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Abstract: We present a method of ellipse parameter 
estimation that can be used in performing automated 
inspection of circular features. In our method, several 
digital images are taken of each part as it moves past a 
camera, creating an image sequence. Image enhance- 
ment is performed using the image sequence, yielding 
a high-resolution image. Subpixel edge detection is 
performed on the high-resolution image, producing a 
set of data points that is used for ellipse parameter 
estimation. 

1 Introduction 
This research presents a method of ellipse parameter esti- 

mation that applies image processing algorithms to the prob- 
lem of automated optical inspection (AOI). Our research was 
conducted for use in performing automated optical inspection 
of via holes in printed circuit boards. Via holes are used to 
provide electrical connections between different sides, or lay- 
ers, of a printed circuit board. In our inspection system, circuit 
boards are moving along a conveyer at a fixed velocity. Above 
the conveyer, a CCD camera examines each part as it moves 
past. Although the conveyer is constantly moving, the shutter 
speed of a typical CCD camera can be set to capture a clear 
image, for reasonable conveyer speeds. 

Several pictures are taken of each part as it passes beneath 
the camera, creating an image sequence Q = { q(l)  . . . q(,,)}. 
The via’s are inspected one-at-a-time, and the entire shape of 
each hole being inspected is visible in every image in Q. The 
images in the image sequence are perspective projections of 
the scene; therefore, the via holes appear as ellipses in these 
images [2]. 

Given the image sequence, Q, our task is to estimate the 
parameters of the elliptical shape of the via holes with subpixel 
accuracy. From these estimates, we can infer the properties of 
the shape of the actual via holes, and use this information to 
decide whether a via hole is properly shaped. The parameters 
of an ellipse are: the coordinates of the center point, ( X O ,  YO), 
the length of the major axis, A, the length of the minor axis 
B, and the angle between the major axis and the horizontal 
axis of the reference frame, 0. 

Our method combines image enhancement, subpixel edge 
detection, and subpixel parameter estimation of ellipses to per- 
form the inspection task described above. Figure 1 presents an 
overview of our method. Given the input image sequence Q, 
we perform image enhancement using Peleg and Irani’s super- 
resolution algorithm [5]. The superresolution algorithm cre- 
ates a high-resolution image 3t that has twice the resolution 
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Figure 1: Algorithm overview. 

of the individual images in Q. Subpixel arc-edge detection is 
performed on the high-resolution estimate N, yielding a list of 
data points. The arc-edge detector is a sample-moment-based 
edge detector that locates data points that lie on a circular 
arc with subpixel accuracy [14]. These data points are used 
to perform ellipse parameter estimation. The parameter esti- 
mation algorithm is noniterative, and operates by minimizing 
the difference between the areas of two ellipses [ll]. Among 
the benefits of our system are increased noise tolerance and re- 
duced hardware requirements. Because image sequence anal- 
ysis is used for image enhancement, high-resolution cameras 
and high-precision positioning equipment are not needed. Our 
research was conducted using off-the-shelf hardware and tested 
on real images. 

Each phase of the inspection algorithm is discussed in a 
different section. The superresolution algorithm is covered in 
Section 2. Subpixel arc-edge detection is discussed in Section 
3. Section 4 explains ellipse parameter estimation. Experimen- 
tal procedures and results are presented in Section 5. Section 
6 presents conclusions. 

2 Image Enhancement 
Given the input image stream Q, we create a high- 

resolution image of the part that is being inspected. Im- 
age stream analysis facilitates both noise compensation and 
resolution improvement. Noise compensation yields an im- 
age that is the same resolution as the input images, but is a 
more faithful representation of the scene. Resolution improve- 
ment algorithms use information about the imaging system 
and the image stream to create a high-resolution image [7][5]. 
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The method we use is based on the work of Peleg and Irani 
[5] ,  which is an iterative approach to resolution improvement. 
They propose a superresolution algorithm that creates a high- 
resolution image that has twice the resolution of the input im- 
ages. An alternative approach is given in [7], which describes a 
system that uses subpixel camera displacements to create the 
high-resolution image. 

The superresolution algorithm proceeds as follows. First, 
we perform image registration on the input image sequence Q. 
Image registration is the process of bringing the input images 
into alignment. When the images are aligned, the pixels cor- 
responding to the circular feature being inspected occupy the 
same locations in each image. Image registration produces a 
new image sequence, &a, in which all of the images are aligned. 
We use the aligned image sequence to create an initial estimate 
of the high resolution image. This initial estimate has twice 
the resolution of the input images, and is created by averaging 
pixel values from the aligned image sequence. In the last part 
of the superresolution algorithm, we improve the estimate in 
an iterative process that is discussed in Section 2.2. 

2.1 Image Registration 

Image registration is accomplished by estimating the mo- 
tion vector for each image, then shifting each image accord- 
ing to its motion vector. The motion vectors are estimated 
in an iterative process and expressed with respect to a refer- 
ence image, q(r) ,  chosen from Q. For a particular image q(c ) ,  
let T = ( t .  + p,, t ,  + p,) represent an initial estimate of the 
motion between images q(r)  and q(=) ,  where ( t z , t y )  is the in- 
teger part of the motion and (pz,p, )  is the fractional part. 
Motion vector estimation is performed by repeating the fol- 
lowing steps. First, we shift the image according to its motion 
estimate. Second, we compute a correction to the motion esti- 
mate by solving a system of linear equations given by ( 1 ) .  The 
correction is added to the current motion estimate, and the 
process is repeated. When the changes to the motion estimate 
are less than a threshold value, motion estimation stops. 

In general, motion in two dimensions can be described by 
a translation in the x-direction, a, a translation in the y -  
direction, b, and a rotation, 8. The rotation is assumed to 
be about an axis located at the center of each image, and the 
translations are expressed in pixel units. We include the ro- 
tational component of the motion 8 for generality; however, 
we do not use 8 in our experiments because we assume that 
the motion is purely translational. This is a reasonable as- 
sumption because the motion is due to the movement of the 
conveyer belt in our inspection system. In terms of the motion 
vector T, the components of the motion are a = t ,  + p, and 
b = t , + p , .  

Motion vectors for each input image in Q are estimated in 
an iterative manner. A derivation of the motion estimation 
equations is presented by Keren et al. in [SI. Motion param- 
eters are estimated by solving the following system of linear 
equations 

+ x D , D , b  + c A D z 8  = x D , D t  
x D , D , a  + X D i b  + C A D , @  = C D , D t  } (1) 
x A D , a  + x A D , b  + C A 2 @  = x A D t  

where 

In ( l ) ,  we use these first-order approximations D, = q ( r ) ( x  + 
the system of equations described by (1) for a,  b, and 0 yields 
a vector that is used to update the current motion estimate. 
Because ( 1 )  is based on the first few terms of the Taylor's 
expansion, motion estimates are only valid for small displace- 
ments. The motion estimate is updated at the end of each 
iteration until the magnitude of the correction vector is below 
a predefined threshold. 

Given the initial estimate, the motion estimation algorithm 
uses the sequence of equations described in (1) to improve 
the estimate. The estimation process proceeds quickly and 
typically converges to a solution in five or six iterations. We 
estimate the motion vector for each image in the input image 
sequence Q, creating a list of motion vectors, C, that is used 
to improve the initial estimate, 31. 

1 , ~ )  - q(r)(xc,Y) and Dv = q(r)(x,Y + 1 )  - q(r)(x,Y).  Solving 

2.2 Creating A High-Resolution Image 

Iterative refinement is used to enhance the initial estimate 
of the high-resolution image. Given an initial estimation of the 
high resolution image, 31, the list of motion vectors, C, and the 
input image sequence, Q, the following steps are performed for 
each iteration of the refinement algorithm. A sequence of low 
resolution images S = { ql) . . . s(*)} is created by subsampling 
31, then shifting the subsampled image according to the corre- 
sponding motion vector in C. If the high-resolution estimate is 
correct, then the actual and simulated image sequences will be 
identical, i.e., S = &. The difference images between Q and S 
are calculated, creating a sequence of difference images: 

Corrections to the high-resolution estimate are based on the 
values of these (2) difference images. Our goal is to find a 
high-resolution estimate that could have produced the low res- 
olution images in the input image sequence &. Toward this 
end, an updating formula that is derived from a model of the 
imaging system is used to calculate improvements to 31. The 
updating formula is discussed in Section 2.2.3. 

2.2.1 Initial Estimate 

The aligned image sequence &a is created by shifting each 
input image in Q by its motion estimate in the final stage of 
image registration; therefore, the images in Q, are aligned such 
that the pixels corresponding to the elliptical feature occupy 
the same locations in every image. The initial high-resolution 
estimate, 3-1, is created by averaging the values of Q,. 

(3) 
1 

avg(Qa(x,y)) = ; qa(x,Y). 

Because 3-1 has twice the resolution of Q,, each pixel in Q, 
corresponds to four pixels in 31. The initial high-resolution 
estimate is improved using a model of the imaging process 
that is described in section 2.2.3. 

QaEQa 
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2.2.2 Imaging Process Model 

The camera produces a discretized, low resolution version of 
the original scene. The imaging model is a mathematical repre- 
sentation of the imaging process. We use the model presented 
by Irani and Peleg in [6]: 

' ? ( k ) ( z , Y )  = u ( k ) ( h ( f ( i , j ) )  + q ( k ) ( i , j ) ) .  (4) 

In (4), g ( k )  is the kth image of the image stream Q. The 
goal of the superresolution algorithm is to recover the high- 
resolution image, f ,  of the scene. The intensity of a high- 
resolution pixel g(k)(z, y )  is a function of the intensities of sev- 
eral high-resolution pixels f( i ,  j ) .  Equation (4) represents a 2D 
geometric transformation from the scene f to a digital image 
g ( k ) .  The blurring operator, h, is defined by the point spread 
function of the sensor. Because we do not actually know the 
sensor's properties, we assume that the point spread function 
is a Gaussian function. Additive noise is represented by q ( k ) .  
The function g ( k )  digitizes the image into pixels and quantizes 
the resulting pixel intensities into discrete gray levels. The 
digitizing function also accounts for the displacement of the 
kth frame in the image sequence. 

2.2.3 Enhancing the High-Resolution Estimate 

The imaging process model (4) describes how low resolution 
input images are produced. An expression describing how sim- 
ulated images are created can also be derived: 

In (5), s" is a low resolution image, and 31" is the high- 
resolution image produced in the nth iteration of the refine- 
ment algorithm. Each simulated low resolution pixel s " ( ~ ,  y )  
is the weighted average of the high-resolution pixels, 31"(i7 j), 
that are in the low resolution pixel's receptive field; the set of 
these high-resolution pixels is denoted by p. The point spread 
function of the imaging system, h in (4), is represented by a 
mask that is denoted by hPSF in ( 5 ) .  The image coordinates 
of the center of this mask, (zzr zy) ,  are used to select the mask 
value for a given high-resolution pixel ( i , j ) .  

Each simulated low resolution image s:,) is created by shift- 
ing s" ( 5 )  according to the motion estimate that corresponds 
to the image g ( i )  in Q. This shifting operation produces a sim- 
ulated image that is in congruence with g(,). Simulated images 
are created for each image in the input image stream. 

After creating simulated images, improvements to the high- 
resolution estimate are calculated using the updating formula: 

31"+l(i7j) = 31"(i,j) + (6) 

In (6), q ( k )  is the kth image of the input image stream &, 
and s i k )  is the kth image of the simulated image stream that 
was created in the nth iteration of the enhancement algorithm. 
The function hBP represents a back-projection kernel that is 
used to calculzte improvement values for the high-resolution 
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Figure 2: The refinement algorithm, 

estimate. The difference between hBp  and the point spread 
function, hPSF in ( 5 ) ,  is that hPSF describes properties of the 
imaging system, while hBp  may be chosen arbitrarily [ 5 ] .  The 
contribution of the back-projection kernel is normalized using 
a constant, c. The choice of hBP is discussed in [5]. We used 
a normalized, 5 x 5 mask representing a Gaussian operator in 
our work. The proper back-projection kernel value is chosen 
using the low resolution image coordinates of the center of 
the back-projection kernel, ( z z ,  zY). The improvement value 
for a given high-resolution pixel is the weighted average of 
the contributions of the low resolution pixels in its receptive 
field; the set of all such pixels is denoted by cy. Given the 
high resolution estimate in the nth iteration of the refinement 
algorithm %", the refinement algorithm creates a new high 
resolution estimate, 31"+', by calculating improvement values 
for the pixels of 31". 

The following steps are performed in each iteration of the 
refinement algorithm, illustrated in Figure 2. First, a sequence 
of simulated images, S, is created using the high resolution es- 
timate 31 and the list L: of motion vectors. The difference im- 
ages (2) are then calculated. The sequence of difference images 
and several imaging system parameters are used in the updat- 
ing formula (6) to compute correction values for 31. Iterative 
refinement halts when there are no more changes required in 
the high-resolution estimate. 

The superresolution algorithm produces a high-resolution 
image 31 that has twice the resolution of the input images. 
The next step in our parameter estimation algorithm is to 
perform subpixel edge detection on 31. This will produce a list 
of data points that will be used for parameter estimation as 
described in Section 4. 

3 Subpixel Edge Detection 
Given the high-resolution image 31 we use subpixel edge de- 

tection to produce a set of data points. There are many meth- 
ods of edge detection (see e.g. [4]). Standard edge operators 
are easy to implement; however, in their simplest forms they 
are pixel-level edge detectors, which can only localize edges to 
the nearest pixel. Although efforts have been made to  increase 
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the accuracy of these methods, they cannot be used for sub- 
pixel edge detection unless some form of interpolation is used 
[12]. The limited resolution of early edge detectors led to the 
development of subpixel edge detection algorithms. Subpixel 
edge detectors localize edges to within a fraction of a pixel 
precision. Subpixel algorithms are warranted when observed 
features are small enough to be considerably distorted by the 
digitization process. Tasks requiring subpixel accuracy include 
photogrammetry, lithography, satellite image processing, man- 
ufacturing, and automated inspection of microelectronic com- 
ponents [3]. 

Our work is baaed on the arc-edge detector described in [14]. 
In the first step of our method, we apply bilevel thresholding 
and simple edge detection to the high-resolution image 'fl to 
create an edge map. The following operations are done on 3c at 
each location specified in the edge map. First, we approximate 
the circular arc with straight-line segments. The parameters 
of these line segments are calculated to  subpixel accuracy us- 
ing Tabatabai and Mitchell's moment-based straight-line-edge 
detector [12]. Given the straight-line approximation of the cir- 
cular shape, we calculate the coordinates of the points that lie 
on the circular border curve. These data points are used for 
performing ellipse parameter estimation, which is described in 
Section 4. 

3.1 Building the Edge Map 

The arc-edge detector is applied to points of interest in the 
high resolution image 2. These points are indicated on an 
edge map that is created by applying thresholding and simple 
edge detection to 3c. Tsai's sample moment preserving bilevel 
thresholding algorithm is used to threshold 31 [16]. This algo- 
rithm locates the threshold such that the first four sample mo- 
ments are preserved. The thresholding operation produces a 
binary image. Simple edge detection, where intensity changes 
in the binary image are treated as edges, is done on the binary 
image to produce the edge map. 

3.2 Straight Line Edge Detection 

Given the high-resolution estimate, 'fl, and the edge map, 
moment preserving straight line edge detection is performed 
on 'fl at locations specified by the edge map using Tabatabai 
and Mitchell's subpixel straight line edge detector [12] [14]. 

The straight line edge detector detects lines that are located 
within a circular detection area that consists of 69 pixels that 
are weighted to approximate a circle of radius one. For each 
location (2, y) stored in the edge map, we center the detection 
area at location ( 2 , ~ )  and perform straight line edge detection 
in 31. 

The parameters of the straight-line-edge model are shown in 
Figure 3. Let T represent the radius of the detection circle. A 
straight-line edge divides the detection circle into two regions, 
A1 and Az, respectively. We assume that the edge can be 
modeled as a step, with pixels of a given intensity on one side of 
the edge and pixels of a different intensity on the other. These 
intensities are the characteristic intensities of the regions that 
border the straight-line edge. 

The two regions that border the edge are described by or- 
dered triples of the form (a;,  h ; , p ; ) .  The parameters of these 

Figure 3: The parameters of the edge model. 

triples are as follows. The area of the region i is denoted by 
ai, and the characteristic intensity of region a is h;. The third 
parameter, p i ,  denotes the relative frequency of occurrence 
of pixels with intensity hi within the detection circle. The 
straight-line-edge detector locates the edge by solving for the 
unknowns a,, hi, and p i .  Once an edge has been located, its 
angle of orientation, a, and normal distance from the center 
of the detection circle, L, are calculated. 

The straight line edge detector is based on sample moments. 
Edges are located such that the first four sample moments 
of the image data, within the detection circle, are preserved. 
Tabatabai and Mitchell present solutions for the edge param- 
eters, a;, hi, and p; in [14]. Given these parameters, the angle 
of orientation, a, and the normal distance, L, are calculated 
in the following manner. 

The orientation angle is calculated using the center of grav- 
ity G = (G,, G,) of the data within the detection circle (refer 
to Figure 3). The coordinates of the center of gravity are cal- 
culated using 

' (8) 
2 ,  

Mi 
G, = 

The summations in (7) and (8) are performed for all pixels 
(2, y) within the detection circle. The function w(z-&, y-d,), 
where (d,, d,) are the coordinates of the center of the detection 
circle, determines the weighting value for (z, y). 

Given the coordinates of the center of gravity of the detec- 
tion circle (G=, G,), the angle a can be calculated using either 
of the following: 

Referring to Figure 3, the normal distance L is found by 
cdculating the area enclosed between the edge line and the 
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Figure 4: Arc-edge data  points. 

detection circle, i.e., the area of region Az. The area of this 
region is 

a2 = pZm2 = L 2 d x d y .  (11) 

The left side of (11) is the area of AZ written in terms of pz 
and the radius of the detection circle r.  Using a2, (11) can be 
solved to yield one of the following solutions for L: 

0 . 5 . r r r 2 - L d ~ - r 2  arcsin -a2 = 0 otherwise. (13) (3 
We use either (9), or (lo), to calculate cy, then calculate L 

with (12), or (13). In the next section, we will show how to 
use L and a to calculate the coordinates of data points that lie 
on the circular border curve. These data points will be used 
for ellipse parameter estimation in Section 4. 

3.3 Arc-edge Data Point Calculation 

In the previous section the circular border curve was ap- 
proximated using line segments that are defined by the pa- 
rameters a and L.  In this section, we will show how these 
parameters are used to calculate the coordinates of the data 
points that lie on the circular border curve. These data points 
will be called arc-edge data points. As shown in Figure 4, arc- 
edge data points are the intersection points of the straight-line 
approximation of the border curve and the border curve itself. 

In [14], Tchoukanov and Safaee Rad show that there is a ge- 
ometric relationship between the locations of the arc-edge data 
points and the parameters of the approximating line. This re- 
lationship is based on the assumption that the position of the 
arc-edge data points is a weak function of the radius of the 
border curve R, i.e., the choice of R has so little effect on the 
position of the arc-edge data points that it can be ignored. 
This assumption is used to derive equations that allow us to 
calculate the coordinates of the arc-edge data points in [14]. 

Let K represent the relative position of an arc-edge data 
point ( X I ,  yl); then this assumption can be written as 

Location in H 

Figure 5: Arc-edge data  point calculation. 

Evidence for the validity of (14) is provided in [14]. Off line, we 
create a look-up table of averaged K values using (14). This 
table contains average K values for R varying in the range 
( 4 . 5 . .  ,300) pixel units, and is indexed on values of L,  for L 
values in the range ( -4 .5.  . .4 .5)  pixel units. 

The coordinates of the arc-edge data points (x1,yl) and 
( 2 2 ,  yz) are calculated with 

x1 = Lcos(cr) + K s i n ( a ) d G  (15) 

y l  = Lsin(a) - K c o s ( a ) d r Z  - L2 (16) 

2 2  = Lcos(a) - K s i n ( a ) d E  (17) 

yz = Lsin(a) + K c o s ( c y ) d Z  (18) 

Refer to [14] for the derivation of equations (15), (16), (17), 
and (18). 

The complete subpixel arc-edge detector is outlined in Fig- 
ure 5. Given an input image 31, we perform bilevel thresh- 
olding and simple edge detection to create an edge map. 
Moment-preserving straight-line edge detection is performed 
on 31 at locations specified in the edge map, producing a list 
of straight-line segments that approximate the circular border 
curve. Each line segment is defined by its normal distance from 
the center of the detection circle L and its angle of orientation 
cy. Now we have values of L,  a,  and K for each straight-line 
edge approximating the circular border curve. The coordinates 
of the arc-edge data points are calculated with (15), (16), (17), 
and (18). 

4 Ellipse Parameter Estimation 
Ellipse parameter estimation is performed using the list 

of data points produced by the arc-edge detector. Let P = 
{PI . . . Pn} represent the list of n data points, where each data 
point P, is a subpixel value of the form ( X , Y ) .  Given PI our 
task is to estimate the center point coordinates (Xo,Yo),  the 
major axis length A, minor axis length B, and the angle or 
orientation 0 of the ellipse that fits the data points. 

Tsuji and Matsumoto use a modified hough transforma- 
tion to locate ellipses [17]. Takiyama and Ono describe an- 
other method of ellipse parameter estimation algorithm in [13]. 
This algorithm represents an ellipse as a quadratic equation 
with constraints, and finds ellipse parameters using an iter- 
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ative process. Another iterative method is proposed by Na- 
gata, Tamura, and Ishibashi [9]. This algorithm uses a re- 
cursive least-squares operator to find ellipse parameters. In 
contrast to these iterative methods, Safaee-Rad et al. pro- 
pose a non-iterative parameter estimation algorithm in [ll]. 
This algorithm is based on a new error function that mini- 
mizes the difference between the areas of an ideal ellipse and 
an estimated ellipse. This new error function allows accurate 
parameter estimation in two passes. 

We use the area-based parameter estimation algorithm de- 
scribed by Safaee-Rad et al. [ll]. Parameter estimation pro- 
ceeds as follows. In the fist step, we estimate the parameters 
of an initial optimal ellipse. These parameters are used to gen- 
erate weights for the data points. The weights normalize the 
contribution of each data point to  the parameter estimation. 
The weighted data points are used to find the parameters of 
the ellipse. This method is non-iterative and produces results 
that compare favorably with iterative techniques [ll]. 

4.1 The Error Function 

Parameter estimation is accomplished by minimizing an er- 
ror function. The characteristics of the error function affect 
the accuracy of the parameter estimation process. The error 
functions discussed here are derived from the general equation 
of an ellipse: 

W ( X , Y ) = a X 2 + b X Y + c Y 2 + d X + e Y + f = 0 .  (19) 

Equation (19) is valid for all points ( X ,  Y )  on ellipse contour. 
W ( X , Y )  is negative for points in the interior of the ellipse, 
and positive for points outside of the ellipse. Derivations for 
the equations presented in this section are provided in [lo]. 

One method of fitting an elliptical shape to a list of data 
points would be to use the minimum-squares error criterion 
which minimizes the following error function: 

n 

i=l 

The goal is to find the set of parameters { a . .  . f} that min- 
imizes 30. Bookstein investigated the behavior of 30 for the 
general case of (19), and has proven the following relation- 
ship [l]. If two data points are equidistant from the optimal 
ellipse, with one lying along the ellipse's major axis and the 
other along its minor axis, then the contribution of the data 
point lying along the minor axis will be greater. Therefore, to 
perform accurate parameter estimation, the contributions of 
the data points must be normalized. 

To calculate ellipse parameters in a non-iterative process, 
(19) can be normalized with respect to the constraint f, i.e. 
f = 1. Under this constraint, the general equation for an 
ellipse becomes: 

W ( X , Y ) = a X 2 + b X Y + c Y 2 + d X + e Y + 1  =o. (21) 

The corresponding minimum squares error function is: 
n 

i=l 

X 
I VI- m 

Figure 6:  Area difference between concentric ellipses. 
Minimizing ( 2 2 )  produces a set of linear equations that can be 
solved in a non-iterative fashion; however, the contributions of 
the data points are not normalized. 

To compute ellipse parameters more efficiently, Safaee Rad 
et. al. introduce an error function, 3 2 ,  that minimizes 
the difference of areas of two concentric ellipses, and nor- 
malizes the contributions of the data points [ll]. Let P = 
{PI.. . Pn} be the set of data points, (A, U, 8, X O ,  YO) be the 
optimal parameters of the ellipse that fits the data points, 
and (d' ,U',8,Xo,Yo) be the parameters of the ellipse pass- 
ing through a given data point ( X i ,  Y;). These ellipses will be 
referred to as the optimal ellipse and the data point ellipse, re- 
spectively. The two ellipses are concentric and have the same 
eccentricity and orientation (see Figure 6). If D is the area of 
the data point ellipse and D' is the area of the optimal ellipse, 
then an error function can be defined as the difference between 
these areas: 

e; = D - D'. 
To calculate the error ( 2 3 )  we will consider a line that 

passes through a data point P; = ( X i ,  Y;) and the center point 
(X0,Yo).  Let Pi = ( X l , Y [ )  be the intersection point of this 
line and the optimal ellipse. To aid in this discussion, we define 
the following quantities. Let vi be the distance from the center 
of the ellipse to the point P; and U: be the distance from the 
center of the ellipse to the point P,!. Given that the two con- 
centric ellipses are similar, i.e. they have the same orientation 
angle and eccentricity, an expression for the area difference of 
the ellispes can be derived from ( 2 3 )  

( 2 3 )  

e; =n(AU) 1- . ( ::*) (24) 

The contributions of the data points are normalized by 
defining a weighting factor that is a function of each data 
point's position relative to the major axis of the optimal el- 
lipse. If we define 6, = U: - U;, then the weighting factor for a 
data point Pi can be expressed as 

Because 6; is usually much smaller than d; or A, ( 2 5 )  can be 
approximated by: 
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Figure 7: Ellipse parameter estimation algorithm. 
Using the weights described by (26), the new error function is 
defined as: 

1=1 i=l  

Error function 3 2  minimizes the area-based error function 
described (23) and normalizes the contributions of the data 
points. We will use this error function to calculate the final 
values of the ellipse parameters. 

4.2 Calculating Ellipse Parameters 

The error function described by (27) minimize the area 
based error criteria (23) and normalize the contributions of 
the data points. Equations for the ellipse parameters can be 
derived by taking the first derivatives of J 2  with respect to 
the five unknowns (a, b, c, d, e) to yield a system of five linear 
equations with five unknowns. The solution of this system of 
equations is the vector V T  = (a, b, c, d, e). The five parameters 
of an ellipse can then be calculated using the following: 

2cd - be xo = ~ b2 - 4ac 
2ae - bd Yo = ~ b2 - 4ac 

0 = arctan (c - a) + Jv [ 

where 

(33) 
bde - .e2 - cd2 F, = b2 - 4ac ‘ 

Both J l  and 3 2  are used in estimating the ellipse parame- 
ters. As shown in figure 7 ,  J 1  is used to generate the parame- 
ters of an initial optimal ellipse. These parameters are used to  
estimate the value of 6, and d, for each data point. The data 
point weighting values w, are calculated using 6, and d,. The 
weighted data points are used in 3 2  to find the parameters of 
the final optimal ellipse. This method of parameter estimation 
is non-iterative and produces good results. 

Table 1: Results for a 1/8-in diameter circle. 

1 Estimated Ellime Parameters: Circle Radius 0.0625 in fl 

5 Experiments 

In the previous chapters we have described a method of pa- 
rameter estimation for circular shapes. The three algorithms 
used in this method, superresolution, arc-edge data point de- 
tection, and ellipse parameter estimation, were implemented 
in C++. These programs were compiled on Sun Sparc work- 
stations using the Free Software Foundation’s Gnu C++ coni- 
piler. 

Our method of ellipse parameter estimation was tested on 
real image sequences. Each image was produced in the follow- 
ing manner. A picture of a circle was produced using postscript 
and printed using a high-resolution, i.e., 600 dots per inch, 
Hewlett Packard Laser Jet 4 SI printer. The picture of the cir- 
cle was digitized using a Sony model XC-77 video camera and 
Datacube MaxVideo 20 image processing equipment. Each in- 
put image has dimensions 512 x 480 pixels, and pixel intensities 
are in the range (0.  . ,255). Image sequences of circles with di- 
ameters of one-eighth inch, one-fourth inch, one-half inch, one 
inch, and two inches were used to test our inspection system. 
The accuracy of our parameter estimation method was mea- 
sured using a camera calibration method described by Tsai in 

For comparison, results for five different methods of edge 
detection were obtained. In simple edge detection, we per- 
form moment-based binary thresholding, see [16], on the high- 
resolution, i.e., (1024 x 960) image produced by the super- 
resolution algorithm. In the binary image, pixels that bor- 
der regions of different intensities are treated as data points. 
Canny 1 edge detection is the Canny edge detector without 
subpixel interpolation. Canny 2 edge detection is the Canny 
edge detector with subpixel interpolation. The interpolation 
is accurate to within a tenth of a pixel dimension. Both the 
Canny 1 and Canny 2 edge detectors were run on low resolu- 
tion, i.e., (512 x 480), input images. To investigate the benefit 
of performing superresolution, the arc-edge detector was also 
run on low-resolution input images. high-resolution edge de- 
tection is the method of edge detection that was described 
in Chapter 3 and is used in our method of ellipse parame- 
ter estimation. This edge detection method performs arc-edge 
data point detection on the high-resolution image produced 
by the superresolution algorithm. In each experiment, param- 
eter estimation was performed using the area-based algorithm 
described in Section 4. 

Results for a one-eighth inch diameter circle are given in 
Table 1. The coordinates of the ellipse center point, (X0,Yo) 
are with respect to the center of a low-resolution image and 

~ 5 1 .  
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Table 2: Average percent error. 

are given in pixel units. The axis lengths are given in inches, 
and the orientation angle is measured in degrees. 

Table 2 lists the average percent error of the axis length 
estimates. The percent error, A, is calculated accordingly: 

(I A - Actual A I + I B - Actual B I )  
2 x Actual Radius A =  

The high-resolution method consistently provides accurate 
parameter estimates. The greatest benefit is seen when in- 
specting small circles. The high-resolution method bene  
fits from both subpixel accuracy and superresolution. The 
improvement gained by using the high-resolution inspection 
method decreases as the radius of the circle increases. For 
large circles, the methods provide virtually the same results. 

6 Conclusions 

We have presented a new method of parameter estimation 
for circular shapes that uses image sequences. In this method, 
an image sequence of the circle being inspected is used to cre- 
ate a high-resolution image. A moment-based edge detector 
that locates points that lie along a circular arc with subpixel 
accuracy is used to  locate data points in the high-resolution 
image, creating a data point list. Given the data point list, 
parameter estimation is performed using an area-based ellipse 
parameter estimation algorithm. This parameter estimation 
algorithm finds the center point of the ellipse, the major axis 
length, the minor axis length, and the ellipse’s angle of orien- 
tation with respect to the horizontal axis of a local reference 
frame in the image. Once the ellipse parameters have been 
estimated, camera calibration techniques are used to translate 
distances in the image plane into distances in the real world. 

Our method was tested on real image sequences and pro- 
duced good results. Experiments have shown that our method 
produces the most improvement in estimation accuracy when 
we are inspecting small circles. One motivation for our re- 
search was the task of inspecting small features, such as via 
holes in printed circuit boards. An automated optical inspec- 
tion system for performing such tasks would have to inspect as 
many circles as possible, while maintaining a high degree of ac- 
curacy. The parameter estimation algorithm described in this 
work is ideally suited to such a system because it provides the 
greatest improvement in accuracy when inspecting small fea- 
tures. For large circles, subpixel accuracy and superresolution 
do not provide much improvement over simpler methods. 
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