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Abstract  Gross-motion planning for assembly is  com- 
mon ly  considered as a distinct,  isolated step between task 
sequencing/scheduling and f ine-mot ion  planning. In this pa- 
per we formula te  the problem of gross-motion planning for 
assembly in a manner  that integrates it with both the m a n -  
ufacturing process and the f i ne  mot ions  involved an the f inal 
assembly stages. One  distinct characteristic of gross-motion 
planning for assembly is the  prevalence of uncertainty in -  
volving tame - in parts arrival, in request arrival, etc. W e  
propose a stochastic representation of the  assembly process 
that improves the robot performance in the uncertain as- 
sembly environment by optimizing a n  appropriate criterion 
an the expected sense.  

1 Introduction 
Modern manufacturing systems are confronted with plan- 
ning problems at many scales, ranging from long-term pro- 
duction control, which deals with entire factories and time 
scales on the order of weeks, or even years, to fine-motion 
planning, which deals with individual robot assembly oper- 
ations. Figure 1 illustrates a typical manufacturing system, 
where P’s are the parts, B’s are the subassemblies, A’s are 
the assemblies and RC’s are the assembly robot workcells. 

At the highest level, planning problems (usually called 
scheduling problems at this level) address the flow of parts 
through the assembly system. Production control deter- 
mines what the assembly plant should be producing from, 
for example, month to month. Given a set of production 
goals, the shop scheduler is given the task of determining 
how each robot cell will respond as parts arrive at its input 
buffers [8] .  For example, in Figure 1, workcell RC5 receives 
parts from the three workcells RC2, RC3, and RC6, as 
well as some parts that are directly fed to  RC5 as input to  
the assembly system (i.e., parts P4, P7, P8, P9, P10 and 
P11). It is the task of the shop scheduler to determine the 
order in which workcell RC5 will process these parts. 

At a lower level, each workcell confronts a number of 
more specialized planning problems 121. A sequence plan- 
ner determines constraints on the order in which the robot 
will perform assembly operations [3]. A gross-motion plan- 
ner constructs the tra‘ectories that the robot will execute in 
performing the tasks (51. And, finally, a fine-motion planner 
determines robust, local strategies for the assembly opera- 
tions] that are guaranteed to succeed, even in the presence 
of significant uncertainty [l]. Most often, as illustrated by 
the work cited above, each of these planning problems is 
treated in isolation. 

In this paper, we take a first step toward integrating 
several levels of planning within a unified framework. We 
consider the problem of optimal gross-motion planning for 
a robot in an individual assembly cell, within the larger 
context of a full manufacturing environment. In the past, 
gross-motion planning has been treated as either a purely 
geometric problem (e.g., plan motion from point a to  point 
b, avoiding collision with obstacles), or as an optimal con- 
trol problem (e.g., find the time-optimal, or minimum en- 
ergy path between point a and point b ) .  In either case, the 

Figure 1: An assembly plant with multiple robot cells. 

context in which the gross motion commands will be exe- 
cuted is ignored. Motions are initiated at the request of a 
higher-level scheduling system, and at  the end of the gross 
motion, a fine motion assembly operation is performed. 

If all aspects of the manufacturing system behaved de- 
terministically, we could, in principal, treat gross-motion 
planning as a path optimization problem: derive the op- 
timal path to move the parts from their initial positions 
to their destinations, on a schedule given a prior-i by the 
scheduler. However, real manufacturing systems are not 
deterministic. There is uncertainty in parts arrival time, 
position and orientation of parts to be manipulated, robot 
control, dimensions of manufactured parts, etc. Therefore, 
a rewonable choice is to optimize the expected performance 
of the gross-motion planner. 

We characterize the problem of gross-motion planning 
for assembly as follows. A scheduler issues requests to the 
robot to grasp a particular part from a specified source, 
and to deliver the part to a specified destination. A pri-  
ori, &he only information regarding how these requests will 
be issued is in the form of a probability distribution on the 
set of possible partlsourcejdestination requests. Because a 
fine-motion plan will often follow the execution of the gross 
motion, a source or destination is typically not specified as 
a single configuration, but is specified as a subset of the con- 
figuration space (which could in general be disconnected). 
The gross-motion planning problem is to  derive a set of mo- 
tion strategies that will produce optimal throughput of the 
assembly cell, in an expected sense. 

Our gross-motion planning technique handles the un- 
certainty due to  the stochastic nature of the assembly 
system by exploiting the concept of a Markov chain 
of assembly modes. In the present context, each 
part/source/destination request corresponds to a distinct 
assembly mode. In general each distinct manipulation that 
the robot performs (e.g., grasping a part, moving a part 
across the workcell) potentially changes the motion model 
or geometric model for the robot in its workcell. By us- 
ing these concepts, we are able to  optimize over a discrete 
set of possible state spaces, each corresponding to a unique 

341 
0-8186-6995-0195 $04.00 0 1995 IEEE 



combination of configuration space and assembly mode 

2 Problem Description 
There are some aspects of the gross-motion planning that 
are specific to the assembly situation. These are: 

Changing geometry and robot motion model. 
We can describe motion planning in terms of the config- 
uration space, C, of the robot, as the problem of finding a 
path that lies in space of collision-free configurations, Cf,,, . 
At a given point in time, the robot position is characterized 
by a point, q in C f r e e .  Thus one important step in mo- 
tion planning is to  establish the mapping from the workcell 
to the configuration space, C ,  of the robot, which depends 
on the geometry of the robot. When the robot is carrying 
a part or subassembly, the effective shape of the robot and 
load ensemble changes. We will assume that when a robot is 
carrying a load there is rigid relationship between the robot 
(gripper) and the load so that for each load, the “robot7’ has 
a different geometry. This concept of “changing” configura- 
tion space is an important aspect of the formulation of the 
motion planning problem as part of the assembly process. 
In addition to the geometric changes, the dynamics of the 
robot could change during the different stages of the assem- 
bly process due to the variation in loads and would need to 
be incorporated into the motion planner. 

Preconditions for fine-motion planning. The ini- 
tial and final stages of moving a part for assembly involve 
f ine-motion planning. During these stages the clearances 
between parts becomes significant relative to the uncertain- 
ties involved; hence sensing (e.g., force or torque sensing) 
becomes an important part of the motion strategy. For 
gross-motion planning the usual approach is to ignore the 
fine-motion plan and consider the task of moving the robot 
between two points in its configuration space. Instead of 
defining a point-to-point motion goal, we allow the goals 
to be regions in the configuration space for both the grasp 
and ungrasp operations, based on relationships between the 

(enclosure) 

I t  

Figure 2: Example source and destination regions. 

robot, the part, and the subassembly. Figure 2 shows an 
example of a source region and a destination region with 
respect to which appropriate initial and goal conditions for 
the gross-motion planning will be defined. 

The concept of an assembly mode. Gross-motion 
planning for assembly can benefit by considering more time- 
varying elements besides the ones considered so far. This 
includes, for example, the priorities and costs involved in 
the individual assembly motion subgoals. The priorities of 
a given operation in turn will be tied to the scheduling of the 
entire manufacturing facility as we will discuss later in this 
section. For the gross-motion planner, we define assembly 
modes that correspond to requests for the robot to deliver 
a part from a source region to a destinations region. 

Scheduling and the assembly process. From the 
viewpoint of an individual workcell, the assembly process 
consists of a sequence of part/source/destination requests 
issued by a scheduler. These requests must be serviced in 
the order in which they are received by the robot in that 
workcell, thus inducing a sequence of assembly modes. Fur- 
ther, in each assembly mode a particular fine-motion strat- 
egy might be used to initially grasp the specified part, or to 
place the part in its goal position. In order for our new gross- 
motion planning approach to effectively optimize trajecto- 
ries in an expected sense, the gross-motion planner must 
have some characterization of the anticipated behavior of 
the scheduling system in terms of the sequencing of requests 
and the fine-motion plans that must be executed for each 
request. 

There have been many approaches to  scheduling in large 
scale manufacturing systems. These range from heuristic 
methods for global optimization, to  relaxation-based global 
methods to distributed, real-time scheduling policies (e.g., 
[8]). In this paper, we will assume that a distributed, real- 
time scheduling approach is used, since such approaches 
scale to  arbitrarily complex manufacturing systems, includ- 
ing job shops, flow shops, and re-entrant lines. 

The behavior of the overall manufacturing system can 
be characterized by its underlying stochastic process. In 
particular, the behavior of each individual workcell can be 
characterized as a random process that is conditioned on the 
behavior of a finite set of neighboring workcells. For exam- 
ple, in Figure 1, the behavior of RC3 depends only on the 
output of RC1, while the behavior of RC6 depends only 
on the output of RC1 and RC3. This stochastic behavior 
of the overall assembly system induces a stochastic behav- 
ior for each individual scheduler in the system. We assume 
that a scheduler has been chosen that will lead to stabil- 
ity of the manufacturing system. We model the resulting 
behavior of an individual scheduler as a Markov chain of as- 
sembly modes, since this representation is powerful enough 
to encode many important stochastic processes, such as a 
Wiener process or a Poisson process. 

3 Modeling and Algorithm 
In this section we develop the mathematical concepts that 
model the gross-motion planning for assembly as introduced 
so far and provide a computational method that determines 
the optimal motion plans under stochastic uncertainty. 

Basic definitions. In addition to static obstacles, let 
the workcell contain a set of S source regions, denoted 
by {SI,. . . , S,}, and D destination regions, denoted by 
(271, . . . , D D } .  We generally allow a source or destina- 
tion region to have multiple connected components. Let 
{ P I ,  . . . , Pp} denote a collection of P rigid parts. A request 
can be issued to the robot that requires a part to be picked 
up from a source, and delivered to a destination. In general 
there are P S D  different requests that can be issued. It is 
assumed that at a given time, the robot has complete knowl- 
edge of its configuration and all parts, sources, destinations, 
and requests. 

To characterize requests and the status of the robot with 
respect to requests, we introduce a finite set, M ,  of assem- 
bly modes. An assembly mode is represented by four com- 
ponents, (p, s ,d ,  C / W ) .  The first three represent the part, 
source, and destination respectively. The fourth component 
is W to represent a mode in which a request has been given, 
but the robot has not yet picked up the part, or is C to rep- 
resent a mode in which the request has been given and the 
robot is carrying the part. In addition, we have a special 
mode, N R  E M ,  which represents the condition in which 
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no requests are to  be processed. Under the model where we 
assume that the scheduling is done separately (in [lo] we 
discuss how we can relax this constraint), at a given time 
only one request can be waiting. Hence we have the number 
of assembly modes, IMI = 2PSD + 1. To uniquely identify 
all of the possible situations that can occur in our problem, 
we define a state space as a subset of the Cartesian product, 
X S C x M .  

We next define the free configuration space for different 
modes. Let M ,  c M be the set of all modes such that 
a part is waiting to  be picked up, and M, C M be the 
set of all modes such that the robot is carrying a part. If 
m = (p, s, d, W )  E M,, then 

in which A(q)  denotes the robot at configuration q, and b 
denotes the static obstacle region (see [SI). In addition to 
avoiding collision with static obstacles, we also require that 
the robot avoid collision with other source regions. We also 
prohibit contact with other source regions. 

Suppose m = (p, s, d, C) E M,, which implies that the 
robot is carrying some part, Pp.  We use the notation Pp(q)  
to denote the transformed part, when grasped by the robot, 
which is at configuration q. When a part is being carried 
rigidly by the robot, the effect is that of a “new robot” 
described as A(q) U Pp(q ) .  The free configuration space 
becomes 
C F e e  

{ q  E CI (A(q)uPp(q))n(auslu~. .Ss- luS~+l  ... ss) # 0). 
(2) 

(3) 

For m = N R ,  we have 

c;,, = { q  E CI A(q) n (a U s1 U , .  . U Ss) # 0). 

Controlling the robot and the assembly process. 
We use discrete-time representations in which k represents a 
stage (or time index). Let x k  represent the state at  stage k, 
which simulatneously specifies an assembly mode, m k ,  and 
the configuration q k .  An action (or control input), U k  can 
be issued to  the robot at any stage, and U denotes the set of 
possible actions. These actions can cause the configuration 
to change, or might influence the next assembly mode. 

The assembly process is the finite-state Markov process 
that models the transitions between assembly modes. Prob- 
abilities of the form P ( m k + l l z k , u k )  are specified to  define 
the mode transitions. This implies that the probability of 
the next mode is conditioned on the current configuration 
and action, in addition to the current mode. The proba- 
bilities can be chosen to model a wide variety of stochastic 
processes, but we have derived the probabilities from a few 
basic transition types: 1) the probability of receiving ap, s, d 
request while in mode N R ;  2) the probability that the desti- 
nation will change while (p, s, d ,  C )  E M,; 3) the probability 
that the source will change while (p, s, d, C )  E M,. 

The first transition type is the most fundamental, and 
can be generally expressed as P ( m k + l l m k  = N R )  2 0 
i f . m k + l  E M,, and P ( m k + l l m k  = N R )  = 0 ,  other- 
wise. The second transition type can be expressed as 
P ( m k + l l m k  E M,), which we allow to be nonzero only if m k  
and m k + l  correspond to the same part and source. Ideally, 
the destination remains fixed, and P ( m k + l l m k  E M c )  = 1 
if mk+l = m k ,  and 0 otherwise. Similarly, the third type 
can be expressed as P ( m k + l l m k  E M,), which we al- 
low to be nonzero for any value of m k + l  E M .  Ideally, 
P ( m k + l l m k  E M,) = 1 if m k + l  = m k ,  and 0 otherwise. 
Any of these transition probabilities can be derived from an 

underlying Poisson process, which has been used extensively 
in the modeling of scheduling systems. 

Suppose that the robot has an action, F M P  E U ,  that 
represents fine-motion planning. We assume that this ac- 
tion can only be applied at appropriate regions in the 
state space. To grasp or ungrasp a part, the robot can 
choose this action from state X k  (causing a fine-motion 
operation to be performed), which results in some state, 
z k + l .  At a source region, m k  = (p, s, d ,  W )  deterministically 
changes to m k + l  = (p, s, d, C), and at a destination region, 
m k  =: (p, s, d ,  C) deterministically changes to m k + l  = N R .  
These transitions could alternatively be defined probabilis- 
tical1.y. The condition of reaching a source or goal region 
can be formally defined in one of two ways: 1) the robot is 
in cointact with the source (or destination) region; or 2) the 
robot, is enclosed in the source (or destination) region. 

We next define a state transi t ion distribution as 
P ( z k + l l Z k , U k ) ,  and provide an example in which c C RZ9 
and the robot is limited to translational motion. More com- 
plicated motions will be considered in the next section, in- 
cluding modeling of a redundant manipulator. We define 
the action space as U = [o, 2 ~ )  U (0, F M P } .  If ‘(lk E [O, ZT), 
then A attempts to move a fixed distance toward a direction 
in e. If U k  = 0, then the robot remains motionless. 

w e  define a strategy at stage k as a function ’ y k  : x + U .  
For the examples that we present in this paper, y k  will be 
the same for all k (i.e., each robot action depends only on 
the current state, and not the particular stage). In [lo] we 
discuss how assembly situations that require time depen- 
dency can also be handled. 

Evalluating robot performance. We define a non- 
negative, real-valued loss funct ional  of the form 

K 

k = l  

Above, l k ( % k , U k )  = 0 if m k  = N R .  Otherwise, l k ( X k , U k )  iS 
the expected time to  grasp or ungrasp the part from state 
Xk if u k  = F M P ,  and l k ( z k , u k )  = At for all other actions. 

Tlhe cost that is minimized for our problem thus becomes 
the aggregate of times that parts wait before being delivered. 
If there are no requests (i.e., m k  = N R ) ,  then no penalty is 
received. To reduce the loss over a long period of time, the 
robot will prefer actions that bring the assembly mode back 
to N R  as quickly as possible. The goal of the planner is to 
determine a strategy that minimizes the expected loss. 

Detlermining optimal strategies. Suppose that for 
some k ,  the opti_mal strategy is known for each stage i E 
{k, . . . , K } .  Let L ; ( Z k )  denote the expected loss as a func- 
tion of state, obtained by starting from stage k ,  and imple- 
menting the portion of the optimal strategy, I$, . . . ,y&}. 

The principle of optimality states that L E ( z k )  can be 
obtained from LE+, ( X k + l )  by the following recurrence: 
x ; ( x k )  = 

The goal is to  determine the optimal action, UU.~ ,  for ev- 
ery value of X k ,  and every stage k E (1,. . . , K } .  One can 
begin with stage K + 1, and repeatedly apply ( 5 )  to ob- 
tain the optimal actions. At stage-K + 1, we declare that 
L ; ( + l ( z ~ + l )  = 0. The function L > ,  can be determined 
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from through (5). Using the U K  E U that minimizes 
( 5 )  at Z K ,  we define ~ ; ( z - K )  = U K .  We then apply (5) 
again, using Lk to obtain LkPl and y&-l. 

In our implementation, we determine optimal strategies 
numerically, by successively building approximate represen- 
tations of L;. This offers flexibility, since analytical solu- 
tions are very difficult to  obtain for gross-motion planning 
problems with this form of uncertainty, and have only been 
previously obtained by considering very specific cases [9]. 
Each dynamic programming iteration can be considered-as 
the construction of an approximate representation of L; . 
We decompose the state space into-cells of uniform size to 
consqruct a good approximation of L;. We obtain the value 
for L;(zk)  by computing the right side of equation (5) for 
various values of uk, including uk = 8. The value for L; (zk) 
is obtained by linear interpolation. 

After some finite number of iterations, for every state, 
the optimal actions stabilize, and the representation can 
be utilized as a state-feedback controller. The stabilization 
occurs due to stationarity of the assembly process, control 
of the robot, and other modeling components. Therefore a 
specific choice of K is not needed. Also, at each iteration 
of the dynamic programming algorithm, we only retain the 
representation of L;+, while constructing Lz. To execute a 
strategy, the robot uses the resulting representation, which 
we designate as LT). The optimal action can be obtained 
from any real-valued location z E X though the use of (5), 
linear interpolation, and the approximate representation of 

The time complexity of the algorithm increases exponen- 
tially in the dimension of the state space (as is the case with 
most algorithms for the basic motion planning problem even 
without uncertainty [SI), but for a given dimension the algo- 
rithm is quite reasonable. Computational complexity of the 
algorithm increases linearly with the number of parts, desti- 
nations, and sources. Significant performance improvement 
is possible through parallelization. 

L;.  

4 Specific Assembly Situations 
In this section we present computed solutions for several 
problems that involve the transfer of parts in a workcell for 
assembly. The problems are chosen to illustrate the flexibil- 
ity and generality of our approach, and contain particular 
versions of the mathematical model presented in the last 
section. 

The first example is designed to illustrate many of the 
basic concepts. It involves a rigid robot that translates in 
a planar workcell cluttered with obstacles (see Figure 3) .  
There are two different parts that can be moved from ei- 
ther of two sources to either of two destinations. There are 
consequently 17 possible assembly modes. The probability 
that a request will appear at stage k + 1 while m k  = N R  
is given to be 0.05. In addition, we declare that all p ,  s, d 
combinations are equally likely to occur. We assume that 
once a p ,  s, d combination is given to the robot, it will not 
change or be retracted until part p is delivered to destination 
d. The robot moves at velocity llullAt = 3.0 with workcell 
being 100 units square. 

Figures 4.a and 4.b depict the level-set contours of LI (21) 

for assembly modes (1,1,1, W )  and (1,1,1, C ) ,  respectively. 
In Figure 4.a there is a minimum at the first source re- 
gion, and in Figure 4.b the minimum appears at the destina- 
tion region. For translational motion, the negative gradient 
of L ; ( z l )  represents the direction of motion for the robot. 
Hence, L ; ( z l )  is similar to a numerical navigation function 
[4, 51; however, in our work, we obtain the representation of 
L ; ( z l )  as a by-product of determining the optimal strategy. 

Figure 3: A translating robot problem. 

C. 

h 

e. 

Figure 4: a) Level-set contours of L; ( z l )  for e = 
(1,1,1, W ) ;  b) the contours for e = (1,1,1, C); c) the op- 
timal actions as a vector field for e = (1,1,1, W ) ;  d) the 
optimal actions for e = (1,1,1, C) 

a. b. C. 

d. e. f. 

Figure 5:  A simulation result of y*. 

Figures 4.c and 4.d depict the optimal strategy y' for as- 
sembly modes (1,1,1, W )  and (1,1,1, C), resectively. Each 
arrow indicates the direction of motion (specified as uk = 
y* (zk) ) for the robot, from that particular state location. 
Figure 5 presents a simulation of the robot in the workcell 
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Figure 6: An assembly problem with 145 modes. 

over a period of time, under the implementation of y*. By 
sampling an assembly mode sequence, m, from the Markov 
process, a state trajectory is obtained. The beginning of 
the trajectory is depicted in Figure 5.a, and it concludes in 
Figure 5.f. To save space in the figure, many frames are 
superimposed, and a new picture is shown each time the 
assembly mode changes. The first column of Figure 5 cor- 
responds to execution during the N R  mode. The second 
column corresponds to modes in M,, and the final column 
corresponds to modes in M,. In the last two columns, the 
source and destination regions that correspond to the is- 
sued request are shaded. In the final column, the part that 
is carried by the robot is shaded in black. 

There are at least two interesting behaviors to  note in 
this solution. When the assembly mode is N R ,  the robot 
moves to a location in the lower portion of the workcell 
to reduce the expected time to deliver a part that might 
appear. This corresponds to reducing the setup time in a 
scheduling system, and is hence a preferred behavior for 
the robot. Another behavior to note is how the changing 
geometry affects the trajectory of the robot. In Figures 5.b 
and 5.d the robot does not carry a part, and hence is able to  
move through a narrow opening. However, in Figure 5.c the 
robot carries a part, and consequently must take a longer 
route to reach the destination. 

a. h. c .  

Figure 6 involves a translating robot problem in which 
there are 6 parts, 4 sources, and 3 destinations. In addition, 
Destination 1 has two connected components, in which the 
robot must choose the best delivery region in terms of loss. 
For this problem there are 72 different kinds of requests 
(which are equally likely to occur), which results in 145 as- 
sembly modes. Figure 7 shows a sample of the execution 
under 7’ .  

Note the behavior of the robot with respect to the con- 
nected components of Destination 1. At the start of the 
time period captured in Figure 7.h, the robot receives a re- 
quest to move Part 6 from Source 3 to Destination 1. The 
robot picks up the part from Source 3, and chooses to de- 
liver it to the lower component of Destination l (Figure 7.i). 
This behavior was based on the computation of the optimal 
strategy for that particular position of the robot in the N R  
mode. 

We show next how the principles in this paper also apply 
to motion planning for manipulators performing assembly 
oper#ations. Each manipulator is described by a set of links 
that are connected by rotating joints, and the final link con- 
tains an end-effector that can grasp or ungrasp an object. 
The configuration space is generated by taking the Cartesian 
product of the real-valued intervals that correspond to joint 
angles. To apply our techniques, we must consider obsta- 
cles, source regions, and destination regions in the configu- 
ration space of the manipulator. We require that the entire 
maniipulator avoids collision with static obstacles. To de- 
fine the source and destination regions in the configuration 
space, we only consider the end-effector as the robot. This 
is a reasonable choice since fine-motion planning essentially 
would involve only the end-effector along with the part that 
it could be carrying. Each joint of the manipulator can be 
independently controlled with bounded angular velocity. 

For the first manipulator problem, there are two parts, 
two sources, and two destinations (see Figure 8.a). There 
are three links that move in the plane, and an end-effector 
that always maintains the same orientation. There are joint 
limits that prevent the joints from executing a circular mo- 
tion. Figure 9 shows a sample of the execution under dif- 
ferent requests and under some of the 17 possible assembly 
modes. The third column shows the part being “carried” to 
the destination region. 

For the second manipulator problem, there are two 
sources, four destinations, and one part (see Figure 8.b). 
There are fixed limits for each joint, and the end-effector is 
rigidly attached to  the last joint. Figure 10 shows a sam- 
ple of the execution. One of the sources has two connected 
components, which causes the particular component to be 
chosen during execution depending on the current state. 

P.“, e, 
Pan2 B 

a. 

Figure 8: 3-DOF manipulator examples 
h. 1. 

n 

b. 

Figure 7: A simulation result of y* 
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a. 

d. e. 

h. 1. 

Figure 9: A simulation result of y* 

a. b. C. 

d. e. f. 

g. h. i. 

Figure 10: A simulation result of y*. 

5 Discussion and Conclusions 
Apart from the specific assembly situations presented, OUI 
framework is capable of representing a larger class of motion 

uncertainty associated with the robot are more relevant in 
the final stages of the assembly, i.e., for fine-motion plan- 
ning. These forms of uncertainty can be factored into the 
same probabilistic framework. A treatment of additional 
forms of uncertainty in fine-motion planning (position and 
control uncertainty) that is compatible with our treatment 
of the uncertainty is reported in [6]. 

Robot motion optimization over time is important be- 
cause of the repetitive nature of the assembly tasks, since 
efficient motion planning eventually translates into an in- 
creased throughput. While traditional gross-motion plan- 
ning is not considered part of assembly planning, the re- 
sults in this paper show how the assembly performance can 
be improved by considering gross-motion planning as part 
of the assembly process. At one level, this helps in develop- 
ing interplay between gross-motion planning and scheduling; 
at another level it develops better interface between gross- 
motion planning and fine-motion planning in the presence 
of uncertainty. 

The use of the stochastic assembly process provides a 
flexible way of capturing the time-varying element of assem- 
bly operation at different levels. As demonstrated in the 
specific models that were developed and discussed, many 
different approaches are possible for representing the uncer- 
tainty and the right choice would depend on the particular 
assembly situation. 
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