. This is done by determining which aspect of the object will be
observed from the particular viewpoint, and then looking up the object fealures
which are associated with that aspect

Generating, and subsequently refining, hypothesis sets begins by matching
sensed features to model features, and then assessing the quality of those matches.
In our system, a sensed feature can be matched to any of the model features which
have attributes that are similar to those of the sensed feature. The degree of simi-
larity will determine the quality of the match. In order to reason about the
hypotheses derived from these matches, the system must be able to represent its
relative belief in the various feature matches. Furthermore, since an object
hypothesis will correspond to a number of feature matches, the syslem must be
able to combine the beliefs in the individual feature matches to assess its belief in
an object hypothesis.

When evaluating belief in an object hypothesis, feature matches are not the
only source of information. We also determine the relationships between sensed
features and compare these to the relationships between the corresponding model
features. As their similarity increases, so does the confidence in the corresponding
hypothesis. This allows us to accumulate evidence which supports a hypothesis
based on its relational consistency. It also allows us to discount hypotheses in
which the relationships between sensed features are inconsistent with the
corresponding model relationships, thus pruning the number of hypotheses which
the system must maintain.

The final source of evidence we consider evaluates the difference between
the expected and actual sensed data. Once an object hypothesis has been esta-
blished, we can derive a pose transformation that expresses the
positiodorientation of the object if that hypothesis is correct By using the pose
transformation in conjunction with information about the sensing operation that
was performed, we can determine what "should have been observed" by the sensor

4. PSEIKI: A HIERARCHICAL SPATIAL REASONING SYSTEM

We are also investigating how geometric reasoning can be. used to achieve
expecktion-driven vision by merging image data with information contained in a
graphic depiction of the expected scene. PSEIKI. the testbed used in this investi-
gation, p e r f m s expectation-driven vision by integrating information contained in
a graphic depiction of the expected scene with image data. The acronym PSEIKI
stands for a Production System Environment for Integrating Knowledge with
Images. An in-depth description of PSEIKI can be found in [l].

We are currently focusing ow attention on the integration of global map
information with vision data to aid navigation for an autonomous mobile robot
[lo]. The robot's task is to traverse a known network of sidewalks using sensor
data to provide position information. For various reasons, the robot's position and
orientation never is known with certainty. Therefore, for the purpose of self-
location, the robot must auempt to integrate its knowledge of the sidewalk map
with sensed images. PSEIKI is used to integrate the knowledge from these two
s o m by matching elements detected in images (image elements) with elements
from a graphic rendition of the expected scene (model elements). Once the
correspondence between the image elements and model elements is established. it
is then possible to use camera calibration information to reduce the amount of
uncertainty in the robot's position and orientation.

The match information generated by PSEIKl is expessed by labeling the
image elements with the identities of the corresponding model elements: a belief
value indicating the confidence of the match found is a w h e d to each label. The
Dempster-Shafer theory of evidence is used to reason about the certainty of the
matches ma& and to OverCOme the problems of matching perturbed data. To
overcome the exponential explosion usually associated with the Dempster-Shafex
formalism, a computationally efficient variation of Dempster's rule is used to com-
bine evidence about the labels. This variation of Dempster's rule also allows the
reasoning process to exploit the hierarchical nature of the integration task. The
belief value associated with the top level of the hierarchy is considered to be the
conlidence in the entire matching process: if thii belief value does not exceed a
threshold, the matches found are rejected.

As a simple illuslration of PSEIKI's integration of image and expected
scene information in the context of self-location of a mobile robot, consider Fig. 9.

(a) @) (C)

Fig, 9: This figure shows a simple example of images typical of those used by
PSEIKI. The image in panel (a) shows an expected scene with edges
labeled. Panel (b) shows the input to PSEIKI produced by an edge-
bascd preprocessor. The final output of PSEIKI is shown in panel (c):
the edges from panel (a) detected in the image in panel (b), along with
their associated belief values are shown.

If panel (a) of this figure is a graphic rendition of an expected scene and panel @)
a depiction of the edges found in the vision data collected for the scene, then
PSEIKI would produce an output similar to the one in panel (c). where the labels
aaached to some of the edges and their corresponding belief values are shown.
For example. the label 'right3596' means that PSEIKI has found the expected-
scene edge labeled 'right' in panel (a) to be compatible with the lower right edge
in panel (b) with a belief of 35%. In this case. the rest of the belief, 65%. would
be apportioned either to this particular label being incorrect or to the system pro-
fessing ignorance on the subject of assigning a label to this edge in the vision data.
The reader might note that the edge labeled 'top:38%' actually corresponds to two
edge segments in panel 0). This merger of nearly compatible edges in the vision
data is one consequence of various rests PSEIKI makes for inlemal geometric Con-
sistencies in the vision data.

PSEIKI is not limited to integrating edge-information from the two data
sources : it is also able to match data elements at higher levels of abslmction. For
example, if a region-based preprocessor is used to generate PSEIKI's input data,

243

then PSEIKI would match the regions found in the image with the regions
predicted in the expected scene. In this case, PSEIKI would also exploit edge-
level information by treating the boundaries between regions as edges and match-
ing them with edges in the expected scene. PSEIKI is also able to group low-level
image elements into higher level constructs by using perceptual organization prin-
ciples and by noting which elements have compatible labels. For example, if
PSEIKI’s low-level preprocessor provides only edge information to the system ,
then PSEIKI would group compatibly labeled, adjacent edges into regions. Once
these higher level image elements are formed, PSEIKI can then match them with
high-level model elements. The following list enumerates the levels of data
abstraction present in PSEIKI and describes the data residing on each level.

Scenes The entire Scene (expected or observed) is represented on this
level of the hierarchy. The scene is defined as the union of all
elements on the object level. This level provides a way of label-
ing multiple objects that otherwise would not be possible.

Each element on this level corresponds to a distinct physical
object. An object is defined by its boundary faces.

The elements on this level represent the polygonal faces that
form boundary representations of the observable portions of
objects. In image data, a face corresponds to a region in the
image. A face is defined by the edges which form its border.

These elements represent edges detected in the sensor data; they
are used to form the boundaries of the faces in the hierarchy.
The endpoints of these elements are defined by vertices.

The vertex-elements are the endpoints of the edges. The loca-
tion of the vertices can be expressed either in world or image
coordinates.

Initial matches between image data and model data are formed by noting
geometric relationships between image elements and model elements. For exam-
ple, an image-edge will be matched with the model-edge that comes the closest (in
some sense) to lying along the same line, To find the match partner of an image-
edge, PSEW measws the degree of collineario between the edge and all the
model-edges with which it could possibly match; it then chooses as the match
partner the model-edge with which the image-edge is most collinear. The belief of
the match made then is set to the degree of collinearity between the two edges.

After the initial matches are made, geometric constraints between image e le
men& are used to update the belief in the matches found. In general, two metrics
are required to measure the degree to which image-elements meet these con-
straints. The two metrics must provide measures of compatibiliry and incomputi-
Miry between image-elements. The compatibility metric provides evidence that
an element’s label is correct conversely, the incompatibility metric provides evi-
dence that an element’s label is incorrect. For example, two edges that have the
been matched with the same model-edge should lie approxlmately along the same
h e . Thus the compatibility metric for edge-elements with the same label,
collinearity(edge1, edge2). measures the degree to which the two edges lie along
the same line. This collinearity metric is closely related to the measure used to
establish initial edge labels, but it is not identical to that measure. The edge-level
incompatibility metric, noncollinearity(edge1, edgel). measures the degree to
which two edges do not lie along the same line. These two metrics are used to
update the belief in an edge’s label in the following manner: If we assume that
two edges, E, and b, both have label E,, then the confirmatory evidence that E2
would provide for El’s label would be defined to be

Objects

Faces

Edges

Vertices

COIIfflearity@,, Ez) X behf&@A)

Likewise. the disconfirmatory evidence in El’s label provided by edge E2 would
be

noncollinearity@,, x belief&,)

where belief&d represents the amount of belief in edge b’s label, EA.
If two elements are matched with different model elements, a rigid motion

transform is applied to one of them before the (m)compatibility metrics are
applied. This transformation has the effect of enforcing relational constraints
between the two data elements. For example, if image-edges El and E3 are
thought to correspond to model-edges E, and E,, respectively, then the measure
of compatibility between E, and & would be defined as

compatibility(E,, E3) = collinearity@,, TL+BA(E3))

where T,,, is the rigid motion transformation that makes model-edge EB col-
linear with model edge EA. In other words,

COlliearity(E~. TE~*(EB)) = 1.0

Applications of transformations in this manner allows us to implement the notion
that for edges E, and E, to be compatible, the same geomehic relationship should
exist between them that exists between model-edges EA and EB. if E, is the label
given to El and E,, the label given to b.

The compatibility and incompaubility metrics must. of necessity, be dif-
ferent at different levels of abstractions. At the face level, for example, a metric
that is used to compute the incompatibility between two faces on the data panel

meaSures the overlap between them normalized by the average area of the two
faces.

A most important sspect of evidential reasoning in PSEIKI is the propaga-
tion of beliefs up and down the abstraction hierarchy. The propagation of belief
values towards the higher abstraction levels is based on the rationale that any evi-
dence confirming a data element’s label should also provide evidence that its
parent’s label is correct. Propagation of beliefs to lower levels is based on the
intuitive idea that if, say, a face is mislabeled, then all its constituent edges are also
most likely mislabeled.

PSEIKI is implemented as a blackboard expert system [12,13], in OPS83
[51. The blackboard architecture was chosen because the success of blackboard
systems in other problem domains has proven the power of the paradigm, particu-
larly in domains that can be broken down hierarchically. In its present
configuration, the system contains two panels, each with five levels. Each panel
holds the data from a single data source and the abshaction hierarchies derived
from that data. One panel, called the model panel, holds the expected scene infor-
mation and the other panel, called the imuge panel, contains image data. Each
level in the blackboard corresponds to one of the levels of data abstraction dis-
cussed earlier. Thus each blackboard panel contains the following levels to
represent data: scenes, objects, faces, edges and vedces. At a given level, each
element, except for those of type vertex, is defined by a finite collection of ele-
ments at the lower level. Fig. 10 shows PSEIKI’s current architecture.

Model Panel Data Panel

?J
Fig. 1 0 The current configuration of PSEIKI’s architecture.

PSEIKI has four main knowledge sources (KS’s) that it uses to establish
correspondences between elements from independent data sources: the lubeler,
grouper, spliffer, and merger. The grouper KS determines which image elements
in the lower levels of the hierarchy should be grouped to form an image element
on a higher level. The merger KS also groups elements; however, its job is to
merge multiple elements on a single level of the blackboard into an element at the
same level. The splitter KS performs the opposite action of the merger KS; it
splits a single element on the blackboard into multiple smaller elements. The
labeler KS has the responsibility of establishing correspondences between image
elements and model elements and to accumulate evidence on the validity of those
labels. Each of these KSs can operate on any level of the blackboard by using
level specific actions.

Input data is deposited directly onto the blackboard by the low-level systems
that generate it. The type of processing performed by the low-level systems deter-
mines the levels on which data is deposited. Model data is deposited onto aU lev-
els of the blackboard because perfect knowledge of the expected scene is always
available. If an edge-based prepmessor is used to produce data for PSEIKI, then
the data generated by the vision system is deposlted onto the vertex and edge lev-
els of the data panel. However if a region-based system is used, then the input
data also is deposited onto the face level of the blackboard. (In Fig. 10, the dashed
line going from the low-level vision system to the face level of the data panel indi-
cates that only some types of systems deposit data on that level.)

Figure 11 shows the results of PSEIKI’s processmg when applied to an
image typical of what would be seen by a sidewalk-navigating mobile robot with
downward-slanted cameras. Panel (a) of this figure shows the edges representing
the expected scene and panel @) shows the actual image being pmessed. Note
that the expected scene and the observed image are significantly misregistered.
Two of the major edges in the expected scene, in the lower left, are missing
entirely in the observed image. The reader should also note the presence of
shadow edges in panel (b). The symbolic input to PSEW. produced by an edge-
based prepmessor, is shown in panel (c).

The final result produced by PSEIKI consists of labels with assoctated belief
values attached to entities at the edge level and higher levels on the image panel
on the blackboard. For example, in panels (a) - (c). if the element at the scene
level (the highest blackboard level) with maximum belief is selected and its com-
ponent edges are displayed, panel (d) results. This figure shows the edges, thei
labels, and associated belief values for the scene interpretation that PSEIKI found

244

(a) expected scene (b) input image

bot. 53Z \
(c) output of the preprocessor (d) output of PSEW

Fig. 11: This figure shows an example of PSEIKI's processing in a mobile
robotic context.The expected scene is shown in panel (a); it shows the
edges expected in the image and their labels. Panel (b) shows the image
input to the low-level preprocessor; panel (c) shows the preprocessor's
output. PSEIKl's output is shown in panel (d); the detected edges, their
labels and associated belief values are displayed there.

most believable. The percentage value associated with a label indicates PSEIKI's
belief in the correctness of the label. For example, PSEIKI has a belief of 0.53
that the lower right edge can be matched with the right-bot" edge of the
expected scene. This amount of belief indicates that, at a belief level of 0.47,
PSEIKI believes that the edges were mismatched or that the system is ignorant
about the validity of the match made.

5. OTHER RELEVANT RVL CONTRIBUTIONS

For a complete system, task planning must be coupled to what might be
called sensor guided execution units. For example, if at execution time the task
planner calls for one part to be inserted into another part, the task planner should
then temporarily hand over control to a parts mating process with its own built-in
error detection and recovery procedures. In this manner, a clean separation can be
achieved between the more global task-level considerations embedded in the task
planner, and the more local fine-motion strategies required for successful assem-
bly, especially when the assembly must be canied out under tight tolerance condi-
tions.

In [6], we demonstrated an implementation of force/torque control in which
the assembly steps are decomposed into various phases, each phase being charac-
terized by a unique error detection and recovery strategy; also, each phase consists
of either a guarded move, in which the robot is servoed with respect to forces
along the direction of motion of the end-effector. or a compliant move, in which
the servoing is with respect to forces perpendicular to the direction of motion.
Automatic error detection and recovery is particularly important to fomjtorque
guided manipulation because Korce/torque sensors are highly susceptible to
mechanical vibrarions, inenial effects, and elecuically induced dietonions. To give
the reader an idea of what we mean by e m r detection and recovery. we will con-
sider the compliant move that is supposed to "drag" the peg over the surface con-
taining the hole until the bottom face of the peg is directly over the hole; one of the
termination conditions for this move is the zeroing of the force component along
the axis of the hole. During the compliant move, it will be all too easy to receive a
false indication of this termination condition due to some noise or anifactud con-
dition associated with the force/torque sensor. Therefore, every sensed termination
condition must be checked for the possibility of error, and, if an error is detected. a
recovery plan instituted. In this case, the error can be dclected by the unsuccessful
execution of a small guarded move U) a point slighlly below the height of the sur-
face containing the hole. If an e m r is detected, the recovery could consist of
recalculation, of the basis of measured torques, OK the direction of travel of the peg
with respect to the hole.

In [l l l , we discussed an integrated system for coupling CAD with robotic
manipulation. We pointed out that for this purpose we needed a representation of
objects that would be intermediate between CAD representations on the one hand

and those used for vision processing on the other; we called these intermediate
representations sensor-tuned representations. A sensor-wned representation is a
data structure designed for the specific purpose of facilitating the recognition of
objects and the determination of their positions and orientations from data p m
vided by a given sensor or sensors. Therefore, by definition, a sensor-tuned
representation for structured-light 3-D vision sensor is different from that for a 2-
D photometric sensor or a tactile sensor. The sensor-tuned representations shown
in [I l l were for structured-light 3-D vision data and for object recognition
schemes implemented in Prolog.

It is also possible to use vision as input for a sensor-guided-motion-
execution-unit. In [2,3], we showed how shuctural sterropsis could be used for
the depth perception and manipulation of rod Wre objects. In structural stereopsis,
a scene is characterized by a set of primitives and their interrelationships. and
binocular fusion for the purpose of depth perception is carried out by matching
primitives under the constraints generated by their interrelationships. In our work,
we used parametric structural descriptions of scenes. In such descriptions a
parameter is used to measure the strength with which a set of primitives are parti-
cipating in a relationship. In OUT more recent work f161, we have carried out a rule
based implementation of binocular stereopsis. The rule based system r e p " an
integration of the Marr-Poggio-Grimson technique with the matching of higher
level percepts. It is now realized that the Marr-Poggio-Grimson method all by
itselK is incapable of generating range information that would be dense enough to
be useful for robotic manipulation.

REFERENCES

K. M. Andress and A. C. Kak, "Evidence Accumulation and Flow of Con-
trol in a Hierarchical Spatial Reasoning System," The AI Magazine Vol. 9,
No. 2, pp. 75-94, 1988. [A more up to date exposition can be found in: K.
M. Andress and A. C. Kak, "The PSEIKI report - Version 2," School of
Electrical Engineering, Purdue University, Technical Report TR-EE 88-9.
19881.

K. L. Boyer and A. C. Kak, "Structural Stereopsis for 3-D Vision," IEEE
Trans. on PAMI Vol. PAMI-10, pp. 144-166. March 1988.

K. L. Boyer, A. J. Vayda and A. C. Kak, "Robotic Manipulation Experi-
ments Using Structural Stempsis for 3-D Vision." IEEE Expert, pp. 73-94.
August 1986.

D. Chapman, "Planning for Conjunctive Goals." Artificial Infelligence, Vol.

C. L. Forgy, "The OPS83 User's Manual, System Version 2.2," Production
Systems Technologies, Inc. 1986.

S. N. Gottschlich and A. C. Kak, "A Dynamic Approach to High Precision
Pam Mating," Proc. of the IEEE Int'l Con& on Robotics and Automaion,
pp. 124-1253. 1988. [An updated version of this paper will appear in a
forthcoming issue of IEEE Trans. on Systems, Man and Cybernetics I.
S. A. Hutchinson. R. L. Cromwell and A. C. Kak, "Planning Sensing Stra-
tegies in a Robot Work Cell with Multi-Sensor Capabilities," Proc. of the
IEEE Int'l Cog. on Robotics and Automation. pp. 1068-1075,1988.

S. A. Hutchinson and A. C. Kak, "Applying Uncertain Reasoning to Plan-
ning Sensing Strategies in a Robot Work Cell with Multi-Sensor Capabili-
ties," to appear: Proc. of the IEEE Symposium on Intelligent Control, 1988.

S . A. Hutchinson and A. C. Kak. "A Task Planner for Simultaneous
Fulfillment of Operational, Geometric and Uncertainty Goals," School of
Electrical Engineering. Purdue University, Technical Report TR-EE 8846.
September 1988.

32, NO. 3, pp. 333-378, July 1987.

[lo] A. C. Kak, B. A. Roberts, K. M. Andress and R. L. Cromwell, "Experiments
in the Integration of World Knowledge with Sensory Information for Mobile
Robots," Proc. of the IEEE Int. Cot$ Robotics and Aufomation. Vol 2., pp.

111 A. C. Kak, A. J. Vayda, R. L. Cromwell, W. Y. Kim and C. H. Chen,
"Knowledge-Based Robotics," Inl'l Journal of Robotics Research, Vol. 26,
No. 5, pp. 707-734, 1988.

121 P. H. Nii, "Blackboard Systems: The Blackboard Model of Problem Solving
and the Evolution of (he Blackboard Archilectures," The AI Magazine, pp.
38-53, Summer 1986.

131 P. H. Nii, "Blackboard Systems from a Knowledge Engineering Perspec-
tive," The AI Magazine, pp. 82-106, Fall 1986.

[14] J. Pearl, "Fusion, Propagation, and Structuring in Bayesian Networks,"
Artificial Intelligence, Vol. 29, pp. 241-288, 1986.

[I51 W. Swartout. ed., "Workshop Report: DARPA Santa Cruz Workshop on
Planning," The AI Magazine, pp. 115-130, Summer 1988.

[I61 S. Tanaka and A. C. Kak, "A Rule-Based Approach to Binocular
Stereopsis." School of Electrical Engineering, Purdue University, Technical
Report TR-EE 88-33, July 1988.

734-741.1987.

245

