
Toward an Exact Incremental Geometric Robot Motion Planner*

Michael Barbehennt a n d S e t h Hutchinson*
Artificial Intelligence Group

The Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

Urbana, IL 61801

.Abstract
In this paper we introduce a new class of geometric robot

motion planning problems that we call incremental problems.
W e also introduce the concept of incremental algorithms to
solve this class of problems. As a n example, we describe an
incremental critical curve based exact cell decomposition al-
gorithm for a line segment robot moving freely amidst polpg-
onal obstacles. In the example, after computing a n initial
representation of the robot’s free space, the algorithm main-
tains the representation as obstacles are moved between plan-
ning problems. The co:it t o maintain the representation is
expected to be small relative t o the cost of i ts initial con-
struction.

1 INTRODUCTION
A geometric robot motion planner computes a collision-

free trajectory between two given robot configurations. If
the environment is not &,tic, then it can change either dur-
ing the planning process, during plan execution, or between
planning problems. Current research in geometric robot
motion planning with moving obstacles, or with movable ob-
jects, is either heuristic (e.g. [13, 18, 9, 25, 11, 15]), does not
scale to realistic problems (e.g. [31, 35, 12]), or is only prob-
abilistically complete (e.g. [7, 61). In this paper, we discuss
a solution to a new clasri of geometric robot motion planning
problems that promises to extend to the more general prob-
lems of moving and movable obstacles in a way that scales
and does not rely on heuristics.

We call the new class of problems incremental problems.
A problem is incremental if its input undergoes incremental
change over time. An example of incremental change is a
perturbation in the position of some obstacles in the envi-
ronment between planning problems. Such problems arise
frequently in robotics, but t o date, there has been little re-
search in this area. Examples of such changes occur when
designing the layout of a factory floor, or reconfiguring a
floor plan given new equipment.

A primary attribute of an incremental problem is that it
is generally inexpensive to update a solution to an initial

problem in order to solve another, slightly modified, prob-
lem. Thus incremental problems are an especially impor-
tant class of problems when it is expensive to solve an initial
problem, since this cost can be amortized over many, similar
problems.

The class of incremental problems may lead to the devel-
opment of practical solutions to the more difficult problems
of moving and movable obstacles. Problems involving mov-
ing obstacles can be viewed as continuous versions of incre-
mental problems, and problems with movable objects can
be viewed as a combination of task-level and incremental
problems.

Currently, there are no efficient algorithms for incremen-
tally maintaining representations of configuration space sub-
ject t o environmental changes. Currently, the only solution
is to discard the old representation of the robot’s configu-
ration space and construct a new one, despite the fact that
the new representation might differ only slightly from the
original.

In this paper, we focus on the particular case of a line seg-
ment moving amidst polygonal obstacles, which are moved
incrementally between planning problems. We call such
problems “incrementally changing environments.” A key
contribution here is maintaining a representation of the
robot’s configuration space, rather than constructing the
joint configuration space (that represents the simultaneous
positions of all obstacles that might be moved). In general,
we expect the changes to the environment to affect very lit-
tle of the configuration space. Therefore our incremental
algorithm should be very efficient on average.

In this paper, we assume a critical curve based exact cell
decomposition as the underlying representation of configu-
ration space. This choice reflects, in part, our desire to un-
derstand the deep issues of incremental maintainance, since
this decomposition captures nicely the relationship between
changes in the environment and changes in the configuration
space. This choice of representation also reflects, in part, our
desire for an efficient incremental algorithm. In other words,
we are willing to pay a high initial cost, if the expected in-
cremental cost to maintain the representation is low. There
are many other representations that might be more efficient;
but this is a good choice for a first study.

*This work was supported by the National Science Founda-
tion under grant number NSF-IRI-9110270.

‘Department of Computer Science
$Department of Electrical and Computer Engineering. We note that the geometric robot motion planning litera-

39
0-8186-7108-4/95 $4.00 0 1995 IEEE

ture has primarily focused on planning for single problems,
and not on reuse or modification of the costly representation.
The geometric robot motion planning literature that does
mention reusing the representation (e.g. [4]), mentions only
the relative speed up of performing just the graph search
without the additional cost of constructing the representa-
tion. In general, the time to construct the representation is
only slightly worse than the size of the representation.

To the best of our knowledge, computing the all-pairs
shortest paths trees has not been proposed in the geometric
robot motion planning literature. This is probably because
research has been focused on single planning problems, and
because the cost ,of search is negligible relative to the cost of
constructing a representation of Cfree. In the case of incre-
mentally changing environments, the cost to incrementally
maintain the representation of CfTee is small. Therefore, the
relative cost of search is increased, and it becomes important
to reduce the search cost.

The remainder of this paper is organized as follows. In
Section 2 we review the critical curve based exact cell de-
composition of free space for a line segment translating and
rotating amidst static polygonal obstacles (originally pro-
posed by Schwartz and Sharir [29]). Section 3 discusses the
need for a more explicit representation, and presents a plane
sweep algorithm to compute this representation. Then, in
Section 4, we briefly discuss how the explicit representation
can be incrementally maintained. Section 5 gives our con-
clusions.

2 A STATIC ALGORITHM
This section reviews the representation used by the

Schwartz and Sharir algorithm [29] for computing a collision-
free trajectory for a line segment amidst polygons in the
plane.' This is not the only exact representation of free
space (e.g. [22, 341); but we feel it is the best suited for a
first examination of the problem of incrementally changing
environments. The method of representation presented in
this section can be generalized in a straight-forward man-
ner to arbitrary polygonal robots moving amidst polygonal
obstacles. In this case there are more types of contacts to
consider [29]. The method can also be extended to other
robots, as long as the robot and the obstacles have algebraic
descriptions i.e. they are composed of algebraic surfaces of
bounded complexity. This was done in [30] by means of
Collins cylindrical algebraic decomposition.

The robot, which we shall denote by A, is a line segment
of length L, with endpoints P and Q. A configuration of A
can be represented by the position X = (z,y) of P , and
the orientation B of A, which is the direction PQ with re-
spect to the world coordinate frame. Any configuration for
which A intersects some obstacle, Bi, belongs to the config-
uration space obstacle CBi. The union of all CBi is denoted
by CL?. The complement of CB is the space of all collision-
free configurations which we denote by Cf,,,. Given two
configurations, ginit and qgoal E C f r e e , the geometric robot

'The notation follows [20].

motion planner returns a function T : [O , l] -+ Cfpee such
that r(0) =: qinit and ~ (1) = qgoal.

2.1 Critical Curves and Noncritical Regions

In an exact cell decomposition for geometric robot mo-
tion planning, Cfree is completely decomposed into a finite
set of cells. In a critical curve based decomposition, the cells
capture the interesting contacts between the robot and the
environment. Since Cf,,, is quite complex, the cells are gen-
erated by first projecting Cfree onto R2, and then lifting the
resultant regions into R2 x 5''.

The bourtdary of CB is a finite set of ruled surfaces. Each
surface is characterized by the set of environmental features
in contact with the robot. The elementary contacts are of
two types: (A) an obstacle vertex in contact with the inte-
rior of A, and (B) a vertex of A in contact with an obstacle
edge. When projected onto the xy-plane, these surfaces yield
critical curves that intersect at critical points. The critical
curves divide the plane into a finite set of noncritical regions.
The noncritical regions are maximal open connected subsets
of R2 such that the set of elementary contacts is invariant
over the region. We exclude from the definition of noncriti-
cal regions any region contained within an obstacle. In other
words, a critical curve is the locus of robot positions (the 2, y
coordinates of endpoint P) such that as P crosses the crit-
ical curve, the set of possible elementary contacts changes.
There are six types of critical curves, which are described
in detail in [29, 201. Curves of types 1,2,4, and 5 are line
segments, type 3 are circular arcs, and type 6 are positive
portions of conchoids of Nichomedes.

2.2 Cell1 Formation

Each noncritical region specifies an open set of positions
X = (2 , ~) of P such that some orientation 8 exists where
the robot configuration q = (X , 8) of A is in Cf,.,,. We
call such orilentations free orientations. These orientations
determine legal ranges in the cylinder above the noncritical
region, and thus define a noncritical cell in that cylinder.

The following is standard terminology for describing cells
in the deconiposition of C f r e e . Let F (X) = (6' : (X,O) E
Cf,,,} be the set of all free orientations of A at the noncrit-
ical position X . The extremum of each interval, where d
contacts some obstacle, is called a limit orientation of A at
X . If the obstacles are in general position, then the limit
orientation corresponds to a unique obstacle feature, called
the stop. Define o (X) as the set of feature pairs (SI , s2)

corresponding to the intervals in F (X) .
We can now define a cell in the cylinder above the noncrit-

ical region R as follows. Let R be a noncritical region and
(~ 1 ~ ~ 2) E .(IC), where X E R. Then ce l l (R,s l , s~) consists
of all configurations q = (X , e) , such that X E R and 0 is in
the interval d!etermined by X,s1, and s2. The set of cells
as defined above partition Cf,.,, in the sense that the cells
are disjoint, and the closure of their union is equal to the
closure of Cfree.

40

2.3 The Connectivity Graph
Having described an exact cell decomposition of C j V e e , we

now describe the construction of the associated connectivity
graph, which aids in the search for a collision-free trajectory
of the robot. We denote the connectivity graph by G(V, E) ,
where V is the set of vertices corresponding to the cells of
the decomposition, and E is the set of edges such that two
vertices are connected if and only if the corresponding cells
are adjacent. Two cells are adjacent if and only if the base
regions are adjacent and the set of orientations overlap ev-
erywhere on the common boundary. Given G, planning con-
sists of (1) determining the vertices uinit and vgoQl associated
with cells tcinit and ngOQ1 containing, respectively, the initial
and goal configurations ginit and qgoal, (2) searching G for a
path from vi,,it to vgoQl, (3) extracting a trajectory from the
corresponding sequence of cells.

The Schwartz and Sharir algorithm does not explicitly
construct the noncritical regions and the cells above them
[29]. Instead the algorithm associates with each curve a
“left” region and a “right” region, and builds a connectivity
graph based on these characterizations. Thus a region occurs
as many times in the connectivity graph as there are curve
segments on its boun.dary. firthermore, the connectivity
graph is not constructed in advance, rather it is generated
as a by-product of the search process.

3 AN EXPLICIT REPRESENTAION
In Section 2, we described the noncritical regions in the

plane that are the projections of the noncritical cells in
the decomposition of Cf,,, for a line segment robot. The
Schwartz and Sharir algorithm does not create an explicit
representation of the regions [29]. Instead, their algorithm
performs U(n4) intersection tests among the U(n2) critical
curves, where n is the number of obstacle edges and vertices.
In their algorithm, e.ach curve segment determines two re-
gions, so there are O(n4) noncritical regions, which produce
O(n5) cells in the connectivity graph.

This representation was not developed with the thought
of incremental maintenance. There are no simple means to
adjust the representa.tion when the underlying environment
is modified. We could keep track of which critical curve seg-
ments arise from which obstacle. Then, when an obstacle
is moved, all associated curves and their intersections with
other curves would need to be removed from the decompo-
sition, and from the connectivity graph. New curves would
be generated, intersections formed, and a new connectivity
graph created.

Instead, if explicit regions are formed from the arrange-
ment of critical curves, then local changes can be efficiently
maintained through local operations to the representation.
Although the regions are nontrivial [17], a plane sweep al-
gorithm [lo, 331 can be used to efficiently form the noncrit-
ical regions explicitly. This is possible due to the algebraic
simplicity of the critical curves. There is a maximum de-
gree of four for each curve, which implies a bounded num-
ber of intersections between any two curves. Therefore, an
output-sensitive algorithm that computes all intersections in

time O(C + n2 logn), where there are C intersections among
O(n2) critical curves, can be used.

As a by-product of region construction, a sample point
for the region can be obtained. A sample point is useful for
computing the set of stops for the region, as well as extract-
ing a solution trajectory through the region. Since the sweep
produces simple regions in sorted order, the connectivity of
the regions is also a by-product. Furthermore, once a region
has been formed, the cells contained in the cylinder above
the region can be formed by computing the legal ranges of
orientation (the stops) when the vertex P of the line seg-
ment is in the region (at the sample point). To test whether
two cells are adjacent, it must be determined that the two
cells share a critical curve section and that their range of
orientations overlap on the boundary. Determining whether
two cells share a critical curve section is equivalent to test-
ing region adjacency; and determining orientation overlap is
simply comparing stop values. Thus the connectivity graph
c m also be obtained as a by-product of the plane sweep
algorithm.

When obstacles are incrementally moved and noncritical
regions change, the connectivity graph of the regions may
also change. The local changes to the region connectivity
graph can be used to propagate the changes to the cells
above each region. Because the regions and their relation-
ships are explicit, direct manipulation, without the need to
search, is sufficient to maintain the geometry and topology
of the representation.

The rest of this section is as follows. In Section 3.1 we
present a hierarchical representation for the cells. A hier-
archical representation is central to efficient maintenance of
the underlying representation of etree. Section 3.2 provides
the rationale for computing the all-pairs shortest paths trees.

3.1 A Hierarchical Representation
This section examines the problems that incrementally

changing environments present for the maintenance of the
critical curves. In particular, we comment on some rami-
fications of using hierarchical bounding approximations of
noncritical cells as an underlying data structure.

Considerable efficiency can be gained from hierarchi-
cally representing obstacles and their associated critical
curves, noncritical regions, and noncritical cells. Hierarchi-
cal bounding boxes have been used effectively in solid mod-
eling and graphics e.g. [28, 241. The use of bounding boxes
limits the number of intersection tests between object prim-
itives and the number of intersections needed for rendering.

Critical curves of Types 1 through 4 characterize the lim-
iting positions of the robot as it navigates in close proximity
of a convex obstacle. We note that these curves are all con-
tained within a bounding polygon that has the same shape
as the obstacle polygon, but is “grown” radially by distance
L. Similarly, curves of Types 3 and 4 are contained within
a circle of radius L centered at each convex obstacle ver-
tex. Together, the Type 2 and (portions of the) Type 3
curves yield a generalized polygon that completely encloses
all critical curves local to the obstacle. Furthermore, curves

41

I T y p e 2

-Type 4

Figure 1: Critical curves associated with a rectangle.

of Type 5 and 6 are also contained within a circle of radius L
centered at a convex obstacle (generating) vertex. Curves of
Type 6 not only are contained within the circle centered at
the generating vertex, but also are bounded from above by
the Type 2 curve of their generating edge, and from below
by a line parallel to the generating edge and passing through
the generating vertex. Curves of Types 1-4 for a rectangle
are illustrated in Figure 1.

When the environment consists only of convex polygons,
then only critical curves of Types 5 and 6 may be candidates
for creation and destruction when obstacles are moved, as
curves of Types 1 through 4 are permanently associated with
each individual obstacle. Type 5 curves only occur when
two obstacle vertices come within distance d < L from each
other; and Type 6 curves only occur when a vertex of one
obstacle comes within distance L of another obstacle (where
L is length of the line segment). The interesting extra curves
are the conchoids of Nichomedes, which are enclosed in the

where x, corresponds to ym = (L 2 d) 1 / 3 - d. This box is
specified in the local coordinate frame of the conchoid. The
base of the box is parallel to the generating edge. Thus,
unless the environment is exceptionally cluttered, so that
there are few obstacles within distance L of one another,
bounding approximations are sufficient to detect that most
obstacle motion produces no effect on the topology of the
set of critical curves.

bounding box [[x = --z m , x = z m] , [Y = 0 , Y = L - 411

3.2 Representation Reuse
Here, we examine the costs and benefits of computing the

all-pairs shortest paths trees in the connectivity graph of
the exact cell decomposition of Cfree for planning. By com-
puting the all-pairs shortest paths trees in the connectivity
graph of C f r e e , planning is reduced to lookup. The time
required to compute the all-pairs shortest paths trees (with
a simple algorithm) is O(lVllEl log /VI) where E and V are
the sets of edges and vertices in the connectivity graph. (We
conjecture that the connectivity graph is sparse in practice
so IEl = O(lVl).) The space required for the all-pairs short-
est paths trees is O(/VI2).

If many problems are to be solved in the same static en-
vironment, then the time to compute the all-pairs shortest
paths trees can be amortized over all planning problems. If
the savings in the time to compute a solution is substantial,
the space cost may be affordable. For example, if O(lV1)
problems are solved, then approximately the same amount of
time will be expended on individual searches as will be spent

on computing the all-pairs shortest paths trees. If more than
O(/VI) problems are solved, then computing the all-pairs
shortest pa.ths trees may have consumed less time than all
individual ,searches combined. All of the individual prob-
lems requir'e only O((V1) additional space for the search (A*
search essentially computes a single-source shortest paths
tree) instead of (3(IVl2) space for the all-pairs shortest paths
trees. The crucial difference between separate search efforts
and computing the all-pairs shortest paths trees is that the
all-pairs shortest paths trees are computed off-line, provid-
ing the user with real-time solutions. For the problem of
incrementally changing environments, the all-pairs shortest
paths trees must be incrementally maintained. On aver-
age we expect that the all-pairs shortest paths trees can be
maintained in much less time than it takes to search a con-
nectivity gr<aph.

Note that, it may be more efficient to build up to the all-
pairs shortest paths trees as required for problem solving
(i .e . mainta,in only the set of single-source shortest paths
trees computed so far) since the distribution of planning
problems may not uniformly cover the configuration space.
A review of research on maintaining a set of single-source
shortest paths trees is given in [26].

4 INCREMENTAL MAINTENANCE
In this seckion we present an algorithm for incrementally

maintaining the exact cell decomposition of CfTee presented
in Section 3, given incremental changes to the environment.
Small changes in the environment require corresponding
small changes in the representation. Section 4.1 gives an
overview of incremental graph algorithms. Efficiently main-
taining the all-pairs shortest paths trees reduces planning
to lookup. Then in Section 4.2 we describe the combined
effects of explicit hierarchical bounding approximations and
the all-pairs :shortest paths trees.

4.1 Incremental Graph Algorithms
This section gives an overview of incremental graph algo-

rithms, and how they are incorporated into our solution for
planning in incrementally changing environments.

An incremental graph algorithm is given as input a graph,
a subgraph that satisfies some desired property, and a modi-
fication to the graph. The algorithm outputs a new subgraph
that satisfies the desired property in the modified graph. We
say that a vertex is "affected" by the change if it changes
its local property from the original graph to the modified
graph. The minimum amount of work any incremental algo-
rithm must perform is to correct every affected vertex. The
complexity of an incremental graph algorithm should, there-
fore, be a function of the size of the set of affected vertices.
A graph algorithm is said to be bounded incremental if it
runs in time t-hat is polynomial in the size of this set [26].
Algorithms that always check every vertex are therefore un-
bounded incremental. An incremental algorithm is designed
to take advantage of small modifications to an underlying
graph. On difficult problems (where most, if not all, vertices
are affected), it may be faster to recompute the subgraph.

42

However, on average problems, incremental algorithms can
be expected to run much faster (26, 51.

Incremental algorithms play important roles in the sim-
plex method [l] and in areas such as network flows, match-
ing, and computational circuit analysis [21, 16, 21. We
have shown that hierarchical search can be efficiently im-
plemented by using an incremental variant of Dijkstra’s al-
gorithm for maintaining a single-source shortest paths tree
in a dynamic graph [5] .

There is a considerable amount of research dedicated to
the dynamic all-pairs shortest paths problem [27, 14, 3, 23,
26, 191. The all-pairs shortest paths problem is of inter-
est if we want to consider many different planning problems
within the same environment. We expect that incremen-
tally maintaining the all-pairs shortest paths trees is more
efficient than computing a single-source shortest paths tree
for each new problem. Unfortunately, most of this research
examines single changes to the graph, for example the inser-
tion of an edge. For the geometric robot motion planning
application, vertices are generally added and deleted, which
changes many edges simultaneously. The only such algo-
rithm known to us is by Ramalingam and Reps [26].

4.2 Combining Hierarchy and Shortest
Paths

In this section we discuss potential synergies between the
explicit hierarchical representation of noncritical cells and
the incremental maintenance of the all-pairs shortest paths
trees.

4.2.1 Deferring Updates
By hierarchically maintaining the noncritical regions, e.g.

by a succession of bounding approximations, we can effec-
tively limit the number of complex intersection tests that
must be performed as an obstacle moves close to another.
For example, a plane sweep within a very small area can
be performed. By analyzing the nature of the intersection,
the types of changes, that have occurred can be assessed.
Example changes include which vertices of the connectivity
graph of Cf,.,, have changed (their underlying region has
new geometry or requires subdivision), and whether or not
this change is significant.

Small obstacle motions may leave the topology of the non-
critical regions unchanged. In other words, the connectivity
graph and embedded all-pairs shortest paths trees remain
correct. Therefore thie shortest path between two vertices in
the graph is still available. Thus the solution to a specific
problem can be found without having the precise geometry
of all regions available. In the event that no affected vertices
are used in the solution sequence, a solution trajectory can
be generated from the solution sequence and the actual re-
pair to the geometry of the affected regions can be deferred.
This ability to defer certain operations adds flexibility to the
planner, and allows for parallelism. This is to say that the
process for computing a solution trajectory can safely run
at the same time as the process for repairing cells.

4.2.2 Assessing Cell Cost

A hierarchical representation can be used to induce meta-
cells, which can be assessed a cost that reflects the com-
plexity of computing a trajectory through the underlying
cells. For example, a “cluster” of noncritical regions can
be grouped together, say those in the intersection of two
bounding approximations. All of the cells above these re-
gions can similarly be aggregated together and treated as
a whole. This has much the same flavor of the hierarchical
approximate cell decomposition algorithm in which a MIXED
cell is subdivided into many subcells, changing the connec-
tivity graph in a local area [5] . Here, regions and cells are
grouped together, as well as subdivided. Grouping cells has
the additional benefit of effectively decreasing the size and
simplifying the connectivity graph.

So, when an obstacle is moved, the approximating rep-
resentations are analyzed to assess the cost to repair the
connectivity graph. If there are many new regions to be
formed, or many intersections are required, then the cells
can be aggregated together, and the corresponding vertices
in the connectivity graph replaced by a single vertex with
high cost. This local change to the connectivity graph is
then propagated to the all-pairs shortest paths trees. If the
optimal path avoids the high cost vertex, then examining
the underlying changes can be deferred. Otherwise, the un-
derlying region must be subdivided, and the high cost vertex
replaced in the connectivity graph by the new vertices cor-
responding to the new regions. Again, this local change to
the connectivity graph is propagated to the all-pairs shortest
paths trees and the solution extracted.

The amount of work involved to repair the data structures
given some obstacle has been moved can be assessed at a
fairly high level of abstraction. The intersection of bound-
ing approximations may indicate, for example, that a great
many changes are likely without actually examining any spe-
cific change. Such assessments can be used to tradeoff the
quality of solution for planning time. For example, the esti-
mated cost to repair the connectivity graph can be charged
to the cells involved. This change in cell costs will be prop-
agated to the all-pairs shortest paths trees.

4.2.3 Fast Suboptimal Solution Paths

The all-pairs shortest paths trees provide the path cost
of the least cost path between every pair of vertices in the
graph. In general, there are multiple least cost paths. Sim-
ilarly, there might be many paths for which the path costs
differ by e. If the cost of an edge changes by E , it is possible
that a large number of vertices will be affected. If the all-
pairs shortest paths trees are maintained only to within 6

accuracy, then small changes in vertex costs may not affect
any other vertices. This approach might save a great deal
of tree maintenance, but it comes at the expense of subopti-
mal solution paths. However, we can quantify the extent to
which a path is suboptimal. In particular, we can guarantee
that the cost of the final solution path will be no more than
(1 +E) times the cost of the least cost path. A similar result
is obtained in [19] and mentioned in [8].

43

5 CONCLUSIONS
In this paper we discuss the concept of incremental algo-

rithms to solve problems in geometric robot motion plan-
ning where the input changes between planning problems.
We adopt the critical curve based exact cell decomposition
of [29] as our basic representation. We extend the underly-
ing representation to accommodate incrementally changing
environments. The novel contribution to geometric robot
motion planning is to efficiently maintain the representation
of the robot’s free space subject to incrementally moving
obstacles.

A key improvement to [29] is a plane sweep to explic-
itly form the noncritical regions. A by-product of this is a
connectivity graph of the regions. A hierarchy of bounding
approximations is associated with the obstacles and the lo-
cal noncritical cells. This enables local reasoning about local
changes. It also enables efficient aggregation of cells to defer
reasoning or to reason at an abstract level.

The changes in the environment are expected to be local
to a small area. The affected regions can be repaired, and
the changes can be propagated to the cells above the regions.
The change in cells affects the connectivity graph. Then the
all-pairs shortest paths trees embedded in the connectivity
graph must be updated, We expect that on average the
overhead of this incremental maintenance will be quite small.
The presence of the all-pairs shortest paths trees, and an
incremental algorithm to maintain them, results in a planner
that is capable of reacting quickly to obstacles that have
been moved since plan generation. The ability to efficiently
maintain a representation of Cf,,, subject to obstacles that
are incrementally moved may lead to efficient algorithms
for the harder problems of moving obstacles and movable
objects.

References
111

PI

I31

141

[51

I61

171

I81

191

R. Ahuja and J. Orlin. The scaling network simplex algorithm. OR,
40(1):55-S12, 1992.

B. Alpern, R. Hoover, B. Rosen, P. Sweeney, and F. Zadeck. Incremen-
tal evaluation of computational circuits. In Proc ACM-SIAM Symp
on Discrete Algs, 1990.

G. Ausiello, G. F . Italiano, A. Marchetti-Spaccamela, and U. Nanni.
Incremental algorithms for minimal length paths. J Algorithms, 12,
1991.

F. Avnaim, J . D. Boissonnat, and B. Faverjon. A practical exact mo-
tion planning algorithm for polygonal objects amidsc polygonal obsta-
cles. In Proc IEEE Int’l Conf on Robotics and Automation, 1988.

M. Barbehenn and S. A. Hutchinson. Efficient search and hierarchi-
cal motion planning by dynamically maintaining single-source shortest
paths trees. IEEE Trans on Robotics and Automation, 11(2), 1995.

J . Barraquand, B. Langlois, and J. C. Latombe. Numerical potential
field techniques for robot path planning. IEEE Trans on Systems,
Man, and Cybernetics, 22(2):224-241, 1992.

J . Barraquand and J . 4 . Latombe. Robot motion planning: A dis-
tributed representation approach. Int’l 3. of Robotica Research,
10(6):628-649, 1991.

D. P. Bertsekas. Dynamic Programming: Deterministic and Stochas-
tic Models. Prentice-Hall, Englewood Cliffs. New Jersey, 1987.

S. Buckley. Fast motion planning for multiple moving robots. In Proc
IEEE Int’l Con/ on Robotics and Automation, 1989.

B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersect-
ing line segments. In Proc IEEE Symp on Found of Comput Sci,
1988.

P. Chen and Y. Hwang. Practical path planning among movable ob-
stacles. In Proc IEEE Int’l Conf on Robotics and Automation, 1991.

B. Dacre-Wright, J.-P. Laumond, and R. Alami. Motion planning for a
robot and a moving object amidst polygonal obstacles. In Proc IEEE
Int’l Conf on Robotica and Automation, 1992.

M. Erdm,ann and T. Lozano-Perez. On multiple moving objects. Tech-
nical Report 883, MIT AI Lab, 1986.

S. Even and H. Gazit. Updating distances in dynamic graphs. Methods
of Operal!ions Redeorch, 49, 1985.

P. Fiorini and 2. Shiller. Motion planning in dynamic environments
using the relative velocity paradigm. In Proc IEEE Inl? Conf on
Robotics and Automation, 1993.

D. Goldfarb, J. Hao, and S. Kai. Efficient shortest path simplex algo-
rithms. OR, 38(4), 1990.

D. Halperin and M. Sharir. Arrangements and their applications in
robotics. In Workshop on the Algorithmic Foundations of Robotica,
San Francisco, February 1994.

K. Kant amd S. Zucker. Toward efficient trajectory planning: Pa th
velocity decomposition. Int’l J. of Robotica Research, 5, 1986.

P. Klein and S. Sairam. A fully dynamic approximation scheme for all-
pairs short.est paths in planar graphs. In LNCS 709. Springer-Verlag,
Berlin, 1993.

3.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, 1991.

E. L. Lawiter. Combinatorial Optimization: Networks and Mntroids.
Holt, Rinehart and Winston, New York, 1976.

D. Leven aind M. Sharir. An efficient and simple motion planning algo-
rithm for a ladder moving in two-dimensional space amidst polygonal
barriers. In Proc ACM Symp on Comp Geom, 1985.

C. C. Lin and R. C. Chang. On the dynamic shortest path problem.
Journal of Information Processing, 13(4), 1990.

M. Mantyla and M. Tamminen. Localized set operations for solid
modeling. In Proc. SIGGRAPH, July 1983.

P. O’Donnell and T. Lozano-Perez. Deadlock-free and collision-free
coordinatio:n of two robot manipulators. In Proc IEEE Int’l Conf on
Robotics artd Automation, 1989.

G. Ramalintgam and T . Reps. Bounded incremental computation.
Technical Report 1172, Dept of Comp Sci, Univ of Wisc at Madison,
1993.

H. Rohnert. A dynamization of the all pairs least cost path problem.
In LNCS 182. Springer-Verlag, Berlin, 1985.

Scott D. Roth. Ray casting for modeling solids. Comp Graphics and
Image Proc, 18, 1982.

J . Schwartz and M. Sharir. On the piano movers’ problem: I. The case
of a two-dimensional rigid polygonal body moving amidst polygonal
barriers. In .J. Schwartz, M. Sharir, and J. Hopcroft, 1987.

J . Schwartz and M. Sharir. On the piano movers’ problem: 11. Gen-
eral techniques for computing topological properties of real algebraic
manifolds. In J. Schwartz, M. Sharir, and J. Hopcroft, 1987.

J . Schwartz and M. Sharir. On the piano movers’ problem: 111. Coor-
dinating the motion of several independent bodies: The special case
of circular bodies moving amidst polygonal barriers. In J. Schwartz,
M. Sharir, and J . Hopcroft, 1987.

J. Schwartz, M. Sharir, and J. Hopcroft. Planning, Geometry, and
Complezity of Robot Motion. Ablex, Norwood, NJ, 1987.

I. Shimshoni and J . Ponce. Finite resolution aspect graphs of polyhe-
dral objects. In Proc IEEE Workshop on Qualitative Vision, 1993.

S. Sifrony and M. Sharir. A new efficient motion-planning algorithm
for a rod in two-dimensional polygonal space. Algonthmica, 2, 1987.

P. Tournassouid. A strategy for obstacle avoidance and its application
to multi-robot syscems. In Proc IEEE Int’l Conf on Robotics and
Automation. 1986.

44

