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.Abstract 
In this paper we introduce a new class of geometric robot 

motion planning problems that we call incremental problems. 
W e  also introduce the concept of incremental algorithms to  
solve this class of problems. As a n  example, we describe an 
incremental critical curve based exact cell decomposition al- 
gorithm for a line segment robot moving freely amidst polpg- 
onal obstacles. In the example, after computing a n  initial 
representation of the robot’s free space, the algorithm main- 
tains the representation as obstacles are moved between plan- 
ning problems. The  co:it t o  maintain the representation is 
expected to  be small relative t o  the cost of i ts  initial con- 
struction. 

1 INTRODUCTION 
A geometric robot motion planner computes a collision- 

free trajectory between two given robot configurations. If 
the environment is not &,tic,  then it can change either dur- 
ing the planning process, during plan execution, or between 
planning problems. Current research in geometric robot 
motion planning with moving obstacles, or with movable ob- 
jects, is either heuristic (e.g. [13, 18, 9, 25, 11, 15]), does not 
scale to  realistic problems (e.g. [31, 35, 12]), or is only prob- 
abilistically complete (e.g. [7, 61). In this paper, we discuss 
a solution to  a new clasri of geometric robot motion planning 
problems that promises to  extend to  the more general prob- 
lems of moving and movable obstacles in a way that scales 
and does not rely on heuristics. 

We call the new class of problems incremental problems. 
A problem is incremental if its input undergoes incremental 
change over time. An example of incremental change is a 
perturbation in the position of some obstacles in the envi- 
ronment between planning problems. Such problems arise 
frequently in robotics, but t o  date, there has been little re- 
search in this area. Examples of such changes occur when 
designing the layout of a factory floor, or reconfiguring a 
floor plan given new equipment. 

A primary attribute of an incremental problem is that  it 
is generally inexpensive to  update a solution to  an initial 

problem in order to  solve another, slightly modified, prob- 
lem. Thus incremental problems are an especially impor- 
tant class of problems when it is expensive to  solve an initial 
problem, since this cost can be amortized over many, similar 
problems. 

The class of incremental problems may lead to  the devel- 
opment of practical solutions to  the more difficult problems 
of moving and movable obstacles. Problems involving mov- 
ing obstacles can be viewed as continuous versions of incre- 
mental problems, and problems with movable objects can 
be viewed as a combination of task-level and incremental 
problems. 

Currently, there are no efficient algorithms for incremen- 
tally maintaining representations of configuration space sub- 
ject t o  environmental changes. Currently, the only solution 
is to  discard the old representation of the robot’s configu- 
ration space and construct a new one, despite the fact that  
the new representation might differ only slightly from the 
original. 

In this paper, we focus on the particular case of a line seg- 
ment moving amidst polygonal obstacles, which are moved 
incrementally between planning problems. We call such 
problems “incrementally changing environments.” A key 
contribution here is maintaining a representation of the 
robot’s configuration space, rather than constructing the 
joint configuration space (that represents the simultaneous 
positions of all obstacles that  might be moved). In general, 
we expect the changes to  the environment to  affect very lit- 
tle of the configuration space. Therefore our incremental 
algorithm should be very efficient on average. 

In this paper, we assume a critical curve based exact cell 
decomposition as the underlying representation of configu- 
ration space. This choice reflects, in part, our desire to  un- 
derstand the deep issues of incremental maintainance, since 
this decomposition captures nicely the relationship between 
changes in the environment and changes in the configuration 
space. This choice of representation also reflects, in part, our 
desire for an efficient incremental algorithm. In other words, 
we are willing to  pay a high initial cost, if the expected in- 
cremental cost to  maintain the representation is low. There 
are many other representations that might be more efficient; 
but this is a good choice for a first study. 
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ture has primarily focused on planning for single problems, 
and not on reuse or modification of the costly representation. 
The geometric robot motion planning literature that does 
mention reusing the representation (e.g. [4]), mentions only 
the relative speed up of performing just the graph search 
without the additional cost of constructing the representa- 
tion. In general, the time to construct the representation is 
only slightly worse than the size of the representation. 

To the best of our knowledge, computing the all-pairs 
shortest paths trees has not been proposed in the geometric 
robot motion planning literature. This is probably because 
research has been focused on single planning problems, and 
because the cost ,of search is negligible relative to the cost of 
constructing a representation of Cfree. In the case of incre- 
mentally changing environments, the cost to incrementally 
maintain the representation of CfTee is small. Therefore, the 
relative cost of search is increased, and it becomes important 
to reduce the search cost. 

The remainder of this paper is organized as follows. In 
Section 2 we review the critical curve based exact cell de- 
composition of free space for a line segment translating and 
rotating amidst static polygonal obstacles (originally pro- 
posed by Schwartz and Sharir [29]). Section 3 discusses the 
need for a more explicit representation, and presents a plane 
sweep algorithm to compute this representation. Then, in 
Section 4, we briefly discuss how the explicit representation 
can be incrementally maintained. Section 5 gives our con- 
clusions. 

2 A STATIC ALGORITHM 
This section reviews the representation used by the 

Schwartz and Sharir algorithm [29] for computing a collision- 
free trajectory for a line segment amidst polygons in the 
plane.' This is not the only exact representation of free 
space (e.g. [22, 341); but we feel it is the best suited for a 
first examination of the problem of incrementally changing 
environments. The method of representation presented in 
this section can be generalized in a straight-forward man- 
ner to arbitrary polygonal robots moving amidst polygonal 
obstacles. In this case there are more types of contacts to 
consider [29]. The method can also be extended to other 
robots, as long as the robot and the obstacles have algebraic 
descriptions i.e. they are composed of algebraic surfaces of 
bounded complexity. This was done in [30] by means of 
Collins cylindrical algebraic decomposition. 

The robot, which we shall denote by A, is a line segment 
of length L,  with endpoints P and Q. A configuration of A 
can be represented by the position X = (z,y) of P ,  and 
the orientation B of A, which is the direction PQ with re- 
spect to the world coordinate frame. Any configuration for 
which A intersects some obstacle, Bi, belongs to the config- 
uration space obstacle CBi. The union of all CBi is denoted 
by CL?. The complement of CB is the space of all collision- 
free configurations which we denote by Cf,,,. Given two 
configurations, ginit and qgoal E C f r e e ,  the geometric robot 

'The notation follows [20]. 

motion planner returns a function T : [ O , l ]  -+ Cfpee  such 
that r(0) =: qinit and ~ ( 1 )  = qgoal. 

2.1 Critical Curves and Noncritical Regions 

In an exact cell decomposition for geometric robot mo- 
tion planning, Cfree is completely decomposed into a finite 
set of cells. In a critical curve based decomposition, the cells 
capture the interesting contacts between the robot and the 
environment. Since Cf,,, is quite complex, the cells are gen- 
erated by first projecting Cfree onto R2, and then lifting the 
resultant regions into R2 x 5''. 

The bourtdary of CB is a finite set of ruled surfaces. Each 
surface is characterized by the set of environmental features 
in contact with the robot. The elementary contacts are of 
two types: (A) an obstacle vertex in contact with the inte- 
rior of A, and (B) a vertex of A in contact with an obstacle 
edge. When projected onto the xy-plane, these surfaces yield 
critical curves that intersect at critical points. The critical 
curves divide the plane into a finite set of noncritical regions. 
The noncritical regions are maximal open connected subsets 
of R2 such that the set of elementary contacts is invariant 
over the region. We exclude from the definition of noncriti- 
cal regions any region contained within an obstacle. In other 
words, a critical curve is the locus of robot positions (the 2, y 
coordinates of endpoint P )  such that as P crosses the crit- 
ical curve, the set of possible elementary contacts changes. 
There are six types of critical curves, which are described 
in detail in [29, 201. Curves of types 1,2,4, and 5 are line 
segments, type 3 are circular arcs, and type 6 are positive 
portions of conchoids of Nichomedes. 

2.2 Cell1 Formation 

Each noncritical region specifies an open set of positions 
X = ( 2 , ~ )  of P such that some orientation 8 exists where 
the robot configuration q = ( X , 8 )  of A is in Cf,.,,. We 
call such orilentations free orientations. These orientations 
determine legal ranges in the cylinder above the noncritical 
region, and thus define a noncritical cell in that cylinder. 

The following is standard terminology for describing cells 
in the deconiposition of C f r e e .  Let F ( X )  = (6' : (X,O) E 
Cf,,,} be the set of all free orientations of A at  the noncrit- 
ical position X .  The extremum of each interval, where d 
contacts some obstacle, is called a limit orientation of A at 
X .  If the obstacles are in general position, then the limit 
orientation corresponds to  a unique obstacle feature, called 
the stop. Define o ( X )  as the set of feature pairs (SI , s2) 

corresponding to the intervals in F ( X ) .  
We can now define a cell in the cylinder above the noncrit- 

ical region R as follows. Let R be a noncritical region and 
( ~ 1 ~ ~ 2 )  E .(IC), where X E R. Then ce l l (R,s l , s~)  consists 
of all configurations q = ( X ,  e) ,  such that X E R and 0 is in 
the interval d!etermined by X,s1, and s2. The set of cells 
as defined above partition Cf,.,, in the sense that the cells 
are disjoint, and the closure of their union is equal to the 
closure of Cfree.  
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2.3 The Connectivity Graph 
Having described an exact cell decomposition of C j V e e ,  we 

now describe the construction of the associated connectivity 
graph, which aids in the search for a collision-free trajectory 
of the robot. We denote the connectivity graph by G(V, E ) ,  
where V is the set of vertices corresponding to the cells of 
the decomposition, and E is the set of edges such that two 
vertices are connected if and only if the corresponding cells 
are adjacent. Two cells are adjacent if and only if the base 
regions are adjacent and the set of orientations overlap ev- 
erywhere on the common boundary. Given G, planning con- 
sists of (1) determining the vertices uinit and vgoQl associated 
with cells tcinit and ngOQ1 containing, respectively, the initial 
and goal configurations ginit and qgoal, (2) searching G for a 
path from vi,,it to vgoQl, (3) extracting a trajectory from the 
corresponding sequence of cells. 

The Schwartz and Sharir algorithm does not explicitly 
construct the noncritical regions and the cells above them 
[29]. Instead the algorithm associates with each curve a 
“left” region and a “right” region, and builds a connectivity 
graph based on these characterizations. Thus a region occurs 
as many times in the connectivity graph as there are curve 
segments on its boun.dary. firthermore, the connectivity 
graph is not constructed in advance, rather it is generated 
as a by-product of the search process. 

3 AN EXPLICIT REPRESENTAION 
In Section 2, we described the noncritical regions in the 

plane that are the projections of the noncritical cells in 
the decomposition of Cf,,, for a line segment robot. The 
Schwartz and Sharir algorithm does not create an explicit 
representation of the regions [29]. Instead, their algorithm 
performs U(n4) intersection tests among the U(n2) critical 
curves, where n is the number of obstacle edges and vertices. 
In their algorithm, e.ach curve segment determines two re- 
gions, so there are O(n4) noncritical regions, which produce 
O(n5) cells in the connectivity graph. 

This representation was not developed with the thought 
of incremental maintenance. There are no simple means to 
adjust the representa.tion when the underlying environment 
is modified. We could keep track of which critical curve seg- 
ments arise from which obstacle. Then, when an obstacle 
is moved, all associated curves and their intersections with 
other curves would need to be removed from the decompo- 
sition, and from the connectivity graph. New curves would 
be generated, intersections formed, and a new connectivity 
graph created. 

Instead, if explicit regions are formed from the arrange- 
ment of critical curves, then local changes can be efficiently 
maintained through local operations to the representation. 
Although the regions are nontrivial [17], a plane sweep al- 
gorithm [lo, 331 can be used to efficiently form the noncrit- 
ical regions explicitly. This is possible due to the algebraic 
simplicity of the critical curves. There is a maximum de- 
gree of four for each curve, which implies a bounded num- 
ber of intersections between any two curves. Therefore, an 
output-sensitive algorithm that computes all intersections in 

time O(C + n2 logn), where there are C intersections among 
O(n2) critical curves, can be used. 

As a by-product of region construction, a sample point 
for the region can be obtained. A sample point is useful for 
computing the set of stops for the region, as well as extract- 
ing a solution trajectory through the region. Since the sweep 
produces simple regions in sorted order, the connectivity of 
the regions is also a by-product. Furthermore, once a region 
has been formed, the cells contained in the cylinder above 
the region can be formed by computing the legal ranges of 
orientation (the stops) when the vertex P of the line seg- 
ment is in the region (at the sample point). To test whether 
two cells are adjacent, it must be determined that the two 
cells share a critical curve section and that their range of 
orientations overlap on the boundary. Determining whether 
two cells share a critical curve section is equivalent to test- 
ing region adjacency; and determining orientation overlap is 
simply comparing stop values. Thus the connectivity graph 
c m  also be obtained as a by-product of the plane sweep 
algorithm. 

When obstacles are incrementally moved and noncritical 
regions change, the connectivity graph of the regions may 
also change. The local changes to the region connectivity 
graph can be used to propagate the changes to the cells 
above each region. Because the regions and their relation- 
ships are explicit, direct manipulation, without the need to 
search, is sufficient to maintain the geometry and topology 
of the representation. 

The rest of this section is as follows. In Section 3.1 we 
present a hierarchical representation for the cells. A hier- 
archical representation is central to efficient maintenance of 
the underlying representation of etree. Section 3.2 provides 
the rationale for computing the all-pairs shortest paths trees. 

3.1 A Hierarchical Representation 
This section examines the problems that incrementally 

changing environments present for the maintenance of the 
critical curves. In particular, we comment on some rami- 
fications of using hierarchical bounding approximations of 
noncritical cells as an underlying data structure. 

Considerable efficiency can be gained from hierarchi- 
cally representing obstacles and their associated critical 
curves, noncritical regions, and noncritical cells. Hierarchi- 
cal bounding boxes have been used effectively in solid mod- 
eling and graphics e.g. [28, 241. The use of bounding boxes 
limits the number of intersection tests between object prim- 
itives and the number of intersections needed for rendering. 

Critical curves of Types 1 through 4 characterize the lim- 
iting positions of the robot as it navigates in close proximity 
of a convex obstacle. We note that these curves are all con- 
tained within a bounding polygon that has the same shape 
as the obstacle polygon, but is “grown” radially by distance 
L. Similarly, curves of Types 3 and 4 are contained within 
a circle of radius L centered at each convex obstacle ver- 
tex. Together, the Type 2 and (portions of the) Type 3 
curves yield a generalized polygon that completely encloses 
all critical curves local to the obstacle. Furthermore, curves 
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-Type 4 

Figure 1: Critical curves associated with a rectangle. 

of Type 5 and 6 are also contained within a circle of radius L 
centered at  a convex obstacle (generating) vertex. Curves of 
Type 6 not only are contained within the circle centered at  
the generating vertex, but also are bounded from above by 
the Type 2 curve of their generating edge, and from below 
by a line parallel to the generating edge and passing through 
the generating vertex. Curves of Types 1-4 for a rectangle 
are illustrated in Figure 1. 

When the environment consists only of convex polygons, 
then only critical curves of Types 5 and 6 may be candidates 
for creation and destruction when obstacles are moved, as 
curves of Types 1 through 4 are permanently associated with 
each individual obstacle. Type 5 curves only occur when 
two obstacle vertices come within distance d < L from each 
other; and Type 6 curves only occur when a vertex of one 
obstacle comes within distance L of another obstacle (where 
L is length of the line segment). The interesting extra curves 
are the conchoids of Nichomedes, which are enclosed in the 

where x, corresponds to ym = ( L 2 d ) 1 / 3  - d. This box is 
specified in the local coordinate frame of the conchoid. The 
base of the box is parallel to the generating edge. Thus, 
unless the environment is exceptionally cluttered, so that 
there are few obstacles within distance L of one another, 
bounding approximations are sufficient to detect that most 
obstacle motion produces no effect on the topology of the 
set of critical curves. 

bounding box [[x = --z m ,  x = z m ] ,  [Y = 0 ,  Y = L - 411 

3.2 Representation Reuse 
Here, we examine the costs and benefits of computing the 

all-pairs shortest paths trees in the connectivity graph of 
the exact cell decomposition of Cfree for planning. By com- 
puting the all-pairs shortest paths trees in the connectivity 
graph of C f r e e ,  planning is reduced to lookup. The time 
required to compute the all-pairs shortest paths trees (with 
a simple algorithm) is O(lVllEl log /VI) where E and V are 
the sets of edges and vertices in the connectivity graph. (We 
conjecture that the connectivity graph is sparse in practice 
so IEl = O(lVl).) The space required for the all-pairs short- 
est paths trees is O(/VI2). 

If many problems are to be solved in the same static en- 
vironment, then the time to compute the all-pairs shortest 
paths trees can be amortized over all planning problems. If 
the savings in the time to compute a solution is substantial, 
the space cost may be affordable. For example, if O(lV1) 
problems are solved, then approximately the same amount of 
time will be expended on individual searches as will be spent 

on computing the all-pairs shortest paths trees. If more than 
O( /VI) problems are solved, then computing the all-pairs 
shortest pa.ths trees may have consumed less time than all 
individual ,searches combined. All of the individual prob- 
lems requir'e only O((V1) additional space for the search (A* 
search essentially computes a single-source shortest paths 
tree) instead of (3(IVl2) space for the all-pairs shortest paths 
trees. The crucial difference between separate search efforts 
and computing the all-pairs shortest paths trees is that the 
all-pairs shortest paths trees are computed off-line, provid- 
ing the user with real-time solutions. For the problem of 
incrementally changing environments, the all-pairs shortest 
paths trees must be incrementally maintained. On aver- 
age we expect that the all-pairs shortest paths trees can be 
maintained in much less time than it takes to search a con- 
nectivity gr<aph. 

Note that, it may be more efficient to build up to the all- 
pairs shortest paths trees as required for problem solving 
( i .e .  mainta,in only the set of single-source shortest paths 
trees computed so far) since the distribution of planning 
problems may not uniformly cover the configuration space. 
A review of research on maintaining a set of single-source 
shortest paths trees is given in [26]. 

4 INCREMENTAL MAINTENANCE 
In this seckion we present an algorithm for incrementally 

maintaining the exact cell decomposition of CfTee  presented 
in Section 3, given incremental changes to the environment. 
Small changes in the environment require corresponding 
small changes in the representation. Section 4.1 gives an 
overview of incremental graph algorithms. Efficiently main- 
taining the all-pairs shortest paths trees reduces planning 
to lookup. Then in Section 4.2 we describe the combined 
effects of explicit hierarchical bounding approximations and 
the all-pairs :shortest paths trees. 

4.1 Incremental Graph Algorithms 
This section gives an overview of incremental graph algo- 

rithms, and how they are incorporated into our solution for 
planning in incrementally changing environments. 

An incremental graph algorithm is given as input a graph, 
a subgraph that satisfies some desired property, and a modi- 
fication to the graph. The algorithm outputs a new subgraph 
that satisfies the desired property in the modified graph. We 
say that a vertex is "affected" by the change if it changes 
its local property from the original graph to the modified 
graph. The minimum amount of work any incremental algo- 
rithm must perform is to correct every affected vertex. The 
complexity of an incremental graph algorithm should, there- 
fore, be a function of the size of the set of affected vertices. 
A graph algorithm is said to be bounded incremental if it 
runs in time t-hat is polynomial in the size of this set [26]. 
Algorithms that always check every vertex are therefore un- 
bounded incremental. An incremental algorithm is designed 
to take advantage of small modifications to an underlying 
graph. On difficult problems (where most, if not all, vertices 
are affected), it may be faster to recompute the subgraph. 
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However, on average problems, incremental algorithms can 
be expected to run much faster (26, 51. 

Incremental algorithms play important roles in the sim- 
plex method [l] and in areas such as network flows, match- 
ing, and computational circuit analysis [21, 16, 21. We 
have shown that hierarchical search can be efficiently im- 
plemented by using an incremental variant of Dijkstra’s al- 
gorithm for maintaining a single-source shortest paths tree 
in a dynamic graph [ 5 ] .  

There is a considerable amount of research dedicated to 
the dynamic all-pairs shortest paths problem [27, 14, 3, 23, 
26, 191. The all-pairs shortest paths problem is of inter- 
est if we want to consider many different planning problems 
within the same environment. We expect that incremen- 
tally maintaining the all-pairs shortest paths trees is more 
efficient than computing a single-source shortest paths tree 
for each new problem. Unfortunately, most of this research 
examines single changes to the graph, for example the inser- 
tion of an edge. For the geometric robot motion planning 
application, vertices are generally added and deleted, which 
changes many edges simultaneously. The only such algo- 
rithm known to us is by Ramalingam and Reps [26]. 

4.2 Combining Hierarchy and Shortest 
Paths 

In this section we discuss potential synergies between the 
explicit hierarchical representation of noncritical cells and 
the incremental maintenance of the all-pairs shortest paths 
trees. 

4.2.1 Deferring Updates 
By hierarchically maintaining the noncritical regions, e.g. 

by a succession of bounding approximations, we can effec- 
tively limit the number of complex intersection tests that 
must be performed as  an obstacle moves close to another. 
For example, a plane sweep within a very small area can 
be performed. By analyzing the nature of the intersection, 
the types of changes, that have occurred can be assessed. 
Example changes include which vertices of the connectivity 
graph of Cf,.,, have changed (their underlying region has 
new geometry or requires subdivision), and whether or not 
this change is significant. 

Small obstacle motions may leave the topology of the non- 
critical regions unchanged. In other words, the connectivity 
graph and embedded all-pairs shortest paths trees remain 
correct. Therefore thie shortest path between two vertices in 
the graph is still available. Thus the solution to a specific 
problem can be found without having the precise geometry 
of all regions available. In the event that no affected vertices 
are used in the solution sequence, a solution trajectory can 
be generated from the solution sequence and the actual re- 
pair to the geometry of the affected regions can be deferred. 
This ability to defer certain operations adds flexibility to the 
planner, and allows for parallelism. This is to say that the 
process for computing a solution trajectory can safely run 
at the same time as the process for repairing cells. 

4.2.2 Assessing Cell Cost 

A hierarchical representation can be used to induce meta- 
cells, which can be assessed a cost that reflects the com- 
plexity of computing a trajectory through the underlying 
cells. For example, a “cluster” of noncritical regions can 
be grouped together, say those in the intersection of two 
bounding approximations. All of the cells above these re- 
gions can similarly be aggregated together and treated as 
a whole. This has much the same flavor of the hierarchical 
approximate cell decomposition algorithm in which a MIXED 
cell is subdivided into many subcells, changing the connec- 
tivity graph in a local area [ 5 ] .  Here, regions and cells are 
grouped together, as well as subdivided. Grouping cells has 
the additional benefit of effectively decreasing the size and 
simplifying the connectivity graph. 

So, when an obstacle is moved, the approximating rep- 
resentations are analyzed to assess the cost to repair the 
connectivity graph. If there are many new regions to be 
formed, or many intersections are required, then the cells 
can be aggregated together, and the corresponding vertices 
in the connectivity graph replaced by a single vertex with 
high cost. This local change to the connectivity graph is 
then propagated to the all-pairs shortest paths trees. If the 
optimal path avoids the high cost vertex, then examining 
the underlying changes can be deferred. Otherwise, the un- 
derlying region must be subdivided, and the high cost vertex 
replaced in the connectivity graph by the new vertices cor- 
responding to the new regions. Again, this local change to 
the connectivity graph is propagated to the all-pairs shortest 
paths trees and the solution extracted. 

The amount of work involved to repair the data structures 
given some obstacle has been moved can be assessed at a 
fairly high level of abstraction. The intersection of bound- 
ing approximations may indicate, for example, that a great 
many changes are likely without actually examining any spe- 
cific change. Such assessments can be used to tradeoff the 
quality of solution for planning time. For example, the esti- 
mated cost to repair the connectivity graph can be charged 
to the cells involved. This change in cell costs will be prop- 
agated to the all-pairs shortest paths trees. 

4.2.3 Fast Suboptimal Solution Paths 

The all-pairs shortest paths trees provide the path cost 
of the least cost path between every pair of vertices in the 
graph. In general, there are multiple least cost paths. Sim- 
ilarly, there might be many paths for which the path costs 
differ by e. If the cost of an edge changes by E ,  it is possible 
that a large number of vertices will be affected. If the all- 
pairs shortest paths trees are maintained only to within 6 

accuracy, then small changes in vertex costs may not affect 
any other vertices. This approach might save a great deal 
of tree maintenance, but it comes at  the expense of subopti- 
mal solution paths. However, we can quantify the extent to 
which a path is suboptimal. In particular, we can guarantee 
that the cost of the final solution path will be no more than 
(1 +E) times the cost of the least cost path. A similar result 
is obtained in [19] and mentioned in [8]. 
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5 CONCLUSIONS 
In this paper we discuss the concept of incremental algo- 

rithms to solve problems in geometric robot motion plan- 
ning where the input changes between planning problems. 
We adopt the critical curve based exact cell decomposition 
of [29] as our basic representation. We extend the underly- 
ing representation to accommodate incrementally changing 
environments. The novel contribution to geometric robot 
motion planning is to efficiently maintain the representation 
of the robot’s free space subject to incrementally moving 
obstacles. 

A key improvement to [29] is a plane sweep to explic- 
itly form the noncritical regions. A by-product of this is a 
connectivity graph of the regions. A hierarchy of bounding 
approximations is associated with the obstacles and the lo- 
cal noncritical cells. This enables local reasoning about local 
changes. It also enables efficient aggregation of cells to defer 
reasoning or to reason at an abstract level. 

The changes in the environment are expected to  be local 
to a small area. The affected regions can be repaired, and 
the changes can be propagated to the cells above the regions. 
The change in cells affects the connectivity graph. Then the 
all-pairs shortest paths trees embedded in the connectivity 
graph must be updated, We expect that on average the 
overhead of this incremental maintenance will be quite small. 
The presence of the all-pairs shortest paths trees, and an 
incremental algorithm to maintain them, results in a planner 
that is capable of reacting quickly to obstacles that have 
been moved since plan generation. The ability to  efficiently 
maintain a representation of Cf,,, subject to obstacles that 
are incrementally moved may lead to  efficient algorithms 
for the harder problems of moving obstacles and movable 
objects. 
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