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ABSTRACT 

In this paper, we describe an approach to planning sensing strategies 
dynamically, based on the system's current best information about the world. Our 
approach is for the system to automatically propose a sensing operation, and then 
to detem'ne the maximum ambiguity which might remain in the world description 
if that sensing operation were applied. When this m i m u m  ambiguity is 
sufficiently small, the corresponding sensing operation is applied. To do this, the 
system formulates object hypotheses and assesses its relative belief in those 
hypotheses to predict what features might be observed by a proposed sensing 
operation. Furthermore, since the number of sensing operations available to the 
system can be arbitrarily large. we group together equivalent sensing operations 
using a data structure that is based on the aspect graph. Finally, in order to 
memure the ambiguity in a set of hypotheses. we apply the concept of entropy 
from information theory. This allows us to determine the ambiguity in a 
hypothesis set in terms of the number of hypotheses and the system's dirtribution 
of belief amongst those hypotheses. 

1. INTRODUCTION 

With current techniques in geometric modeling, it is possible to generate. 
object models with a large number of features and relationships between those 
features. Likewise, given the current state of computer vision (both 2-D and 3-D) 
and tactile sensing, it is possible to derive large feature sets from sensory data. 
Unfortunately, large feature sets can also require exponential computational 
resources unless one takes advantage of the fact that most objects can be recog- 
nized by a few landmarks. The problem then becomes one of developing computer 
procedures capable of analyzing geomemc models to yield the most discriminat- 
ing feature sets. In solving this problem, one has to bear in mind that in the 
robotic cells of tcday we have available to us a variety of sensors, each capable of 
measuring a different attribute of the object. 

For it to be useful to robotic assembly, we need to add another dimension to 
the problem as stated above. Say, we have a robot trying to determine the identi- 
ties of the objects in its work area. The robot should only invoke those sensory 
operations that are most relevant to the disambiguation of whatever hypotheses the 
robot might entertain about the identities of those objects. Therefore, the most 
discriminating features invoked by the robot must be determined at run time and, 
of course, must make maximum advantage of all the sensors that are available. 

Previous work on sensor planning has been divided into two distinct areas. 
One of these areas is concemed with sensor placement, This problem is to place 
the sensor so that it can best observe some feature. (which is predetermined) or 
region of 3-space. The other problem is to choose a sensing operation which will 
prove the most useful in object identification and localization. 

In the area of sensor placement, Connolly [3] has implemented a system 
chooses sensor locations to minimize the number of view required to build up a 
complete ocuee model of a scene. Kim, et. al. [14] have developed a system 
which determines successive camera viewpoints so that the most distinguishing 
features of the object can be observed. Cowan and Kovesi [4] automatically select 
sensing strategies based on object and camera models such that a number of con- 
straints are simultaneously satisfied (e.g. that the spatial resolution be better than 
some minimum value, that the surfaces to be viewed lie within the camera's field 
of view). 

Work on automatically determining optimal sensing strategies has been 
done by Ikeuchi [131, Hanson and Henderson [81, and Hager and Mntz 171. In the 
first two of these, sensing strategies are precompiled into search trees. The run 
time selection of sensing strategies amounts to choosing a branch in the 
precompiled search tree based on the information which has already been obtained 
by the sensing system. In the third of these, decision theoretic techniques are 
applied to the problem of selecting optimum sensing strategies. This is accom- 
plished by treating sensors as noisy information sources, associating a risk func- 
tion with each sensing operation, and selecting the sensing operation which 
minimizes the risk function. 

The work that we present in this paper extends the work cited above in a 
number of directions. First, we give the system the ability to choose sensing stra- 
tegies based on current hypotheses about the identity and pose of an object which 
is being examined. It is possible that each such hypothesis will correspond to a 
different object. Furthermore, the choices of sensing strategies are not limited by 
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the use of a single type of sensor. The sensory types currently incorporated in the 
system include a 3-D range scanner, 2-D overhead cameras, a manipulator held 2- 
D camera, a Force/Torque wrist-mounted sensor, and also the manipulator fingers 
for estimating the grasp width. The vision sensors can be used to examine objects 
from arbitrary viewpoints, while the manipulator and F/T sensor can be used to 
measure other features such as weight, depth of occluded holes in the object, etc. 

It is important to realize that with these additional sensory inputs, we can 
discriminate between object identities, aspects and poses that would otherwise 
appear indistinguishable to just a fixed viewpoint vision-based system. Our sys- 
tem is capable of dynamic viewpoint selection if that's what is needed for 
optimum disambiguation between the currently held hypotheses. 

We attack the problem of viewpoint and sensor-type selection as follows. 
Once the system has a working set of hypotheses (which is initially developed 
after application of an arbitrary sensing operation, say the 3-D range scanner), 
candidate sensing operations are automatically proposed and evaluated with regard 
to their potential effectiveness, given the current hypothesis set, This evaluation is 
performed as follows. For each hypothesis in the current hypothesis set, the sys- 
tem determines the set of features that would be observed by the candidate sensing 
operation if that hypothesis were correct, Using these predicted features, the sys- 
tem determines the hypothesis set that would be formed if these features were 
actually found by some sensing operation. The ambiguity of this predicted 
hypothesis set is calculated and noted. This is repeated for each hypothesis in the 
hypothesis set, and the maximum value of the ambiguities is associated with the 
proposed sensing operation. When a proposed sensing operation's maximum 
ambiguity is sufficiently low, that sensing operation is selected for application. 

In the remainder of the paper, we will describe each of the above steps in 
some detail. In Section 2, we will introduce our object representation. This 
representation is used both to quantize the space of sensing operations and to 
predict the features which would be observed by a candidate sensing operation. 
Section 3 describes how our system generates and refines hypothesis sets, as well 
as how uncertain reasoning is implemented in the system. In Section 4, we define 
the measure of ambiguity which our system uses. The measure that we describe is 
based on entropy from information theory. In Section 5, we describe the types of 
sensors our system uses, and the types of features that they can be used to detect. 
Section 6 brings together the results of Sections 2 through 5 and presents the for- 
mal algorithm for selecting the next best sensing operation. Finally, in Section 7, 
we describe some of our preliminary experimental results. 

2. OBJECT REPRESENTATlON 

The object representation used in our system plays two key roles. First, it 
allows us to quantize the space of sensing operations. This is a result of the fact 
that the representation groups together sets of object features which can be viewed 
from a single viewpoint (such a set of features is referred to as an aspect). This 
allows us to group together all viewpoints which can observe the same aspect. 
Second, the representation allows us IO easily determine the features of an object 
which will be. observed by a particular sensor from a particular viewpoint relative 
to the object. This is done by determining which aspect of the object will be 
observed from the particular viewpoint, and then looking up the object features 
which are associated with that aspect. In the remainder of this section we will 
describe aspect graphs and how they are derived by our system. 

The aspect graph was originally developed by Koenderink and van Doom 
[151 (who referred to it as the visuul potential) to characterize the visual stimulus 
produced by an object when viewed from different relative positions. They 
developed a function for the "sensory inflow" produced by an object, i. terms of 
the invariant properties of the object and the relative positions of the viewer and 
the object. The local behavior of this function is defined in terms of the deforma- 
tion of the retinal images through changing perspective (and is of no particular 
relevance to our work). The global behavior of the function is defined in terms of 
its singularities. TWO types of singularities have been considered point singulaxi- 
ties, which determine a system of protrusions facing the observer, and line singu- 
larities, which correspond to the curve on an object that divides the it's surface 
into visible and nonvisible regions. An aspect is characterized by the structure of 
these singularities for a single view. From most all vantage points, an observer 
may execute small movements without affecting the aspect. However, when an 
observer's movement does cause the structure of the singularities to be changed, 
an event is said to have occurred, and a new aspect is brought into view. An 
aspect graph is created by mapping aspects to nodes and mapping the events that 
take the viewer from one aspect to another to arcs between the corresponding 
nodes. 

In our work, we are not so much interested in retinal images as wc are in 
features which can be observed by the various sensors. Thus. wc characterize 



aspects, not in terms of the singularities in the function which defines the visual 
idlow, but in terms of observable features. In particular, we define an aspect to be 
a set of features which can be observed simultaneously from a particular 
viewpoint. When a change of viewpoint causes a previously visible feature to no 
longer be visible, OT a new feature. to come into view, an event occurs. We use the 
aspect graph to group viewpoints that see the same aspect into equivalence classes. 
Associated with a node in the aspect graph is the set of viewpoints from which that 
aspect can be observed. Arcs in the graph connect nodes with adjacent 
viewpoints. Also, with each node in the aspect graph, we associate a principal 
viewpoint, which is essentially a "representative" viewpoint for the aspect. 

Aspect graphs for objects can be generated analytically or by an exhaustive 
examination of the object Analytic techniques have been reported by Castore and 
Crawford [l], Stewman and Bowyer [20], and Gigus and MaliL 161. 

Our system generates aspect graphs exhaustively. This is done by creating a 
CAD model of the object, centered within a tessellated viewing sphere (we 
currently use 60 tessellations, which are derived as in [221). The geome4ric 
modeler is then used to view the object from the. center p i n t  of each tessellation, 
and the set of visible features is recorded. Using this informatiOn, it is a simple 
matter to genemte the aspect graph. Tessels that see the same feature set are 
grouped togethex into nodes. The arcs between nodes are generated using tessel 
adjacency. Finally, each aspect is assigned a principal viewpoint, which is defined 
as the average location of the centers of the viewing tessels associated with the 
aspect, with the constraint that it lies within a tessel that observes the aspect. 

We quantize the space of sensing operations by only considering viewpoints 
which correspond to the principal viewpoint of some aspect of a hypothesized 
object. Furthermore, once a sensing operation is proposed, the set of features 
which we expect that operation to find is simply the set of features in the aspect 
which that sensing operation will observe. 

3. GENERATING HYPOTHESIS SETS 

Generating, and subsequently refining, hypothesis sets begins by matching 
sensed features to model featlaes, and then assessing the quality of those matches. 
In ow system, a sensed feature can be matched to any of the model features which 
have attributes that are similar to those of the sensed feature. The degree of simi- 
larity will determine the quality of the match. In order to reason about the 
hypotheses derived from these matchas, the system must be able to represent its 
relative belief in the various feature matches. Furthermore, since an object 
hypothesis will caresppnd to a number of feature matches, the system must be 
able to combine the bellefs in the individual feature matches to assess its belief in 
an object hypothesis. 

When evaluating belief in an object hypothesis, feature matches are not the 
only source of information. We also determine the relationships between sensed 
features and compare these to the relationships between the corresponding model 
features. As their similarity increases, so Qes the confidence in the corresponding 
hypothesis. This allows us to accumulate evidence which supporu, a hypothesis 
based on its relational consistency. It also allows us to discount hypotheses in 
which the relationships between sensed features are inconsistent with the 
corresponding model relationships, thus pruning the numbex of hypotheses which 
the system must maintain. 

The 6nal source of evidence we consider evaluates the difference between 
the expected and actual s e d  data Once an object hypothesis has been esta- 
blished, we can derive a pose bansformation that expresses the 
position/orientation of the object if that hypothesis is c~rrect By using the pose 
transformation in conjunction with information about the sensing operation that 
was performed. we can determine what "should have been observed" by the se" 
if that hypothesis were correct. Of course. we cannot expect that sensing will 
always find every feature. which might be present, so we assign values to each 
object feature which reflect the pminence  of that feature. We then evaluate. the 
quality of the object hypothesis by noting the prominence of the expected features 
which were (and were not) matched. 

In our system, we use the Dempster-Shafer @S) theory of evidence to 
implement our reasoning system. For the sake of those not well acquainted with 
the DS theory, we will now digress to give a very brief inonduction. Those fami- 
liar with bpa's, belief functions, Dempster's rule, and coarsening and refining 
might want to skip this section. Those completely unfamiliar with these ideas 
might want to investigate [lq. 

3.1. The Dempster-Sharer Theory 
In the DS theory, all possible propositions are grouped together in the set 8, 

which is referred to as the frame of discemment. When a proposition corresponds 
to some subset of 8, it is said that 8 discems that proposition. 

Associated with each subset of 8 is a basic probability assignment (bpa) 
which is the measure of belief in exactly the proposition represented by that sub- 
set. A bpa is a function m: 2e + [OJ], such that: 

m(0)=0 
C m(A)= 1 

A c e  

In order to find the total belief in a d n  proposition, we must examine the 
belief in that proposition 89 well as every proposition that implies it. This is 
expressed by the function Bel: 2* 4 [0,1]. The toral belief in a proposition. A, is: 

W A ) =  Z m(B) 
B C A  

If we have two belief functions with bpa's ml(.) and mk),  then we can 
combine these using Dempster's rule of combination: 

E m,(A)mz(B) 
A n B - e  

m(@= 

where 

K= ml(A)mz(B) 
A n n - 0  

Note that when K = 1, the two belie~functions flatly contradict one another, and 
thus their combination does not exist. 

The sets of propositions involved in different sensor measurements -- :> e 
propositions would be elem~lts of the respective. frames of discernment -- will m 
most cases not be identical. when combining evi- from different measure- 
ments, we must therefore 6rst establish a common frame of disce"ent in which 
the disparate sets of propositions cOrreSpOnding to diffmnt sensory measurements 
would all become discernible. An important point to note is that the elements of a 
frame of discernment do not have to represent all the possible outcomes in an 
experiment at their finest level of detail. but only the propositions relevant to a par- 
ticular measllrement. 

....., to a common 
frame n is accomplished by specifying the mapping funct~ons 

The process of refining frames of discunment. e!, 

(4: 2a +P 
which must obey the following pmperties 

q((((e1) n M e ' ) )  = 0 far e # e' 
U (4w)=n 

e. a 
The first property says that any proposition that is disuaned in. say. ei must also 
be discernible in n. The second propty requires that the mapped propositions in 

for different propositions in e, be disjoint Finally, the third property specifies 
that if n is a refinement of e,, then no proposition in n be outside the range of 
mappings corresponding to the different pmpositions in q. 

To illustrate these notions, Consider the two cubes shown in Fig. la; the 
cube on the left has two mund holes of unequal diameters, and the cube on the 
right has one face with a round hole and two faces with rectangular holes of dif- 
ferent sizes. For a sensory measurement from the direction shown in Fig. lb. the 
frame of discernment might be 

el= (a.c,f) 
since the sensed face resembles, to some extent, the three faces a.c, and f. Now 
consider the measurement from the direction shown in Fig. IC. The frame of dis- 
cernment for this meaSurement might be 

In order to combine the evidences generated by these two measurements, we first 
construct a refinement of the two frames. The following is a valid refinement 
which obeys the above three properties: 

3.2. Generating and ReRnmg Hypothesis Sets 
In our previous work [121, hypothesis generation and refinement was a fairly 

simple plocess. Each se& feature was matched to all feasible model f e a m  
(where feasibility was determined by the similarities of the attributes of the sensed 
and model features). These matches were then pruned by enforcing relational 
constraints and aspect consistency. Relational consistency was determined by 
examining the similarity of the relationships between the sensed features and the 
corresponding relationships between the matched model features. If the similarity 
was below some quantitative threshold, the hypothesis was discarded. Aspect 
consistency (which will be discussed in more detail later) ensured that prominent 
object features were matched if they could be observed by the performed sensing 
o p t i o n .  If they were not matched, the corresponding hypothesis was discarded. 

Our current system retains feature matches, relational consistency and 
aspect consistency as the three measures of a hypothesis' credibility, but, thres- 
holding has been replaced by reasoning with partial evidence. Now, a hypothesis 

* In a recent paper, Humme1 and Landy [ll] have demonshated that this normali- 
zation is not strictly necessary. This was shown by conseucting a homomorphic 
mapping from the space of unnormalized belief states to the space of standard DS 
belief states. 
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Note that face a is a unique feature, since no other model feature appcars idcntical 
to it. Further note that the sum of the confidence valucs assigncd by f,,,(.) nccd no1 
be equal to unity. 

In order to transform f,() into a hypothesis set with a valid belief function, 
we must transform the confidence values into bpa’s. This simply requires normali- 
zation of the confidence values, since the range is already [0,1]. We also map the 
unique features to the set of model features that they represent, so that the domain 
of mi(,) will be the set of model features rather than the set of unique features. 

SI f 

Fig. 1: (a) shows two simple objects. (b) shows the sensed data as seen 
from S 1 (c) shows the sensed data as seen from S2 

is given credibility which reflects how well the three crikria above are satisfied. 
We use three bpa’s: mk). *) and m,() to assign belief to object hypotheses 
based on the quality of the feature matches, relational consistency and aspect con- 
sistency. We combine these using Dempster’s rule of combination to determine 
the total belief in a hypothesis. If a current hypothesis set already exists. the new 
belief function must be combined with the belief function for the existing 
hypothesis set to produce the revised hypothesis set and the associated beliefs. We 
will now describe how the bpa’s mr(), m,() and m,() are generated, and how they 
are. combined to define belief in sets of object hypotheses. 

32.1. Consistency of Feature Matches 
When a sensing operation finds a set of sensed features, the first step in gen- 

erating a hypothesis set (or refining the current hypothesis set, if it exists) is to 
match those sensed features to model features and derive a belief function which 
expresses the belief in each object hypothesis that can be derived from those 
matches. We do this in two steps. First, individual belief functions are derived for 
each sensed feature. These belief functions define the possible matches between 
sensed and model features, and the corresponding evidence which supports those 
matches. These individual belief functions are then combined to form object 
hypotheses which represent possible combinations of the feature matches. 

The combination of the individual belief functions cannot be done by simply 
invoking Dempster’s combination rule. The reawn for this is as follows. For each 
sensed feature, Si, we derive a bpa. mi(), which defines our belief in proposition of 
the. form “sensed feature matches model feature f.” In other words, e,, the 
frame of discernment for a particular mi() only includes propositions about the i” 
sensed feature. In order to combine these individual bpa’s. we must h s t  combine 
the feature matches represented by each e, to obtain object hypotheses. This is 
done by constructing a common refinement, R, of all 0,’s. then transforming the 
q()’s to reflect belief over n. We can then combine the transformed mi()’s. 
Since the hypotheses discemed by R are obtained by combining feature matches, 
each element of R will be an object hypothesis which consists of feature matches 
(i.e. possible matches between sensed and model features). 

There. is one further difficulty in the construction of mk). Matching sensed 
features to model features is a local operation, so no relatiod constraints can be 
used at this stage. In other words, a sensed feature will be matched to a model 
feature based solely on its similarity to that model feature. Because of this. it is 
possible that distinct model features will be indistinguishable to certain sensors. 
For example, a cube with holes of different radii in two adjacent faces has a 
unique labeling of faces. However, an observer viewing a single face which does 
not contain a hole has no way of knowing which face it is. Because of this, our 
system groups together features which appear equivalent without the aid of rela- 
tional information. Each such grouping corresponds to one unique model feature. 
The set of unique model features is denoted by &. The set of all model features 
is denoted by M. A function, U :  M,, -+ M maps unique model features onto the 
appropriate subsets of M. In the cube example, if the faces of the cube without a 
hole are labeled a,b.c. and d, and the unique feature X corresponds to a face 
without a hole, then U@) = (a,b,c,dJ. 

In addition to U(), we need a function to map sensed features onto unique 
features, along with a confidence in that mapping. For this purpose., we provide 
the function. f, : S + 2Kx[0*’1. In other words, f,(S) is a set of 2-tuples, each of 
which consists of an element of & and a confidence value that lies in the closed 
interval [OJI. How f,(.) is obtained depends on the sensing operation which is 
being used. In general. f,() depends on the similarity between such sensed and 
model feature attributes as area, surface type, and surface curvature. 

To illustrate U() and LC). consider again the example shown in Fig. 1. 
Since faces c and f appear identical, we group them together and give them the 
unique feature label f.,. Now, if we obtain SI as shown in Fig. lb, since the 
senscd feature closely resembles face a and slightly resembles the unique feature 
f,,, we might have: 

f,W = ( -=a.0.9>,<fU,.0.3 > 1 
131 

for each 4.0 E f,(SJ. Note that since the range of u(F) is 2’, it is possible that 
mi() will assign nonzero belief to non-singleton subsets of M. When this occurs, 
it reflects the system’s ignorance about which match for a particular sensed feature 
is best. In the example just given, we would have: 

ml((a))=-=0.75 0.9 

m,(( c.f J) = - 0.3 = 0.25 
I .2 

1.2 

Once we have derived m,(.) for each of the i sensed features, all that remains 
is to combine these using Dempster’s rule to obtain mk).  Unfortunately, as stated 
earlier, this is not trivially done, since each mi() is associated with a unique frame 
of discernment. We must first find a common refinement R of all ei’s and per- 
form the combination in the frame 51. We construct R as follows: 

n= [(el,ez, ... e,) I eic e,) 
That is. each element of R is a collection of feature matches, and each possible 
combination of feature matches (for the n sensed features) is represented in R. In 
other words, R discems propositions of the form: “sensed feature S, matches 
model feature fil . . . sensed feature S, matches model feature f,.” 

We can also define q, the refining from 0, to 51 as: 
q ( a )  = (e I 0 E 2n and a€ 8 J 

for singleton subsets of ei, and 

N A ) =  U w((0)) 
@ € A  

for A c 8. In other words, *(a) is the subset of R that contains all hypotheses 
which match sensed feature S, to model feature a. 

We now combine the mi()’s to obtain mk).  In order to do this, we need to 
transform the mi()’s so that they reflect belief in propositions in the frame R. To 
do this, for each mi(.), we construct q’(.) as follows: 

m,’(w(e)) =mi@) 
Thus, the belief that q(.) reflects in a proposition is passed on to the subset of R 
which corresponds to that proposition. 

Now, we can apply Dempster’s rule: 

z l!Im:(eJ 

1 - c I h V i )  

% n % - . . n % = A  1 
mAA) = 

%ne,..-n0.=0 1 

As an example, consider that we have two sensed features, SI and S2. Assume that 
SI can be matched to the model features a,b and that S ,  can be matched to the 
model features c,d and that the nonzero ml() and mz() are: 

md(a1) = ml((bl) = 0.5 
m,((c.dJ)= 1.0 

m~’(I[a,c). (a,d)))=0.5 

Then we construct ml’() and mi ( )  and obtain the nonzero values: 

m,Y(Ib,c), [bd l  ] ) = O S  

~~(((a.CJ,(b,c).(a,dJ.(b,d)J)= 1.0 

3.2.2. Relational Consistency 
Once we have derived md.), we have established a set of object hypotheses 

based on the possible identities of the n features which were just sensed, say by the 
k* sensing operation. We are now in a position to combine these hypotheses with 
the hypothesis set that the system might have already developed This will pro- 
duce a refined set of hypotheses to which we will apply our relational consistency 
measures. We will denote the system’s active hypothesis set by Rk-,. We will use 
Q, to denote the hypothesis set which results from combining with 51 (R 
being the hypothesis set obtained using local feature matches). 

The construction of R, is similar to the construction of R in the previous 
section. In particular, we define D, as follows: 

5 1 k = ( @ u w l @ E  f ikk- lrW( 511 



That is, Qk is the set of all hypotheses which can be obtained by combining the 
feature matches of an existing hypothesis (i.e. some hypothesis in G-,) with the 
feature matches represented by a hypothesis in R. 

While there will be a large number of these hypotheses, many of them can 
be eliminated by the application of relational constraints. For example, it is quite 
likely that some of the hypotheses will match sensed features to model f e a m  
which are not in the same object. Since we are not currently dealing with occlud- 
ing objects, we do not allow such matches. This constmint is expressed by the bpa 
mot). (This restriction will be removed if we later allow for occlusion.) In addi- 
tion to object consistency, we use a number of other bpa's in the. derivation of 
m,(.). These relationships vary based on the type of sensing used For example, 
when 3-D features are used, they include dot products of surface normals and 
location of the feature relative to the object's base coordinate frame. These are 
represented by the bpa's m,() and ml(). respectively. 

Object consistency is enforced regardless of the type of sensing that was 
used to derive the features. We want me() to place all of its belief in the subset of 
hypotheses which contain only consistent matches, and no belief in any hypothesis 
which contains an inconsistent match. A hypothesis contains an inconsistent 
match if any two sensed features are matched to model features f m  different 
objects. Thus, for a hypothesis set 4. we define 

= ( 8 I 8 E C& and 8 contains no inconsistent matches ) 

and then establish m,() as 
mi,(%)= 1.0 

As we have mentioned, there are a number of additional belief functions 
which enter into the derivation of q(), depending on the type of features which 
are involved Rather than describe all of these here, we will present some exam- 
ples in later sections of the paper which deal with the specific sensors. 

323. Aspect Consistency 
The final bpa which we consider in evaluating the quality of an object 

hypothesis is based on the idea that the system can detamine which features 
should be observed if a pose transformation for the hypothesis has been deter- 
mined, and the type of sensing operation which was applied is known. This bpa. 
mac), is derived by accumulating positive evidence when expected features are 
matched. The concept of aspects is important to this process. 

In our system, the features associated with an aspect are given weights 
which reflect the likelihood that they will be found by a sensing operation. These 
weights are a function of the type of sensor used, and how conspicuous the 
features are to that sensor. We will use wi(f) to represent the weight given to 
model feature f i n  the i"' aspect By using wi in conjunction with the quality of the 
feature matches in an object hypothesis, we derive the aspect consistency. Let q(f) 
represent the belief associated with matching model feature f to sensed feature &, 
1 c k < n  (i.e. if f is matched to one of the Si, then we assign q(f) the value which 
reflects the quality of that match). The value of q(f) is readily obtained by refer- 
ring back to the values of the q()'s from Section 3.2.1. Furthermore, let F ~ ( 8 )  
represent the set of features which is visible from aspect i if the object hypothesis 
8 is correct Then, if the hypothesis 8 supposes that the object is being viewed 
from aspect i: 

caw= c wi(oq(o 
f e  FdW 

Again, we find ma() by normalizing C,(). 

4. MEASURING AMBIGUITY IN A SET OF HYPOTHESES 

Now that we have described how hypothesis sets are generated and subse- 
quently refined to admit new evidence, we need a means of characterizing the 
ambiguity in a hypothesis set. In our previous work, the ambiguity in a hypothesis 
set was trivially defined as the number of hypotheses in the set. Of course that 
approach will not work once an uncertain reasoning scheme is put into place. 
Consider, for example, a case in which none of the initial hypotheses is ever com- 
pletely discounted although eventually a single hypothesis accrues enough evi- 
dence to emerge as the obvious choice. Clearly, a more sophisticated measure of 
ambiguity is needed. 

Before defining our measure of ambiguity, let us enumerate the qualities that 
it should possess. If we have a set of hypotheses, with an associated bpa m(8). we 
want to characterize the amount of choice that the system would be required to 
exercise in order declare a single hypothesis as valid. The more choice required, 
the higher the amount of ambiguity. Thus, our measure. of ambiguity should be 
highest when all hypotheses are equally likely. Stated another way, given two 
hypothesis sets, the set whose belief function shows the greater dispersion should 
have less ambiguity (by dispersion, we mean the degree to which a belief function 
differs from a uniform distribution). Furthermore, if all hypotheses are equally 
likely, the ambiguity should increase with the number of hypotheses. Of course, if 
a hypothesis set has a single element, then its ambiguity should be 0. 

Another desirable quality for a measure of ambiguity is that it be consistent 
across levels of a hierarchical hypothesis space. In particular, if we establish 
hypothesis sets in a hierarchy, then the ambiguity in a hypothesis set at one level 
should be equal to a weighted sum of the ambiguity in its descendants. For exam- 

ple, if the top level hypothesis set, &, is the set (AB) ,  with %((A)) = 0.3, and 
q,((B)) = 0.7, and we split A and B to obtain two new hypothesis sets HI = (al, 
az) , and Hz = (b,, bz) , then the ambiguity in H,, should be equal to 0.3 times the 
ambiguity in H, and 0.7 times the ambiguity in H,. 

The only continuous function satisfying these requirements is of the form: 

A(Q) = -K pr(8) log pr(8) 
esn 

where K is some positive constant, and pr(8) is a measure of the certainty that 8 is 
the correct hypothesis. A proof of this can be found in [18]. The form of A() is 
not totally unfamiliar. It is also the form of the entropy measure from information 
theory. This is no mere coincidence, since information theorisu use entropy to 
measure the freedom of choice available in selecting a message, provided that the 
probabilities associated with the choices are known. 

Other work on characterizing the entropy in a hypothesis set has been done 
by Stephanou and Lu [191, Yager [211, and Higashi and Klir [lo]. The measure 
described in [191 does not suit our purposes because it awards equal entropy to 
hypothesis sets with different numbers of elements in the case of total ignorance 
(i.e. the belief function assigns belief of 1.0 to the total frame, and no belief to an. 
subset of the frame). The measure developed in [21] fails to meet our criteria 
because if any two f d  elements have a non-empty intersection, the entropy is 0. 
Finally, the entropy measure described in [lo] fails to satisfy our condition that the 
entropy be consistent over levels in a hierarchy of hypothesis spaces. 

In our equation for ambiguity, note that we did not use m() to represent the 
likelihood that a particular hypothesis was correct. This is because there will be 
situations in which m(-) assigns belief to non-singleton subsets of &, and no belief 
to individual hypotheses. In such cases, we must still be able assess the likelihood 
of the individual hypotheses. For this purpose, we calculate pr(8) as follows: 

In this way, when m() assigns belief to a non-singleton subset of a, for the pur- 
pose of calculating ambiguity, we treat the individual elements of that subset as 
being equally likely. 

In order to apply this measure of ambiguity to the problem of selecting a 
best next sensing operation. we predict the hypothesis sets which might occur if a 
particular sensing operation is applied. We then tind the ambiguity associated 
with each of these possible hypothesis sets, and use the worst case value as a 
measure of the effectiveness of that sensing operation. We wil l  use the symbol 
&,. to refer to the m a x i "  ambiguity associated with a proposed i"' sensing 
operation. The goal of the system is then to choose a sensing operation which 
minimizes the value of &. 

5. OBSERVABLE FEATURES 

In this section, we describe the feat- which can be observed by each of 
the sensors that our system uses. 'Ihese sensors include a ~rmctured light scanner 
to obtain 3-D information about the scene, ovemead and a manipulator held cam- 
eras to obtain 2-D information about the scene, a force/torque sensor mounted on 
the robot's wrist, and a manipulator which can be queried to find the distance 
between its fingers. 

5.1. 3-D Features 
The richest set of features available to the system comes from range data. 

Range data is gathered for a set of points in the scene, using a m g e  sc~nner which 
the robot manipulates. This initial data is converted to x,y,z data. Subsequent pro- 
cessing of this x , y ~  data produces a list of surfaces, attributes of those surfaces 
and relations between the surfaces. The types of athibutes provided by range data 
processing include surface area, orientation, locarion, surface type. etc. Relations 
include adjacency, coplanarity. etc. 'Ihe methods that we use to determine 3-D 
features are documented in [2,5,23,24]. 

As we mentioned earlier. each type of sensor has associated methods for 
determining the quality of feature matches and relational consistency. While this 
paper is not greatly concemed with how these d u e s  are determined, for clarity 
we now briefly describe the derivation of m,() and ml(). These bpa's assess the 
confidence in an object hypothesis based on dot products of surface normals and 
location of surfaces relative to the object's base coordinate frame. 

In order to derive %(.), we need to define two additional functions: ns(@) 
returns the surface normal of the sensed feature matched in @, and nd@)  retums 
the surface normal of the model feature matched in @. Note that $I corresponds to 
a feature. match in a hypothesis (i.e. each element of Q corresponds to a single 
object hypothesis which contains a number of matches between sensed and model 
features). Using these two functions, we can compute the magnitude of the differ- 
ence in dot products of sensed and model surface normals as follows. 

E = I ~s(@)-s(v) - n d "  I 
for @ and w in 8, and 8 E Qk Since E is the magnitude of the difference in two 
values which are in the interval [0,1], E will lie in the interval [0,2], with E O  
corresponding to an exact match, and E=2 corresponding to the worst possible 
error. In order to capture the notion of conjunction, we define q(0) as: 

G(e) = n (2 - I ns(@Fns(v) - nd@).ndv)  I ) 
*.YE e 
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Finally, we transform C,, into a bpa, 

If we have enough feature matches in a hypothesis, we can derive a pose 
transformation for that hypothesis, T+. We can then use this transformation to 
measure the quality of a match between sensed and model features based on the 
proximity of the sensed feature to the location at which we expect to find it based 
on Thj. We use the function Ls(@) to refer to the location of the sensed feature 
matched in 6, and LM(@) to refer to the location of the model feature matched in 6. 
Therefore, the difference in b(@) and Tb,LA@) is a measure of the quality of the 
match expressed in @. Since this difference is essentially unbounded, we apply a 
weighting factor. 

c(6) = 1- I h(@) - T~bjLd@) 1 e" 
The exponent 'c controls how quickly the exponential function decays and is based 
on the accuracy of the sensors used. We combine the c(.)'s to obtain a confidence 
in the proposition 8 by taking their product over the feature matches in 8. 

CAe) = rIc(6, 
*e 

We obtain ml() by normalizing Ck). 

5.2. 2-D Features 
The features which are visible to the 2-D camera are not nearly as robust as 

those visible to the range scanner. In particular, as mentioned earlier, surface 
types typically cannot be determined from 2-D data, edge detection is not as good 
(since only gray level edge detecting can be used), and relationships between sur- 
faces cannot be measured (except for adjacency). The primary advantage of 2-D 
vision is that it is computationally less expensive than 3-D vision. Also, since our 
range scanner is held by the robot, and one robot move is required for each pro- 
jected stripe, using 2-D vision reduces the number of required manipulations from 
the large number required to scan a scene to the much smaller number required to 
grasp the hand held camera and position it at the appropriate viewpoinr. 

The local features (i.e. features that are confined to local areas of the object, 
such as a single surface or edge) that we can obtain from 2-D image processing 
include holes in the object, surface texture and intensity edge information. In our 
current experiments, the object surfaces are all smooth, containing little or no sur- 
face texture information. Therefore, the primary 2-D features that we use are 
holes and grey level edges. 

Although gray level edge detection is not as robust as the 3-D edge detec- 
tion, it is generally much faster. Furthermore, using object hypotheses to guide the 
application of the edge detector, the problem is reduced from edge detection to 
edge verification. In particular, once we have an object hypothesis which includes 
a position hypothesis, we can predict the set of edges visible to the 2-D camera, If 
we know the camera transformation, we can predict where these edges will be 
found in the image plane. The image obtained from the camera can then be used 
to verify the presence of the edge. This edge veriEcation is done using the 
Dempster-Schafer formalism applied to a binary frame of discernment (i.e. edge- 
present/edge-not-prent) [ 161. 

In addition to using the hand held 2-D camera to derive 2-D features, our 
system also uses an overhead camera to guide the initial application of the range 
scanner. In particular, the overhead camera is used to obtain an estimate of the 
positions and orientations of the objects in the work space. This initial application 
of the 2-D camera can also measure certain global features about the objects, for 
example: aspect ratio, moments of inertia, and object size. 

53. F/T Sensed Features 
The last type of sensing that our system can perform is active sensing of the 

environment using the robot manipulator. In our current system, the manipulator 
can be used in either of two ways. Its fingers can be closed on an object to meas- 
ure its width, or, the manipulator fingers can be closed, and used as a probe. When 
in the latter mode, force/torque sensing is used to execute a guarded move toward 
an object feature to precisely measure its height Using these techniques, we can 
precisely (to within the known error of the manipulator position) measure features 
on the objects in the world. Like range scanning, using this type of sensing 
requires the active participation of the robot, thus incurring the additional over- 
head of planning and executing robot motions. 

The utility of measuring object widths becomes evident when we have com- 
peting object hypotheses, and the difference in sizes of visible features of the two 
objects is less than what can be perceived by the 3-D or 2-D vision systems. Of 
course 2-D vision is very imprecise, due to the use of an inverse perspective 
transformation which estimates the world 2 coordinate. Using our current range 
scanner, precision in 3-D data is a function (among other things) of the baseline 
distance between the camera and the stripe projector [5]. Furthermore, the smal- 
lest feature which can be detected using the range scanner is a function of the dis- 
tance between projected light stripes. To compensate for these inaccuracies. the 
manipulator can be used to perform the mole precise measurements, only when 
they are required. 

Measuring the height of object surfaces becomes particularly useful when 
those surfaces are obscured from the vicw of thc vision systems. In such cases, 
the manipulator can be used as a probe to resolve the ambiguities. Probing is 
achieved by executing guarded motion toward the surface whose height is to be 
measured. When a threshold force is exceeded (indicating contact with the 
object), the position of the manipulator is used to determine the actual height of 
the surface. Manipulator probing can also be used to determine the existence of 
protrusions from object surfaces, especially when these protrusions are obscured 
from the view of the vision sensors (e.g. when the work piece is positioned such 
that it occludes the surface which has the protrusion). 

Object features which can be detected by using the manipulator as a sensor 
are stored in tables. These tables are indexed by object surfaces so that it is a sim- 
ple matter to determine which of these features might be present once object 
hypotheses have been made (since each object hypothesis includes a list of 
matches between sensed and model surfaces). Thus, for any object hypothesis, it 
is a simple matter to consult a table to obtain, for example, a list of holes and pro- 
trusions which are a part of the surfaces of the hypothesized object. When such 
features are sufficient to distinguish between competing hypotheses, the manipula- 
tor is used to measure them. 

Determining when to use the manipulator to resolve ambiguities that are too 
subtle to be observed by the vision systems is more difficult, since the resolution 
from the vision systems is dependent on the implementation and run time parame- 
ters of those systems. In light of this difficulty, we have chosen to fix an upper 
bound on the resolution which can be obtained by using the vision systems. We 
implicitly represent this bound by enumerating the pairs of features which can 
only be differentiated by using the manipulator to perform measurements. For 
example, if the widths of two objects are so close that the 3-D vision system can- 
not distinguish between them, then it is noted that a precise manipulator measure- 
ment of their widths can be used to discriminate between the two. Currently, we 
have not fully implemented this part of the system. 

6. CHOOSING THE BEST SENSING STRATEGY 

In this section, we will describe. the algorithm which is used to choose a 
sensing strategy. In essence, this is simply a search problem. The search space 
consists of the possible sensing operations from the possible viewpoints. Goal 
states are recognized using A&. As we have mentioned earlier, since the space 
of sensing operations can be arbitratily large (consider that the manipulator can be 
used anywhere in the robot's work envelope), we must use some heuristic to guide 
the search. The method that we use is to only consider sensing operations applied 
from the principal viewpoints of aspects of the hypothesized objects. Once we 
have limited the number of sensing operations which will be considered, each is 
investigated until one is found which produces a sufficiently small A& 

There are three basic components to the algorithm. First, the function, 
predict-ambiguity computes the predicted ambiguity for a specified view point, 
hypothesis set, sensor and set of predicted feature values. (The predicted feature 
values are computed based on the object hypothesis, sensor and proposed 
viewpoint by determining which aspect of the object would be viewed by the pro- 
posed sensing operation.) The first step in predict-ambiguity is to refine the 
hypothesis set using the predicted feature values (as described in Section 3). Once 
this is done, the ambiguity is calculated and returned. This algorithm is shown in 
Fig. 2. The function mar-ombiguity calls predict-ambiguity with different 
predicted feature sets, recording its maximum value for a candidate sensing opera- 
tion. 

predict-ambiguity(WP,-, ,S.sensor) 
n, t refine-hyp-set(R,_,,S) 
A t 0  
foreach 8 E n, 

A t A - pr(e) log pr(8) 
return(A) 

Fig. 2: Algorithm for predict-ambiguity. 

Finally, the top level function used to determine the next sensing operation 
is choose-next-view, shown in Fig. 3. This function merely iterates over each pas- 
sible node in the aspect graphs for each object hypothesis for each possible sensor. 
Note the use of the predicate valid-vp. This predicate is used to insure that candi- 
date viewpints can actually be achieved using the robot (e.g. viewpoints which lie 
below the work table are eliminated from consideration). 

7. EXPERIMENTAL RESULTS 

So far, we have not yet fully implemented the uncertain reasoning system 
described in Section 3. We have verified our approach using a standard hypothesis 
refinement technique using the object shown in Fig. 4. Notice that the orientation 
of this object can be determined only if the position of the hole in one end is 
known. 

First, a geometric model was created for the part using the PADL2 system 
[91, a CSG based modeler, which we have modified so that it can be interfaced 
with a LISP environment. The aspect graph was constructed by using PADL2 to 
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choose-next-view(n,_,) 
A m a x t  100 
fO-h h E nk-1 

T t h.transform 
Node-list t haspect-graph.nodes 
foreach S E sensors 

foreach node E Node-list 
VP t node.princple-view 
W - V P t  T * VP 
NhMX t max-ambiguity(nk_,.W-VP,s) 
if (valid-vp(W-VP) and NAmax < Amax) then 

Amax t NAmax 
Sensor t S 
v t w-VP 

retum(Amax,V,Sensor) 
if (Amax 6 )  then 

retum(Amax,V,Sensor) 

Fig. 3: Algorithm for choose-next-view. 

Fig. 4: Rendering of experimental object. 

automatically view the object from each of the 60 tessels on the viewing sphere. 
Tessels which viewed the same set of surfaces were grouped together into aspects, 
and aspects containing adjacent tessels were linked by arcs. 

Once the model was created, the pan was placed in the robot's work space. 
Range scanning was done (using the structured light scanner), finding the three top 
surfaces. Using these surfxes, and their attributes, the system was able to develop 
two competing hypotheses, one merely a 180 degree rotation of the other. Given 
these two hypotheses, our algorithm chose the next sensing operation to be view- 
ing the object with the hand held 2-D camera as shown in Fig. 5. As can be. seen 
in the figure. this sensing operation allows the end surf= of the object to be 
viewed, and thus the presence or absence of the hole in that surface will determine 
the object's orientation. 

8. CONCLUSIONS 

In this paper, we have addressed the issue of planning sensing strategies 
dynamically, based on an active set of hypotheses. Our algorithm uses the aspect 
graphs of the hypothesized objects to propose candidate sensing operations. Then, 
using the pose transformation and aspect p p h  which an? associated with each 
hypothesis we predict the feature sets which would be observed upon application 
of the candidate sensing operation. Given these predictions, we are also able to 
predict the resulting set of hypotheses which could remain active. By repeating 
this process for different viewpoints and sensing operations, we are able to choose 
the sensing operation which minimizes the maximum ambiguity in these possible 
hypothesis sets, thereby minimizing the amount of ambiguity which can remain 
after the next sensing operation is applied. 
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