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Abstract 
We present a jhmework for determining probability 

distributions ower the space of possible image feature 
pupings. Such a jhmework allows higher level pro- 
cesses to m o n  over manly plawible perceptual p u p -  
ings in an image, mther than committing to a specific 
image segmentation in the eadly stages of processing. 

We first derive an eqression for the probability 
that a set of features should be grouped together, con- 
ditioned on the observed image data associated with 
those fecrtums. This probability measure formalizes the 
principle that featuw in an image should be grouped 
together when they participate in a common underlying 
geometric structure. We then present a representation 
scheme in which only those groupings with high proba- 
bility are eqlicitly represented, while lafge sets of un- 
likely grouping hypotheses are implicitly represented. 
We present @mental wul ts  for a variety of real 
intensity images. 

1 Introduction 
The perceptual grouping problem is concerned with 

determining how features should be organized into 
more abstract structures, to be used by higher level vi- 
sual processes. The Gestalt psychologists claimed that 
humans group features based on several principles, in- 
cluding: proximity, symmetry, continuation, closure, 
and familiarity [12]. The work of the Gestalt psy- 
chologists has inspired a number of computer vision 
approaches to perceptual grouping 111 191 [8] [ll] (for 
a review of this work see[ll] and 131). Typically, these 
computational approaches rely on thresholds (e.g., a 
threshold on the difference between orientation of liie 
segments [9], or on the linking radius described in [I]), 
or on certainty measures that are derived in an ad hoc 
fashion (e.g., basing the certainty of grouping two lime 
segments on the proximity of their endpoints [B], or 
using a decaying exponential to define a probability of 
termination for liie segments [4]). 

In this paper we present a probabilistic approach to 
perceptual grouping based on the grouping principle 
that features in an image should be gmuped together 
when they participate in a common undedying geomet- 
ric structure (specific instantiations of this principle 
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are described in Sections 2.1 and 43. Several of the 
Gestalt laws for grouping are instaces of this princi- 
ple, e.g., proximity, symmetry, and continuation. The 
principle is also consistent with the idea of nonacciden- 
talness, that is, the perception of structure that has a 
low probabsty of occurring only by random chance 
implies a single cause for the structure IS] [la! [13]. 

the framework developed in 173 for region-based "age 
segmentation. In Section 2 we define the models re- 
quired by the framework: a parameterized model Qf 
geometric structures (panameter space), a character- 
ization of how well a set of observed image ieatures 
fits to a particular geometric stracture (obsemution 
space), and a probabilistic model that describes the 
image formation process and its effects on the distri- 
bution of features in the image (degradation 9~~~~~ 

Equipped with these models, in Section 3 we deGw 
the probability that a set Ctp features should be grouped 
together, conditioned on the observed image data asso- 
ciated with those features. Computation of this prob 
abiility does not rely on parameter estimation, thereby 
avoiding problems associated with estimation-based 
methods, (e.g., degraded performance with small. data 
sets, and lack of robustness due to outliers). 

The number of possible feature groupings for a typi- 
cal image is intractably large. Thus the formdism pro- 
posed in Section 5 for representing all possible feature 
groupings in an image explicitly represents graupings 
that have high probability, while irnplicitly represent- 
ing h g e  sets of gpupings that have small probabidity. 

The results of using these methods and probabilistic 
models on actual intensity image data are given in 
Section 6. In the final section, Section 7, conclusions 
%re drawn and directions for future work are suggested. 

2 Probabilistic Models 

To r&e our grouping principle we have 

The models imroduced in Section 1 will now be for- 
malized. Researchers have used parts of these models 
in the context of region segmentation (e.g., [GI). 
2.1 Parameter space 

Here we consider geometric structures with fi- 
nite parameterizittions. The corresponding parme- 
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ter space is defined as a vector of random variables, 

take on is denoted by U k .  
As an example, suppose that we wish to find all 

segments in an image that are part of the same straight 
line. Our geometric structure, a straight line, can be 
parameterized by a pair (6,d), where 8 represents the 
normal of the l i e  and d represents the normal distance 
from the origin of the reference frame to the line. Thus 
the parameter space is U : [O, T) x Ft, representing all 
straight l ies.  
2.2 Observation space 

The set of all features in an image is denoted by S. 
Each feature, s k ,  consists of a set of image data points, 

sented by xi = (q,gi). Since noise is introduced into 
the system during the imaging, digitization and edge 
extraction processes, each component of xi is modeled 
as a random variable. 

To evaluate the probability that a set of features 
should be grouped together, it is necessary to  evaluate 
how well the features fit to a single geometric struc- 
ture. For this purpose we define an observation space. 

Let Uk denote the parameter space for a particular 
grouping of features that contains the feature s k .  kt 
S k  denote the set of all random variables associated 
with the data points in feature s k .  Let q i ( s k , u k )  
be a function of the random variables in S k  and the 
parameter space, u k .  The observation space of the 
set s k  is defined as the vector of random variables, 
Yk = [+;, +:, . . . , $73. A vector value that Y k  may 
take on is denoted yk. 

Continuing the example using straight lines as the 
geometric structures, a point, U k  = (&,Cak), in the 
parameter space defines a line in the image plane. Let 
f $ ( u k )  = 0 be the implicit mapping of points in the 
parameter space to a line in the image plane. Let 
d(xi,  q5(uk)) be the signed distance of the data point 
xi to the line described by the zero set of I#J(u~), 

d(Xi, (iJ(uk)) = ZiCOS8k -k y i S ' h 8 k  - dk. (1) 

We define the observation y k  (Sk, uk), to be a vector in 
which each component is the distance of a data point 
to the line # J ( U k ) ,  

uk = [U: ut ... U,]. A V€!&Or value that u k  Can 

s k  = { X i ,  X 2 , .  . . , X p h l } ,  each Of Which Can be repre- 

Y k  ( s k y  uk) = [d(xl,  # J ( u k ) ) 7 .  6(xlS*l, 4 (uk)) ] - (2)  

2.3 Degradation model 
The imaging process introduces uncertainty into 

the measured data. We model this uncertainty by 
a conditional probability density function, f ( y k  luk), 
called the degradation model, which represents the 
conditional density of an observation vector, Y k ,  given 
the parameter value, uk, of the underlying geometric 
structure. Since each data point xi is assumed condi- 
tionally independent of every other data point given 
the parameter vector u k ,  

The degradation model that we have selected is 
ii.d. Gaussian with zero mean and variance u2. Each 
observed point is assumed to be displaced along a l i e  
perpendicular to the ideal line by an amount charac- 
terized by the Gaussian distribution. Using the Gaus- 
sian distribution in (3), we can write the degradation 
model for lines as 

1 J(xi,  f $ ( u k ) )  

f f Y k l u k )  = --( 0 );4) 
xi& 

l3quation (4) can be used to quantify the deviation 
of a set of image data points from a l i e  with given 
parameter UI. 
2.4 Prior model 

The joint pdf of U k ,  f ( U k ) ,  is died the prior model. 
The prior model is a density over the parameter space 
that represents the expected distribution of features 
over the space. We will assume that all feature pa- 
rameter values are equally likely. Thus, f ( u k )  will be 
a uniform distribution over the parameter space. 

3 Probability of Feature Groupings 
Using the models defined in Section 2, we now de- 

velop an expression for the probability that a set of fea- 
tures, (Sa,, .., Sa,}, should be grouped together. This 
hypothesis is represented by where Sa; E S. 
Note that the hypothesis H 1 2  is equivalent to asserting 
that SI and S 2  fit the same geometric structure and 
therefore that u 1  = u 2 .  We denote by P(Hij(yi ,y j )  
the probability that the features Si and Sj associ- 
ated with a pair of observations yi and yj, should be 
grouped toget her. 

If the parameter value associated with a grouping 
is given, the degradation model completely describes 
the density of the corresponding observations, which 
implies 

f ( Y 1 7 Y 2 1 u 1 7 u 2 )  = f ( Y l l U l ) f ( Y 2 1 U 2 ) -  ( 5 )  

Thus, if the parameter value of the grouping to which 
a feature belongs is known, no other observations will 
&et the density of the observation of that feature. 

We assume that Y 1  is marginally independent of 
Y 2  given --H12, i.e., 

f (Yl7 YZl - -H12)  = f ( Y d f ( Y 2 ) .  (6) 

For instance segments that are not on the same l i e  
are unrelated (independent). Other models of the re- 
lationship between observations that do not belong to 
the same geometric structure could also be used. 
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By applying Bayed rule and (6) the probability that 
two features participate in the same geometric struc- 
ture can be written as 

The first ratio in (7), -= represents the prior 
probability that two features should be grouped to- 
gether while the other ratio in the denominator of (7), 

represents the effect that the observed data have on 
the probability of a grouping hypothesis. 

The marginal pdf f(y1) can be written as 

f ( Y d  = Jf(Yllul)f(ul)dul. (9) 

This expression for f(y1) involves the degradation and 
prior models defined in Section 2.3. 

If H12 is true, then y1 and y2 participate in the 
same geometric structure, i.e., u1 = u2 = 1112. Using 
(5) we may write 

f(Yl,Y2l~l2) = /f~Yllu12)f(Y21u12)f~U12)du12. 

/f(Yllul)f(ul)dul Jf(y2Iu2)f(u2)du2 

Jf(Y1 IU12)f(Y21U12)f(Ul2)~~12 

We may now rewrite (8) in terms of the degradation 
and prior models as 

* (10) 

For the line grouping application substitute the 
degradation model of (4) into (9) to obtain an expres- 
sion for f(yk) as follows: 

(11) 
Using (11) in (7) we can determine the probability that 
any two sets of points are samples of the same line. 

Our experiments require computing the probability 
of the hypothesis that n features are consistent. We 
address these computations, and the numerical com- 
putations of the integrals, in [3]. 

4 Bilateral Symmetries 
while features that have exactly the same geomet- 

ric structure can be grouped, the framework also al- 
lows for a more general application - that of grouping 

Figure 1: Symmetry parameterization. 

features that participate in geometric structures with 
common characteristics. In this situation some, but 
not all of the parameters of the features are the same. 
We demonstrate such an application by determining 
groups of segments that participate in bilateral sym- 
metries with parallel axes. 

The parameter space used for the symmetries is 
{(8,;a,A) : 8 E [0,2~) ,d,A > O,a E [O,r)), where 
symmetry contours have been restricted to straight 
lines. Two parameters, 8 and d, define the axis of 
symmetry while a and A define the sweeping rule, as 
shown in Figure 1. 

To establish an observation model corresponding 
to bilateral symmetries we first note that a point 
(e, d, a, A) in the parameter space defines two lines 
in the image plane labeled as lines B and C in Fg- 
ure 1. These limes can be expressed implicitly using 
41(uk) and &(U&). We have 

41,2(~k) = ((2, Y) : z ms(ek f ak) -t Y sin(ek f ak) 
-(dk f Ak) C O S ( ~ ~ )  = 0). (12) 

Let 6(xi,&(uk)) be the displacement of the point 

The observation for two line segments Skl and Sk2 
xi from the liie (pj(uk) where j E {l,Z}. 

that form a symmetric relationship is defined as 

Y k ( S k l , S k 2 , U k )  = 
[ 6(Xl1,41(Uk)), - ~ - , ~ ~ x l l s h l l ~ 4 1 ~ ~ k ~ ~ ,  

4x21, QLW), . - . , m 2 , s h p , ,  &(Uk)) 113) 

To compare symmetries with the same axis, but dif- 
ferent sweeping rules, it is necessary to generalize the 
notion of the hypothesis. Recall that H12 represented 
the hypothesis that u1 = u2, i.e. O1 = 82, a1 = a2, 
dl = a$, and A1 = Az. We now define Hi2 to be the 
hypothesis that fJ1 = O2 and dl = d2. Smce we are in- 
terested only in colliiear axes, no restrictions will be 
placed on the sweeping rules, that is, the relationship 
of a1 to a 2  or the relationship of A1 to A2- 

The expression for f(y1, y2(Hi2) is 
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Figure 2: Covers of A ~ .  - 
Figure 3: ll cover induced by r1 cover. 

The sweeping rules are independent, so we can sepa- 
rate the integrals over a and A to obtain 

4 1 
2n m 

= 4 1, {J_:J_”, f ( ~ l I ( ~ 1 2 Y ~ l 2 ~ Q l Y ~ l ) )  

J_: I_m_ f(Y21(612YdlS,CY2,A2)) 

f(42,d12,Ql,Al)C1Ql dAl 

f(612, d12, a 2 ,  A2)&2 dA2 1 d 1 2  812- (14) 

Equation (14) can be used in (7) to determine 
P(Hi21yl,y2), the probabiiity that a pair of bilateral 
symmetries have collinear axes. Our results use a fur- 
ther generalization to group bilateral symmetries with 
parallel axes. 

5 Computing Distributions 
In Section 5.1, we develop a framework for obtain- 

ing distributions over feature groupings. Then, in Sec- 
tion 5.2, we use the framework for feature groupings 
in developing a framework for obtaining distributions 
over partitions of the feature data sets. 

The idea behind the framework is that the prob- 
ability density will be highly concentrated in a small 
portion of the space of possible results (partitions or 
feature groupings). We begin with a very coarse repre- 
sentation of the probability distribution over the entire 
space and successively refine the representation in the 
area of highest density until a suacient approximation 
to the probabdity distribution has been obtained. As 
we shall. see, the condition for a sufficient approxima- 
tion is well-defined. 

5.1 Distributions over Feature Groupings 

We will demonstrate the incremental refinement 
procedure used to determine the distribution of prob- 
ability via an example; the concepts presented in the 
example are formally defined in [3]. 

Suppose that the following line segments have been 
extracted from an image; thus, S = (SI, S2, S3, 5’4). 

Let ~i be the set of all feature groupings containing 
Si. A subset of ~i is called an event. The space AI is 
represented in Figure 2(a) and is labeled event B1. 

The space of TI can be divided into two events (sets) 
as shown in Figure 2(b). One event, Bz, consists of all 
feature groupings that contnin SI, but do not contain 
5’2, i.e. all groupings for which H1,2 is false. In our 
example, the probability of B2 is .7. The other event, 
B3, consists of all feature groupings that contain both 
SI and S2, i.e. all groupings for which H1,2 is true. 
The events B2 and B3 form a partition of TI ,  referred 
to as a cover of TI. Thus, P(B3) = 1 - P(B2) = .3. 

Each event can be completely specified by two sets 
of features rather than enumerating every grouping in 
the event. The first set, I, contains the features that 
are included in every grouping in the event while the 
second set, E, contains those features that are not in 
any grouping in the event. 

Individual feature groupings correspond to pairwise 
disjoint events; thus the probability of each event in 
the cover is the sum of the probabilities of the indi- 
vidual feature groupings contained in the event. In 
Figure 2(c), the feature grouping Be has a probability 
greater than the other three events in the cover. It is 
not necessary to refine events B2 and B5 further in or- 
der to know that no feature grouping in either of these 
events has a greater probability than that of Be. Thus, 
those sets with high probability can be refined to in- 
dividual feature groupings without ever spending time 
exploring parts of the cover with very low probability. 
5.2 Partitions of Feature Groupings 

The method of determining distributions on par- 
titions of S builds on the refinement procedure just 
described. Let II be the set of all possible partitions 
of S. A subset of II is called a partition event. A 
partition event that has only one element represents a 
single partition of S and is called a ground event. 
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figure 4: Refinement of x i .  

Each cover on Ti induces a cover on II since every 
partition in 11 contains exactly one feature grouping 
that includes Si. For example, the cover shown in 
Figure 2(d), divides II into eight sets, as shown in 
Figure 3. 

A ground event in r1 represents one feature group- 
ing in a partition, but there may be many partitions 
that include a particular feature grouping. For exam- 
ple, in Figure 3, all partitions in A7 contain the feature 
grouping {SI}. 

The II cover can be refined further by focusing on 
the feature grouping containing one of the features not 
in the 7c1 ground event feature grouping. We can refine 
A7 by looking at the feature grouping containing SZ. 
Let x i ,  shown in Figure 4(a), represent all possible 
feature groupings which contain SZ, (but not SI). The 
sample space is refined in the same way that 7c1 was 
refined. 

The set ri is formed using the elements of S' = 
S - {SI}. When S(') = 0, all the features are in a 
grouping and a II ground event has been reached. 

6 Experimental Results 
Experimental results are shown in Figures 5 - 13. 

The initial input to our algorithms was obtained by 
processing the image with a Canny edge detector 121, 
yielding edge contours represented as sets of connected 
points. These edges were divided into straight seg- 
ments using an algorithm simiiar to the iterative end- 
point fitting algorithm in [5]. Deviations of the points 
in a segment from linearity are treated as noise. 

The distribution of most probable partitions gives 
an indication of how rapidly the probability of alter- 
nate partitions decreases. The similarities of the parti- 
tions may be noticed by a high level process and used 
in conjunction with additional information to make 
distinctions between the most probable partitions. 

The most probable partition of line segments was 
used as input for the symmetry axis partitioning. Par- 
titions of parallel axes are shown as a series of figures. 
All axes in a figure belong to the same group. Each 
figure shows the axes in black. For reference, the input 
lines are shown in gray. The algorithm groups sets of 
data, but does uot estimate any symmetry axes. We 
have estimated the projection of the l i e s  of symmetry 
onto the axis for visualization purposes. 

This example, while very simple, demonstrates the 

information that can be obtained from the probabdi- 
ties of the top several partitions. n o m  the distribution 
of the top five partitions, it can be seen that the most 
likely partition is significantly more likely than any 
other partition. Thii is due to the fact that every in- 
put line carries significant information and leads us to 
conclude that no other partitions need be considered 
as viable alternative explanations of the data. 

7 Conclusions and Future Research 
We have presented a framework for determining the 

most probable partitions of data sets, representing im- 
age features, into feature groupings. The framework 
was demonstrated to  perform well in two examples. 

Other models of features and noise can be used in 
the framework. For example, different contour models 
such as B-splies could be used. For more complex 
models and high dimension parameter spaces, the re- 
quired integrals become dfficult to calculate, so sim- 
plifications and approximations may be necessary. 
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Figure 5: 512 x 512 image. 
T0 <> 

, \/ , 

Figure 6: 
likely partitions. with straight l ies.  

Probability of 10 most Figure 7: Edge detector output fitted 

-. 

Figure 8: Four most probable partitions. Figure (a) is the most probable. 

Figure 9: 512 x 512 image. 
Figure 10: Probability of five 
most likely partitions. 

Figure 11: Straight edge seg- 
ments. There are 9 lines. 

Figure 12: Parallel symmetry axes. This is the most probable partition of the 24 pairs of segments that have a 
significant overlap into sets of parallel axes. Each figure shows all the axes in one group of parallel axes. 

(4 (b) ( c )  (4 (4 
Figure 13: Parallel symmetry axes. This is the second most probable partition. Each figure shows all the axes in 
one group of parallel axes. 
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