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Abstract 
We prerent a Care-Based robot motion planning syr- 
tem. Case-Based Planning affords our ryrtem good 011- 
erage care performance by allowing it to underrtand and 
ezploit the tradeoff between completenear and computa- 
tional wst, and permita it to ruccesrfurly plan and learn 
in a wmplez domain without the need for an eztenrively 
engineered and porribly incomplete domain theom. 

1 Introduction 
One goal of research in Artificial Intelligence is the 

creation of autonomous agents, capable of functioning 
successfully in dynamic and/or unpredictable environ- 
ments. Any such agent will require the ability to  ma- 
neuver effectively in its environment; this problem is 
known in the robotics literature as the robot motion 
planning problem. To date no tractable solution to  the 
general motion planning problem has been reported. In- 
stead, researchers have developed either special purpose 
systems that work well in a specific class of domains, 
or general approaches that are primarily of theoretical 
interest due to  their intractable computational complex- 
ity. 

In this paper we present a Case-Baaed Reasoning sys- 
tem that au tomat idy  classifies motion planning prob- 
lems according to  the solution method that is most a p  
propriate. Our system does not operate with an a priori 
fixed classification of problems, but rather it learns with 
experience how to map problems to solution methods. 
Furthermore, our system learns how to adapt parame- 
ters associated with the various methods based on the 
geometry of the planning problem. 

Case-Based approaches were originally developed in 
the artificial intelligence community as an approach to  
machine learning in domains lacking a strong domain 
theory [20, 13, 12, 7, 8, 14, 5, 161. In such domains, 
Case-Based Learning allows a system to acquire com- 
plex plans through new experiences. It is the acquisi- 
tion of these experiences and the ability to  exploit the 
knowledge associated with each experience that gives 
our system the ability to  develop an implicit under- 
standing of the relationships between motion planning 
strategies and the situations they best deal with. Also, 

by building a case library of successful experiences, we 
eliminate the need for a comprehensive domain theory 
composed of rules that are capable of geometric rea- 
soning, plan construction, plan repair, etc.. The end 
result of this learning process is a knowledge base of so- 
lutions to problems that we have encountered and may 
encounter again. 

Geometric approaches to robot motion planning have 
received much attention in the robotics community. 
There are basically three approaches to geometric mo- 
tion planning: heuristic methods (e.g. artificial po- 
tential fields methods [lo, 1, 9, 11, 22]), approximate 
methods (e.g. approximate cell decomposition methods 
[6,23,2,17]), and exact methods (e.g. methods based on 
cylindrical algebraic decompositions [21], or "roadmap" 
methods [4]). A comprehensive treatment of the geo- 
metric approach to robot motion planning can be found 
in [15]. 

Each of these three approaches has its own drawbacks 
(e.g. exact methods are computationally intractable, 
while heuristic methods are not complete); however, for 
any particular problem it is likely that some individual 
method wil l  outperform the others. To date there has 
been no attempt to develop a taxonomy of motion plan- 
ning problems that classifies these problems according 
to best applicable motion planning methods. Our sys- 
tem automatically classifies motion planning problems 
according to  the solution method that is most appro- 
priate, not by using an a priori fixed classification of 
problems, but by learning with experience how to map 
problems to  solution methods. 

2 Using Case-Based Reasoning for 
Robot Motion Planning 

The robot motion planning problem can be character- 
bed as finding a collision-free trajectory for a robot from 
its initial configuration to a specified goal configuration. 
There are many instances of this general problem, for 
example, motion planning for articulated arms, coordi- 
nated motion planning for multiple moving robots, and 
motion planning among moving obstacles. In this paper, 
we focus on the specific problem of planning a collision- 
free trajectory for a 2-dimensional polygonal robot mov- 

0-7803-0720-8/92 $3.00 01992 IEEE 



ing in a plane populated by polygonal obstacles. 
There are two fundamental ideas behind our Case- 

Based approach: (1) Similar motion planning methods 
should work in similar spaces. (2) The more motion 
planning strategies available’ to solve a problem, the 
greater the chance of it being solved. 

Case 1.) The system will solve a motion planning 
problem in a certain space by relying on successful past 
experiences in similar spaces. Specifically, each motion 
planning problem is to navigate in some geometric space. 
This space will have a certain ‘shape.’ The system builds 
a representation of the shape of this space, and searches 
the memory of solved problems for an experience that 
dealt with a similarly shaped space. The motion plan- 
ning strategy or strategies used for the past situation 
will be adapted to the present situation. 

Case 2.) The system will also solve motion planning 
problems in which no one motion planning strategy can 
provide a reasonable solution. Instead, various motion 
planning strategies will be used at  Merent stages of the 
problem, to obtain the best overall solution. It is our 
system’s task to learn these relationships, i.e. to learn 
which motion planners are most appropriate for which 
problems. Given this ability, our system will decompose 
a particular motion planning problem into subproblems, 
and will exploit its learned knowledge by applying a p  
propriate motion planning methods to the individual 
subproblems. 

3 Motion Planners 
Our system currently employs three different motion 

planning methods. In this section, we will briefly de- 
scribe each planner, its advantages and disadvantages, 
the computational cost of using the planner, and what 
constitutes a planning failure. 

3.1 Simplified freeway method (SF) 
The S 3  motion planner is a simplified version of 

Brooks’ Freeway planner [3], in which only pure transla- 
tions of the robot are allowed (i.e. no rotation is permit- 
ted). S3 plans by constructing a straight line segment 
between the robot’s initial and goal positions. 

An example of S3 planning is shown in figure 1. The 
line segments between the vertices of the robot are used 
for failure detection. A failure occurs when any line seg- 
ment (translation line) between a vertex in the robot’s 
initial and goal positions intersects an obstacle edge. 

Although SF is successful in only the simplest of m e  
tion planning problems, it has two advantages. First, 
S T  is the least expensive planner in terms of compu- 
tational cost. Planning resources are used only in gen- 
erating the translation lines, and checking each line for 
intersection with an obstacle edge. The first intersec- 
tion indicates a planning failure. Second, even though 
SF works only for the simplest problems, we have found 
that many such problems exist within large workspaces. 

\ Translation lines 

Figure 1: SF 

3.2 Visibility graph C-space planner(Y4) 
The visibility graph motion planner, YG, may succeed 

in cases where SF has failed. VQ creates plans that 
correspond to pure translations along arcs in the visi- 
bility graph of the C-space obstacles [18]. The visibility 
graph is a non-directed graph G, whose nodes are the 
initial and goal configurations and all of the C-obstacle 
vertices. A link in the graph exists between any two 
nodes if that link does not intersect the interior of any 
C-obstacle region. 

The computational cost of Yg is greater than that 
of SF, but less than that of dP3 (see section 3.3). 
Planning resources are used in generating the C-obstacle 
edges, consolidating these edges, and finding a path in 
the visibility graph. The main disadvantage of YO is 
that it does not allow the robot to rotate, which limits 
the number of problems that V g  can solve. There are 
two advantages to YG. First, though S 3  is less expen- 
sive computationally than YG, Yg can solve all of the 
problems that SF can, and many that SF cannot. Sec- 
ond, VG is less expensive than APT, while being able 
to solve a wide range of problems. 

3.3 Potential guided path planning (dPF) 
The final motion planner used by our system, AP3 is 

b e d  on the artificial potential field method of motion 
planning. In this planning approach the robot (repre- 
sented as a point in configuration space) is treated as 
a unit mass particle moving under the influence of an 
artificial potential field, U [lo]. At each robot configu- 
ration q, the potential force F = -?U determines the 
motion of the particle. The potential function, U, can 
be defined as the sum of an attractive potential pulling 
the robot in the direction of the goal configuration and 
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Visibility path Consolidated edges 

Figure 2: VP 

a repulsive potential pushing the robot away fiom ob- 
stacles. The equation for the artificial attractive force 
used by dP3 is given by: 

where C is a positive scaling factor and (q - q g 4 )  is the 
vector from the current configuration and that of the 
goal. 

The artificial repulsive force is given by: 

(2) 
where p(q)  = Ilq - qcll and qe is the unique configura- 
tion in CB that is closest to q, is a positive scaling 
factor, and po is a positive constant called the distance 
of influence of Gobstacles (beyond which the artificial 
repulsive force on the robot is 0). Designers of artificial 
potential fields planners typically set these parameters 
empirically. 
AFT uses a depth first planning approach, in which 

a path is constructed as the product of successive path 
segments, starting at the initial configuration and end- 
ing at the goal configuration. Each segment is ori- 
ented along the negated gradient of the potential func- 
tion computed at the endpoint of the previous segment. 
Computing the negated gradient amounts to summing 
the z,y, and 0 components of the attractive and repul- 
sive forces acting on a set of control points on the robot. 
The set of control points includes a number of points 
fixed on the robot (selected by the system designer to 
minimize the risk of collision), and a floating repulsive 
control point. The floating control point is determined 
dynamically by the planner as the point on the robot 

Figure 3: A’P3 

with the shortest perpendicular distance to  any obsta- 
cle. An example of A P 3  at work is shown in figure 
3. 

d P 3  is computationally the most expensive of the 
planners our system uses. Failure detection is the most 
expensive aspect of dP3, primarily because it involves 
checking all of the robot’s edges for intersection with 
any of the obstacle edges. This is done at each iteration 
of the depth first planning algorithm. In addition to  the 
cost of failure detection, there is the cost of computing 
the attractive and repulsive forces at each iteration. Fi- 
nally, at each iteration, there is a cost for determining 
the floating repulsive control point. 

There are two primary advantages to  the APT ap- 
proach. First, dF3 is a local planner, which means that 
global knowledge of the workspace is unnecessary. Sec- 
ond, dP3 allows rotation of the robot during motion, 
whereas the other two planners do not. Therefore, dP3 
can solve the same problems as the other two planners 
as well as many others. 

The major disadvantage to APT is that, since d P F  
essentially relies on gradient descent, it may get stuck 
in a local minimum of the potential function other than 
the goal configuration. This is the major drawback of 
the potential fields approach. Figure 4 shows all three 
planners being used to solve a single motion planning 
problem. 

4 An Example of Motion Planning 
In this section, we present an example of our Case 

Based motion planner solving a typical motion planning 
problem. This example illustrates all of the major com- 
ponents of the problem solving process, including d e  
composing the problem, selecting features for indexing, 
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Figure 4: All three planners used to solve a single prob- 
lem 

case retrieval, modification, testing, and repair. The 
system architecture is illustrated in figure 5. 

Retrieval of appropriate cases is what essentially 
drives our system, and so the issue of case indexing is 
very important. An input motion planning problem is 
specified by the initial and goal configurations of the 
robot, a description of the geometry of the robot, and a 
list of the vertices of the obstacles in the workspace. Our 
planner must go to some lengths to extract a set of ex- 
plicit goals from this initial problem description. This is 
done in three steps. First the workspace is decomposed 
into a quadtree (where leaves in the quadtree may be la- 
beled as obstacle or free space). Next, a path of free cells 
in the quadtree decomposition is constructed, such that 
the first cell contains the initial robot position, and the 
final cell contains the goal position. Finally, the system 
constructs a generalized description of each cell-to-cell 
transition in this path. . 
This generalized description of the path, composed of 

left turns, right turns, and channels (where a channel is 
a sequence of adjacent cells with no change in direction) 
serves as input to our Case-Based Planner. The planner 
takes this description of the shape of the path to be 
navigated, and searches its memory of old motion plans 
for a plan that is indexed by a similar description. 

Once a case has been retrieved, the system uses mod- 
ification critics to transfer the knowledge stored in the 
case (i.e. the type of motion plans used, along with any 
necessary parameters) to the appropriate portions of the 
path. This retrieval and modification process results in 
a new plan that is ready to be tested on the current 
problem. A successful test means that the problem has 
been solved and the system has learned a new case for 
its case library. 

Figure 5:  The system architecture 

Testing the plan may show that it is faulty. In such a 
situation, the Repairer is used to ‘diagnose’ or ‘explain’ 
the nature of the failure. The system will then extract 
a set of symbolic descriptors from the explanation to 
be used as indices into its library of repairs. This repair 
library is similar to the case library, but instead of stored 
motion plans, it contains repair strategies for Werent 
types of failures. Each repair strategy is indexed by 
a set of features that define the failure that the repair 
is designed to handle. Once an appropriate repair has 
been found and applied, the motion plan is retested. 
This cycle of diagnosis and repair continues until the 
motion plan is deemed successful, or until a failure is 
encountered that has no clear fix. In the latter case, 
the system abandons the cells in that part of the path 
involved in the failure, and searches for a detour. 

We illustrate this problem solving process in figures 6 
through 9. The initial workspace and quadtree decom- 
position is shown in figure 6 (the bold lines in the figure 
indicate obstacles). The result of this decomposition is 
a connectivity graph. Each node in the graph represents 
a free cell and is identified with a unique name, and a 
list of its neighbors and their relative directions. Once 
a graph has been established, a path is found between 
the robot’s initial position and its goal position. 

The planner will generate a plan for each compo- 
nent of the path, and the Simulator will execute these 
plans. This is illustrated in figure 7. The first plan uses 
SF. The next plan is for a right turn, and uses d P F .  
However, the parameter settings determined through re- 



Figure 6: 
keespace in the workspace 

Decomposition and connectivity of the 

t r i e d  and modification are such that a collision occurs. 
The Repairer is invoked once a failure has been d o  

tected. After a few diagnorb-repair cycles, a successfd 
set of parameter values is found, figure 8. Our simula- 
tion figures show the entire diagnosis-repair cycle, there 
fore the collisions that app- in figure 8 occurred as 
the Repairer was trying to converge on a succesdd set 
of dP3 parameter values. Each collision represents an 
unsuccessful repair. The Repairer stops when the robot 
is able to navigate the turn without any collisions. 

The remainder of the plans are tested in the Simda- 
tor, and all (including the repaired plan) are stored for 
future use. The final composite plan is shown in figure 
9. Again, this figure shows the complete simulation of 
each plan, thus the coUisions seen in this figure are those 
the diagnosis-repair cycle shown in figure 8. 

5 Conclusions 
In this paper, we have outlined an architecture for a 
Case-Based robot motion planning system. Our purpose 
here is to provide insight into the approach by way of 
a brief description and an illustrative example. In our 
experiments, we have found that planning performance 
improves as the system gains experience, and that the 
planner is generally able to find solutions when they 
exist. A more detailed account of the system can be 
found in [19]. 
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