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Abstract: In this paper we propose the use of game the- 
ory as a general formalism for representing, comparing, and 
providing insight into solutions to a wide class of robotics 
problems. Particularly, we show how game theory can be ap- 
plied to problems of multiple robot coordination, high-level 
strategy planning, information gathering through manipula- 
tion and/or sensor planning, and pursuit-evasion scenarios. 
Although some concepts from game theory have been consid- 
ered in previous robotics contexts, we consider a very general 
game structure, which consequently has much broader appli- 
cation. We present some preliminary experiments on a two- 
robot corridor navigation problem in which the robots have 
independent tasks, and the equilibria in a dynamic game with 
a rolling time horizon are used for coordination. 

1 Introduction 
To perform effectively in real-world settings, robots must 

be able to plan and execute tasks in uncertain and dynamic 
environments. Typical sources of uncertainty include sensing 
accuracy, errors in robot control, changing environments, and 
discrepancies between geometric object models and physical 
objects. The problems associated with uncertainty in robotic 
systems have long been the subject of research in the robotics 
community. Sharma proposes a probabilistic framework for 
making local motion plan modifications based on dynamic 
or partially known workspaces 15 .  Takeda and Latombe 
define a sensor uncertaintyfiel d h  w ich represents the error 
in sensed robot configuration and is integrated into a mo- 
bile robot navigation algorithm 161. The representation of 

abilistic backprojection are discussed in [3, 11, 12 
problems and methods are discussed in Section 5. E; or Other these 
types of problems, one needs to sequentially make decisions 
that achieve a particular task in the presence of problems such 
as uncertainty, changing environments, and other robots and 
obstacles . 

In this paper, we show how game theory can be applied 
to problems of multiple robot coordination, high-level strat- 
egy planning, information gathering through manipulation 
and/or sensor planning, and pursuit-evasion scenarios. Game 
theory is a vast subject which has been explored for decades, 
and has been applied to problems in economics, politics, gam- 
bling, and military strategy. From a modern viewpoint, 
theory represents a eneralization of decision theory [2r?c 
timal control theory 111, and games considered in AI contexts 
181. Particularly, an extensive amount of material can be I ound in optimization and control literature; numerous refer- 

ences can be found in [l]. 
Our motivation for selecting game theory as an appropri- 

ate formalism is centered on the following points: 

0 The game-theoretic concepts provide insight into the na- 
ture of problems and suggest solution methods for dif- 
ferent robot tasks. 

At first glance, it may appear that we are out to encompass 
all problems in very general game-theoretic terms, leading to 
an extremely difficult (if not impossible from a computational 
point of view) problem. Our intentions, however, are to ex- 
press different robotic tasks as specializations of a general 
game structure. By accomplishing this, we can consider the 

uncertainty cones for commande 6 velocity errors, and prob- 
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overlap with well-studied games that can be efficiently solved, 
such as the linear-quadratic dynamic game theory presented 
in [l]. By providing this organizing framework, we can de- 
termme which optimization methods are appropriate for a 
robotic task based on the game formulation. Also, for ex- 
istin methods that fit into the game-theoretic structure, a 
num%er of directions are provided along which the methods 
might be generalized. 

0 Game theory provides a rigorous formulation of the 

There are static games in which the players each plan their 
strategies in advance by considering the space of possible out- 
comes, and a strategy is implemented as pure planning that 
does not take into account information feedback that could 
occur during the game execution. On the other hand, as 
game theory represents a generalization of optimal control, 
an information feedback structure can be arranged to make 
the game into a multiple-agent control scenario. 

0 The game concepts and terminology precisely define 
many relevant aspects of situations in which some form 
of competition or conflict occurs. 

As an example, the concept of cooperation in a game has 
been carefully studied. Robots behaving in a cooperative 
manner may accomplish their independent goals by agreeing 
on astrategy of mutual sacrifice that produces the lowest p o s  
sible combined cost. On the other hand, in a noncooperative 
situation, each robot must consider the fact that the others 
are attempting to independently solve their own goals. Each 
robot will have to take into account possibilities that other 
robot actions can directly conflict with its goals, leading to 
an equilibrium solution. Section 2 provides more details on 
cooperation, equilibria, and other game concepts. 

tradeoff between planning and control. 

0 As a generalization of decision theory, game theory en- 
courages the use of statistical modeling at a variety of 
levels. 

As pointed out in [7, 101 statistical modeling and estima- 
tion are important concerns for experience-based and sensor- 
based robotic applications, and game theory provides a natu- 
ral framework for describing sequences of statistical decisions. 

0 Even when such solutions cannot be practically ob- 
tained, the formalism can provide a point of reference 
to which approximate or partial solutions can be com- 
pared. 

This concept is similar to what often occurs with Bayesian 
decision theory. The theory itself provides a formal specifica- 
tion of optimal decision making, and other methods, such as 
nearest-neighbor classifiers, can be assessed in relation to the 
optimal Bayes’ decision rule [4]. The use of a rolling horizon 
in Section 4 is an example of an approximate game solution. 

In Section 2 we define and describe some important con- 
cepts from game theory. Section 3 introduces a game formu- 
lation that applies in a general robotics context. In Section 
4 we apply the formulation of Section 3 to the specific prob- 
lem of two competing robots that are navigating in a corridor 
system, each attempting to accomplish specific tasks. Some 
preliminary experimental examples are presented in Section 
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4.1 which illustrate the utility of the ame theory concepts. 
Section 5 describes how the general formulation applies to 
specific problems that have been previously considered in 
robotics research. Finally, Section 6 summarizes our early 
conclusions and discusses the areas that we intend to explore 
in the future. 

2 Game Theory Overview 
There is a vast wealth of literature on game theory, and 

rather than provide a complete survey we provide a discussion 
of some of the key principles. A more detailed presentation 
can be found, for instance, in [l 

In a game, the players are t i e  participants in the game. 
Each player has an action set available when that player is 
allowed to make a move durin the play of a game. The 
number of stages in a game refers to  the number of times 
that one or more players are called upon to make decisions. 

The state of the game encodes information about the con- 
figuration of the game at some stage. The application of 
player actions at a stage produces a new state, which is spec- 
ified through a state-transition equation. 

A player stmtegy is a specification of the action that the 
player will take for each possible situation that the player 
could be confronted with during a game. This could be a 
deterministic specification of the action that a player will 
choose, termed a pure stmtegy, or could be the specification of 
a probability distribution over each of the action sets, termed 
a mized stmtegy. With a pure strategy, the player will make 
the same decisions every time the game is played; however, 
when a mixed strategy is used, the player selects a move by 
randomly sampling from the probability distribution. Hence 
the particular actions of the player can vary over Werent  
game executions. The set of strategies for all players form a 
game stmtegy. 

The motivation for the selection of certain actions by a 
player is effected by defining a real-valued lossfunctionon the 
strategy space for the game. This corresponds to the amount 
of penalty (or inversely, reward) that is given to the player 
if the game is played and terminates in a certain manner. It 
can depend on actions taken by any of the players and also 
on the game state, at any stage. 

The effects of noise or other uncontrollable actions can be 
modeled by addition of a new player called nature [2]. Nature 
is assumed to take a mixed strategy, thereby probabilistically 
influencing the game state a t  various stages of play. The 
others players are forced to take the effects of nature into 
account when selecting strategies. 

The notion of a solution of a game repukes some further 
concepts. Since there are in general many independent play- 
ers in a game, the idea of a better game strategy is more 
complex than that for an ordinary optimization problem. If 
we consider a one-player game (or possibly a game with one 
true player and nature) the best player strategy would be 
the set o€ actions that produce the minimal loss or expect 
to produce minimal loss). However, when other p (I ayers are 
involved, some game strategies may be very favorable for one 
player, but poor for another. 

The concept of player cooperation therefore becomes im- 
portant when considering favorable game outcomes. If the 
players agree to choose their actions in unison, so that a mu- 
tually beneficial outcome can be obtained, we have a wop- 
erattue game. Games of this type can usually be cast as an 
optimization problem in which some function of the player 
loss functions is optimiied. Otherwise the players act in ways 
that take into account the conflicting interests with the other 
players, referred to as a noncoopemtiue game, and attempt to 
minimize the loss accordingly. The most extreme case of con- 
flicting interest is a zero-sum game, in which two players in- 
terests are diametrically opposed. The "solution" to a game 
of the noncooperative type is referred to  as an equilibrium 
since it represents a game strategy that provides a balance 
between the independent interests of the players. For the ex- 

eriments presented in this paper we consider Nash equilibria 
&I- 

The discussion thus far has been limited to what are called 
static games. Although there are multiple decisions being 
made, which may appear dynamic, the set of strategies of 
each player can be viewed as one large space of decisions. The 
selection of a strategy corresponds to selecting an element 
from this space of decisions. 

A more general formulation of games, termed dynamic 
games, takes into account several new issues. The most im- 
portant aspect of dynamic games is the amount of knowledge 
that each player has about the current and previous game 
states, and the previous actions of other players. In gen- 
eral this is considered as a form of information feedback, and 
hence partially explains why game theory generalizes opti- 
mal control theory. A khavioml strategy is the specification 
of the player action, conditioned only on the space of infor- 
mation that could be available to the player a t  a game stage. 
In a strategy of this type, the player will make the same de- 
cisions in game states it cannot distinguish between due to 
its incomplete information. 

3 A General Game-Theoretic Formula- 
tion of Robotic Tasks 

We now present the components involved in the general 
game-theoretic formulation and indicate their intended use 
in a robotics context. Sections 4 and 5 will discuss the spe- 
cialization of this formalism to particular areas. The compe 
nents presented here constitute a modified form of the general 
discrete-time infinite dynamic game presented in [I]. 

1. An index set, N = {1 ,2 , .  . . , N}, of N players. 
We have the following components: 

We consider three different types of players: robots de- 
noted by di, obstacles denoted by Bi, and nature. The 
robots are the players of the game in the sense discussed 
in Section 2. Each di is attempting to choose some ac- 
tions that will appropriately accomplish its goals, while 
coping with the conflicts that arise due to the other play- 
ers. The set of robot indices will be referred to as NA. 
The obstacles are special players that have their s t ra te  
gies fixed (;.e, they are not attempting to select actions 
to achieve some goal, but have a fixed pure or mixed 
strategy in use). Finally, nature represents noise and 
uncertainty that can arise durin the game execution. 
Of course, the consideration of oLtacles and nature is 
optional. 

2. An index set, K = 1,2,. . . , K} denoting the stages of 

possible number of moves a robot or obstacle is allowed 
to make in the game. 
Although we are fixing the number of stages in this for- 
mulation, we can also allow early termination of the 
game, for instance if all of the robots have detected that 
they have accomplished their goals. In a limiting case, 
one can consider a continuum of s tqes ,  which ultimately 
yields a system of differential equations that specify the 
game. 

3. A set, X, with some topological structure called the state 
ce. The state of the game, zk at a stage in K U {K+ ir belongs to X. 

This state space could be considered as a configumtion 
space, which has been used extensively in robot mo- 
tion planning literature to represent the position(s of 

ning planning; however, this state space could also r e p  
resent some other information relevant to the game sit- 
uation. 

4. A set, U:, with some topological structure, defined for 
each k E K and i E NA, which is called the action set 
of Ai at stage k. 
For each robot at each possible stage, this set charac- 
terizes the actions that can be taken, which have some 
consequence on the game state. These actions could be 

the game, in which B (possibly infinite) is the maximum 

robot(s) [Ill,  or as a phase space in nonholonomic p 1 an- 
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prespecified, or could be dependent on the game state 
at stage k. 
A function fk : x x U: x . . . x U! + X defined for each 
k E K so that 

Z ~ + I  = fk(Zk, U:, a . . ,  U ; ) ,  k E K ,  (1) 

and some 21 E X is designated the initial state of the 
game. One might also consider states that cause the 
termination of the game. The difference equation above 
is called the state transition equation of the game. 
This equation defines the effect of the player actions on 
the game state. The initial state, 21, could be given ini- 
tially, and the player actions deterministically produce 
subsequent states. One could also consider a stochas- 
tic situation in which a probability distribution on the 
state space is given initially, and the actions incremen- 
tally transform the probability distribution. This is a 
generalization of the situation encountered in Markov 
process control [8, 201. In a limiting case with a con- 
tinuum of stages, the state transition equation becomes 
a differential equation; this is included in the study of 
differential games [I]. 

A set Yi with some topological structure, defined for 
each k E K and i E NA, and called the sensor spaceof 
Ai at stage k, to which the sensed value yh of Ai belongs 
at stage k. 
The set Yi represents the set of all values that some 
measurement system could obtain by sensing the state 
of the world. For instance, with a proximity sensor Yi 
could represent a set of positive real values. If the sensor 
is an intensity image, then Y; represents the space all 
arrays of intensity values (with more practical consider- 
ation, one may extract features from the image, and Yi 
would represent the feature space). 

A function hi  : X ---+ Yi, defined for each k E K and 
i E NA, so that 

Y; = h i ( z k ) ,  k E K, i E N A  (2) 

which is the state-measurement equation of Ai concern- 
ing the value of zk. 
This is the common projection from the world state to a 
sensor space that has been investigated in the robotics 
and computer vision literature [5,9,10]. This also repre- 
sents the standard information feedback structure that 
occurs in control theory. 

A set q$, defined for each k E K and i E NA as a 
subset of all actions made by any player at any previous 
stage and any state-measurements made by robots at 
any stage. 
This determines the information gained and recalled by 
Ai at stage k of the game. Specification of 7; for each 
k E K characterizes the information structure of A,, 
and the collection over i E NA of these information 
structures is the information structure of the game. 

The set of all possible values for is denoted by N ;  
and is called the information space for A; at stage k. 
The set NL represents the set of all distinguishable sets 
of information that could be received by A, during stage 
k of the game. To specify a strategy for A,, one only 
needs to specify which actions to take for the various 
elements in the information space. 

A prespecified class of mappings 7; : N ;  + U; which 
are the permissible strategieqof Ai at stage k. The ag- 
gregate mapping 7 = {Ti, $, . . . ,7K} is a strategy for 
A, in the game, and the class I” of all such mappings yi 

Thus when Ai receives the particular information E 
NL, the action -yi(q;) will be taken. One could also 
consider 7: as a probability distribution on U; that is 
conditioned on v i ,  to yield a mixed strategy. 

11. A functional L’ : ( X  x U: x ... x U,”) x ( X  x U: x 
. . . x UFp . . . x ( X  x U: x . . . x U!), -+ ?U defined for 
each I E A ,  and called the loss functronalof Ai in the 
game. 
The loss functional essentially specifies the goals of the 
robot players. Examples of loss functionals will be dis- 
cussed in Sections 4.1 and 5. 

At this point, no consideration has been given to obstacles, 
B;. These can be considered in two different ways (assuming 
obstacle avoidance is desired). The state space can be con- 
strained to prohibit the contact of robots and obstacles in a 
workspace, or alternatively, the loss functionals can be de- 
fined to assign extremely high loss to states in which robots 
and obstacles are in contact. 

4 Coordination of Multiple Robot Tasks 
In this section we consider the coordination of two robots 

in a complex corridor system. The robots have independent 
goal locations and initial locations. The conflicts arise when 
robots need to occupy the same corridors at the same time 
instances along their optimal paths. Through the use of game 
theory, we can obtain solutions that are mutually beneficial, 
although suboptimal for each individual robot. A discussion 
of related problems and approaches can be found [ll] 

First we define a directed graph, G = (V, E), in which V 
represents the set of vertices and E the set of edges. The 
vertices correspond to locations that a robot can occupy. 
The edges correspond to  locations that a robot can move 
to through the application of an action. 

The following game formulation applies to two robots; 
however, an n robot situation is straightforward to consider. 

1. There are two players, A1 and Az, which are robots. 
2. The number of stages, K, is finite; however, early game 

termination can occur at some stage k 5 K. 
3. The state space, X,  is represented by the set of all pairs 

of vertices (i.e., of the form ( v ’ , ~ ’ )  ), in which each 
element of a pair represents the location of one of the 
robots. 

4. The action set, U ; ,  available to A, at a stage k, repre- 
sents the set of vertices adjacent to v i .  Hence the action 
sets depend on Zk. 

5. The configuration-transition equation is 

Z k t l  = ( n ( 4 , 4 ) ,  n ( d ,  U:)) (3) 

in which n represents the vertex that is reached (through 
the appropriate edge in E) when applying U ;  to the 
vertex w;. 

6. There is perfect information in the game (i.e., the robots 
are aware of the game state, previous states, and previ- 
ous actions at every stage of the game). 

7. There is a stage-additive loss functional. By this we 
mean that for A, a t  stage k the loss can be expressed as 

k 

L*(Y1,Y2) = c L ; ( Z , , U : , u : ) .  (4) 
> = 1  

In the expression above we use yi to refer to the sequence of 
actions taken by Ai up to and including stage k. 

We also have a termination condition that stops the game 
so that y i  E I?;, k E K, is the strategy space of A,. if both robots are at some prespecified goal vertices. 
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Figure 1. A cooperative solution, yielding a resulting loss 
of (31,53). In this and subsequent figures, robot dl is black, 
and dz is striped. 

Figure 2. The symmetrically equivalent cooperative solu- 
tion, yielding a resulting loss of (5431). 

4.1 Coordination Experiments 

defined as , . .  

The particular loss functional used in our experiments is 

q z j ,  U;,.;) = +;) + d ’ ( W i )  ( 5 )  

in which .(U;) represents the cost associated with taking ac- 
tion uf. We assume this cost is stage independent, and iden- 
tical for both robots. For simplicity we assign a cost of 1 
for an action that remains at a vertex (a cost for wasting a 
stage) and a cost of 2 to move to an adjacent vertex. The 
term d’(wj) is the cost associated with having robot A; at 
vertex vf (which is a part of z;). We take this to be twice 
the distance to the goal (in terms of number of actions re- 
quired along the optimal path), which is precomputed for 
each vertex and robot using Dijkstra’s algorithm. We ass* 
ciate infinite cost to situations in which both robots occupy 
the same vertex. 

For a given strategy, y, let (11,lz) represent the cumulative 
losses at the end of the game for A 1  and d2. We can consider 
a partial ordering on strategies by defining y 5 y’ if I1 < 1: 
and 12 < 1:. We can then refer to a set o i  mazimal strategies 
as those that are maximal with respect to 5.  

First we consider a 7-vertex game, describing corridors 
arranged in an “H” shape, shown in Figure 1. The robots 
consider moving between 7 quantized positions, which are 
square-shaped cells. The game state on the upper left in 
Figure 1 shows the initial configuration; the game state on 
the lower right is the goal configuration. Conflict arises since 
the robots need to occupy the center cell at the same instant 
in time to optimally accomplish their goals. 

The sequences of game states that appear in Figures 1 
and 2 represent two maximal strategies obtained by setting 
K = 7. The robot that waits outside the middle cell oscillates 
for a few steps since the vertices closer to the goal have lower 
loss. The problem leads to nonunique equilibria due to sym- 
metry. In a noncooperative situation, if dl selects the second 
strategy and A2 selects the first strategy, the two robots will 
wait for a while and then collide in the middle. Likewise, if 
dl chooses the first one and A2 chooses the second one, the 
robots will both move directly toward the tunnel, leading to 
another collision. Therefore, in this case some cooperation is 
required to guarantee that the robots will accomplish their 
goals. 

Figure 3. A unique maximal Nash equilibrium solution with 
loss (35,40). 

Figure 4. A solution obtained from using the rolling horizon 
procedure with If‘ = 1. The resulting loss is (38,60). 

In Figure 3 we show a situation that leads to a unique 
equilibrium; however, the same level of conflict does not arise 
since both robots can optimally accomplish their tasks. 

The next strategies were obtained using a rolling horizon 
technique [8], since the size of the strategy space grows dra- 
matically as the number of stages increases. Also, we would 
like to avoid the need to  specify some arbitrary stage limit, 
so that one would not be required to be certain that the 
goal can be reached with the number of given stages. This 
technique illustrates how an approximate technique can be 
obtained from the general game formulation. 

We select some number of stages, K‘, which is assumed 
to be much smaller than the number of stages required to 
solve the game. A strategy for the original game is obtained 
through the following procedure: 

1. Begin with stage k = 1. 
2. Select a strategy, y from the game obtained by consid- 

ering the actions from stage k to k + K’. 
3. Execute the first action of y for each robot. 
4. If the goal state has not been reached, then k := k + 1, 

In Step 2 we select the maximal strategy that produces the 
least total cost (summing the loss functions of the players). 
Hence, in this procedure we use a cooperative approach which 
leads to a unique solution. The resulting strategy to the 
original game is specified by the sequences of actions that are 
executed in Step 3. 

If we use the rolling-horizon procedure on the problem in 
Figures 1 and 2, we obtain one of the maximal Nash equilibria 
if K’ 2 2. If we take K’ = 1, then a suboptimal strategy (but 
reasonable) is obtained, as shown in Figure 4. 

The final experiment was performed on a significantly 
harder problem, havin 122 vertices. Figure 5 shows results 
from taking K’ as 3. \he results are similar when K’ = 2, 
but when a 3-stage horizon was used, the problem was solved 
in one less step, resulting in a better strategy in terms of to- 
tal loss. If we take K’ = 1, however, the game ends up in 
an oscillation because the robots cannot consider moves far 
enough ahead that will resolve the conflict. Therefore, the 
last two stages repeat indefinitely. 

and go to Step 2. 

5 Other Problem Classes to which Game 
Theory Applies 

This section describes three particular applications of the 
formulation presented in Section 3. Sections 5.1 and 5.3 d e  
scribe how previously proposed problems fit into the game 
theoretic framework, and Section 5.2 describes a game spec- 
ification that we are proposing. 
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Figure 5.  A solution obtained from using the rolling horizon 
procedure with K’ = 3. The resulting loss is (990,818). 

5.1 Stochastic Robot Manipulation 

In this section we discuss how stochastic robot manipula- 
tion fits into the game theoretic framework. We point out, 
however, that this problem has already been viewed in the 
literature as a one-robot game against nature [17]; therefore, 
we will briefly describe how the work relates to our frame- 
work. We will in particular describe the framework proposed 
by Goldberg [7]. 

We consider a two-player game with one robot A1 and 
nature. Nature acts in stage 1, and A1 acts alone in each 
subsequent stage. Consider an unlimited number of stages (in 
practice, of course, early termination will occur after a finite 
number of stages). Consider a finite state space, X, which 
corresponds to a discretized representation of the position 
and/or orientation of an object to be grasped. There is a 
stage-independent finite action set, U’, representing a set of 
operations that can be performed by the robot. In [7] this 
corresponds to quantized orientations of a parallel gnpper 
which is attempting to grasp the object. 

The state-transition equation is specified stochastically. 
For agiven action, U: and state X k ,  a probability distribution, 
P ( Z k + l  ui(zk  is specified on the state space reflecting the 

hyperstate in [7]). 
The only information available to A1 during the play of the 

game is the sequence of actions that it has applied thus far. 
In this sense, the planning strategy is sensorless. In stage I, 
nature selects some X I  6 X, which corresponds to the place- 
ment of the object in some configuration. Although A1 does 
not observe this placement, the mixed strategy of nature is 
known, and hence a probability distribution over X is known. 
The operator effects are specified with a state-transition ma- 
trix for each action ul, which computes the resulting proba- 
bility distribution on X, given an action and initial probabil- 
ity distribution on X. A loss function (termed a real-valued 
cost metric) is specified, which is a function of an action and 
the resulting distribution, and measures the amount of un- 
certainty in X. A backchaining algorithm is presented which 
determines a sequence of actions that produces a sufficiently 
small amount of uncertainty. 

effect o 1 applying the operation (this distribution is termed a 

5.2 High-level Strategy Planning 

In this section we consider a problem in which a robot has 
at its disposal some finite set of motion planning strategies, 

and a motion planning problem (planning a path from a start- 
ing point to an ending point in configuration space) is drawn 
from a space of problems M. The robot is confronted with 
the task of selecting a method (or methods) that will lead 
to the solution of the problem, and is given statistical infor- 
mation about the probability of success of each method and 
its expected cost. This type of high-level strategy planning 
is similar to the case-based reasoning approach addressed in 
[13], and the problem is similar in form to that of [6]. 

Using our framework we will use nature to model two dif- 
ferent aspects. When a problem is proposed for the robot to 
solve, we consider it as having been sampled from a distri- 
bution of problems. Thus at the first stage of the game, the 
problem selection will be considered as an action by nature. 
Nature will also be used to model the probability of a partic- 
ular method succeeding. At various stages of the game, the 
robot has the probabilities that certain methods will succeed, 
and the success/failure outcome i s  considered as an action by 
nature. 

Hence, we consider a game with two players, A1 and na- 
ture. We select K, the number of stages, very large, and 
we expect the game to terminate long before K stages. The 
state space is the Cartesian product 

X = M x {U,S} (6) 

in which U and S are literals representing “unsolved” and 
“solved.” We allow nature to act only a t  odd-numbered 
stages, and Ai to act in the remaining stages. The action 
set U’ is the set of motion planning strategies that Ai can 
attempt. We drop the k subscript to indicate that this ac- 
tion set is not stage dependent (except for the fact that it 
only pertains to even-numbered stages). For nature we have 
U; = M, and U: = {U, S} when k > 1 and k is odd. 

We will specify the state-transition equation by describing 
the play of the game. At stage 1 nature selects a motion 
planning problem m E M and the game state is (m,U) ,  
meaning that problem m is unsolved. In stage 2, A1 selects 
a motion planning strategy, U:. In stage 3, nature randomly 
samples from {U,S . If nature chooses S, then the game 
state becomes (m, J ), which causes the game to terminate. 
Otherwise the game state remains at (m, U) and we progress 
to stage 4, which is similar to stage 2. Hence, dl continues 
to try to apply actions that place the game in the ”solved” 
portion of the state space. 

We define the sensor space, Y’ ,  as the target set of a 
vector-valued function, h’ of M (technically we should have 
a function of X; however, the sensor space will only be defined 
if m is unsolved). The sensor space has the same interpreta- 
tion as a feature space in statistical pattern recognition [4]. 
Rather than making decisions directly from M, a projection 
is formed onto a feature space for computational expediency, 
which is given in our case by h’. The information space, N ’ ,  
is generated by the sensor space Y’ and the set of previous ac- 
tions made by A1 and nature. We also take NI = N2. The 
strategy space for dl specifies the decisions that are made 
given different feature values and different sets of previous 
actions. The strategy space for nature specifies probability 
distributions over {U, S }  given the various points in N2. 

The loss functional that guides the actions of A1 is just the 
total time cost of the motion planning strategies that were 
executed: 

k 

L’ = cost(u:). (7) 
:=I 

To apply this formulation in a practical situation, we must 
address several issues. The sensor space must be defined for 
which h1 (m) can be efficiently computed and appropriate, in- 
formed decisions can be made by Al. The extraction of useful 
features for a motion planning problem is a challenging prob- 
lem, which has been partially addressed in [13]. One might 
also want to work the cost of feature computation directly 
into the loss functional, and select only those features that 
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lead to minimal cost. Note that we could also play the game 
without state feedback, and use the probabilities of success 
or failure in general; however, one would expect the solutions 
to be poorer. Another issue is that dl will make its deci- 
sions based on the mixed strategy of nature, which must be 
determined. This could, for instance, be determined by con- 
structing a cellular partition of y’, and using the statistical 
average of successes vs. total trials in each cell. 

5.3 Pursuit and Evasion Scenarios 

Both the problems of pursuit and evasion are important 
in robotics contexts. The problem of pursuit is also referred 
to as tracking. The evasion problem can be considered as 
keeping multiple robots and/or obstacles from colliding while 
executing tasks, and has been considered in [14]. Examples 
of game-theoretic solutions ap lied to  pursuit and evasion 
scenarios can be found in [l, 197. 

In this section we discuss how our formalism encompasses 
the particular pursuit framework proposed in [lo]. In this 
work, a temporal belief network is used to graphically r e p  
resent a sequential decision process, which in turn can be 
embedded within the components of Section 3. 

We consider a two-player game with one robot, Ai, and 
one moving obstacle B1 . We refer to  the second player as an 
obstacle since we will not be determining a strategy for that 
player, but one could alternatively consider each of them as 
robots. We consider a K-stage game, since a finite number 
of fixed points in time are used in [lo]. The set of locations 
of the robot and obstacle are quantized into finite sets of 
manageable size. The state space in our game is the Cartesian 
product of robot and obstacle locations (referred to as SR and 
SO in [lo]). At any point in time, there is a finite set of actions 
U: available to the robot (referred to as AR).  Robot actions 
cause a change in the game state; however, the exact positions 
of dl and 81 are unknown to Ai, and information is obtained 
through sensor information. We can use Yi and Y: (referred 
to as OR and OT in [ lo  ) t o  describe the projection that takes 
places through the appkcation of an abstract sensor mapping. 
The loss functional takes the form of a value function that 
reflects the uncertainty in the expected location in the target. 

6 Future Pursuits 
We consider the work presented in this paper as an early 

investigation into a formalism that we intend to utilize exten- 
sively in future work. From the formulations and discussions 
presented in Section 5 we have shown that our formalism 
applies to a wide class of problems. Further, our initial ex- 
periments show that game-theoretic concepts provide useful 
insight into a particular multiple-robot planning problem. 

In future work we intend to: 
Consider coordination experiments with more robots 
and/or stochastic models. 
Develop methods of transforming geometric planning 
problems into a game state space. 
Further explore the game scenarios from Section 5 and 
consider other problem classes. 
Consider other game equilibria, such as Stackelberg. 
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