
A Case-Based Approach to Robot Motion Planning

Sandeep Pandya Seth Hutchinson
The Beckman Institute for Advanced Science and Technology

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana,IL 61801

Abstract
We prerent a Care-Based robot motion planning syr-
tem. Case-Based Planning affords our ryrtem good 011-
erage care performance by allowing it to underrtand and
ezploit the tradeoff between completenear and computa-
tional wst, and permita it to ruccesrfurly plan and learn
in a wmplez domain without the need for an eztenrively
engineered and porribly incomplete domain theom.

1 Introduction
One goal of research in Artificial Intelligence is the

creation of autonomous agents, capable of functioning
successfully in dynamic and/or unpredictable environ-
ments. Any such agent will require the ability to ma-
neuver effectively in its environment; this problem is
known in the robotics literature as the robot motion
planning problem. To date no tractable solution to the
general motion planning problem has been reported. In-
stead, researchers have developed either special purpose
systems that work well in a specific class of domains,
or general approaches that are primarily of theoretical
interest due to their intractable computational complex-
ity.

In this paper we present a Case-Baaed Reasoning sys-
tem that au tomat idy classifies motion planning prob-
lems according to the solution method that is most a p
propriate. Our system does not operate with an a priori
fixed classification of problems, but rather it learns with
experience how to map problems to solution methods.
Furthermore, our system learns how to adapt parame-
ters associated with the various methods based on the
geometry of the planning problem.

Case-Based approaches were originally developed in
the artificial intelligence community as an approach to
machine learning in domains lacking a strong domain
theory [20, 13, 12, 7, 8, 14, 5, 161. In such domains,
Case-Based Learning allows a system to acquire com-
plex plans through new experiences. It is the acquisi-
tion of these experiences and the ability to exploit the
knowledge associated with each experience that gives
our system the ability to develop an implicit under-
standing of the relationships between motion planning
strategies and the situations they best deal with. Also,

by building a case library of successful experiences, we
eliminate the need for a comprehensive domain theory
composed of rules that are capable of geometric rea-
soning, plan construction, plan repair, etc.. The end
result of this learning process is a knowledge base of so-
lutions to problems that we have encountered and may
encounter again.

Geometric approaches to robot motion planning have
received much attention in the robotics community.
There are basically three approaches to geometric mo-
tion planning: heuristic methods (e.g. artificial po-
tential fields methods [lo, 1, 9, 11, 22]), approximate
methods (e.g. approximate cell decomposition methods
[6,23,2,17]), and exact methods (e.g. methods based on
cylindrical algebraic decompositions [21], or "roadmap"
methods [4]). A comprehensive treatment of the geo-
metric approach to robot motion planning can be found
in [15].

Each of these three approaches has its own drawbacks
(e.g. exact methods are computationally intractable,
while heuristic methods are not complete); however, for
any particular problem it is likely that some individual
method wil l outperform the others. To date there has
been no attempt to develop a taxonomy of motion plan-
ning problems that classifies these problems according
to best applicable motion planning methods. Our sys-
tem automatically classifies motion planning problems
according to the solution method that is most appro-
priate, not by using an a priori fixed classification of
problems, but by learning with experience how to map
problems to solution methods.

2 Using Case-Based Reasoning for
Robot Motion Planning

The robot motion planning problem can be character-
bed as finding a collision-free trajectory for a robot from
its initial configuration to a specified goal configuration.
There are many instances of this general problem, for
example, motion planning for articulated arms, coordi-
nated motion planning for multiple moving robots, and
motion planning among moving obstacles. In this paper,
we focus on the specific problem of planning a collision-
free trajectory for a 2-dimensional polygonal robot mov-

0-7803-0720-8/92 $3.00 01992 IEEE

ing in a plane populated by polygonal obstacles.
There are two fundamental ideas behind our Case-

Based approach: (1) Similar motion planning methods
should work in similar spaces. (2) The more motion
planning strategies available’ to solve a problem, the
greater the chance of it being solved.

Case 1.) The system will solve a motion planning
problem in a certain space by relying on successful past
experiences in similar spaces. Specifically, each motion
planning problem is to navigate in some geometric space.
This space will have a certain ‘shape.’ The system builds
a representation of the shape of this space, and searches
the memory of solved problems for an experience that
dealt with a similarly shaped space. The motion plan-
ning strategy or strategies used for the past situation
will be adapted to the present situation.

Case 2.) The system will also solve motion planning
problems in which no one motion planning strategy can
provide a reasonable solution. Instead, various motion
planning strategies will be used at Merent stages of the
problem, to obtain the best overall solution. It is our
system’s task to learn these relationships, i.e. to learn
which motion planners are most appropriate for which
problems. Given this ability, our system will decompose
a particular motion planning problem into subproblems,
and will exploit its learned knowledge by applying a p
propriate motion planning methods to the individual
subproblems.

3 Motion Planners
Our system currently employs three different motion

planning methods. In this section, we will briefly de-
scribe each planner, its advantages and disadvantages,
the computational cost of using the planner, and what
constitutes a planning failure.

3.1 Simplified freeway method (SF)
The S 3 motion planner is a simplified version of

Brooks’ Freeway planner [3], in which only pure transla-
tions of the robot are allowed (i.e. no rotation is permit-
ted). S3 plans by constructing a straight line segment
between the robot’s initial and goal positions.

An example of S3 planning is shown in figure 1. The
line segments between the vertices of the robot are used
for failure detection. A failure occurs when any line seg-
ment (translation line) between a vertex in the robot’s
initial and goal positions intersects an obstacle edge.

Although SF is successful in only the simplest of m e
tion planning problems, it has two advantages. First,
S T is the least expensive planner in terms of compu-
tational cost. Planning resources are used only in gen-
erating the translation lines, and checking each line for
intersection with an obstacle edge. The first intersec-
tion indicates a planning failure. Second, even though
SF works only for the simplest problems, we have found
that many such problems exist within large workspaces.

\ Translation lines

Figure 1: SF

3.2 Visibility graph C-space planner(Y4)
The visibility graph motion planner, YG, may succeed

in cases where SF has failed. VQ creates plans that
correspond to pure translations along arcs in the visi-
bility graph of the C-space obstacles [18]. The visibility
graph is a non-directed graph G, whose nodes are the
initial and goal configurations and all of the C-obstacle
vertices. A link in the graph exists between any two
nodes if that link does not intersect the interior of any
C-obstacle region.

The computational cost of Yg is greater than that
of SF, but less than that of dP3 (see section 3.3).
Planning resources are used in generating the C-obstacle
edges, consolidating these edges, and finding a path in
the visibility graph. The main disadvantage of YO is
that it does not allow the robot to rotate, which limits
the number of problems that V g can solve. There are
two advantages to YG. First, though S 3 is less expen-
sive computationally than YG, Yg can solve all of the
problems that SF can, and many that SF cannot. Sec-
ond, VG is less expensive than APT, while being able
to solve a wide range of problems.

3.3 Potential guided path planning (dPF)
The final motion planner used by our system, AP3 is

b e d on the artificial potential field method of motion
planning. In this planning approach the robot (repre-
sented as a point in configuration space) is treated as
a unit mass particle moving under the influence of an
artificial potential field, U [lo]. At each robot configu-
ration q, the potential force F = -?U determines the
motion of the particle. The potential function, U, can
be defined as the sum of an attractive potential pulling
the robot in the direction of the goal configuration and

493

.

CB-edges 7

Visibility path Consolidated edges

Figure 2: VP

a repulsive potential pushing the robot away fiom ob-
stacles. The equation for the artificial attractive force
used by dP3 is given by:

where C is a positive scaling factor and (q - q g 4) is the
vector from the current configuration and that of the
goal.

The artificial repulsive force is given by:

(2)
where p(q) = Ilq - qcll and qe is the unique configura-
tion in CB that is closest to q, is a positive scaling
factor, and po is a positive constant called the distance
of influence of Gobstacles (beyond which the artificial
repulsive force on the robot is 0). Designers of artificial
potential fields planners typically set these parameters
empirically.
AFT uses a depth first planning approach, in which

a path is constructed as the product of successive path
segments, starting at the initial configuration and end-
ing at the goal configuration. Each segment is ori-
ented along the negated gradient of the potential func-
tion computed at the endpoint of the previous segment.
Computing the negated gradient amounts to summing
the z,y, and 0 components of the attractive and repul-
sive forces acting on a set of control points on the robot.
The set of control points includes a number of points
fixed on the robot (selected by the system designer to
minimize the risk of collision), and a floating repulsive
control point. The floating control point is determined
dynamically by the planner as the point on the robot

Figure 3: A’P3

with the shortest perpendicular distance to any obsta-
cle. An example of A P 3 at work is shown in figure
3.

d P 3 is computationally the most expensive of the
planners our system uses. Failure detection is the most
expensive aspect of dP3, primarily because it involves
checking all of the robot’s edges for intersection with
any of the obstacle edges. This is done at each iteration
of the depth first planning algorithm. In addition to the
cost of failure detection, there is the cost of computing
the attractive and repulsive forces at each iteration. Fi-
nally, at each iteration, there is a cost for determining
the floating repulsive control point.

There are two primary advantages to the APT ap-
proach. First, dF3 is a local planner, which means that
global knowledge of the workspace is unnecessary. Sec-
ond, dP3 allows rotation of the robot during motion,
whereas the other two planners do not. Therefore, dP3
can solve the same problems as the other two planners
as well as many others.

The major disadvantage to APT is that, since d P F
essentially relies on gradient descent, it may get stuck
in a local minimum of the potential function other than
the goal configuration. This is the major drawback of
the potential fields approach. Figure 4 shows all three
planners being used to solve a single motion planning
problem.

4 An Example of Motion Planning
In this section, we present an example of our Case

Based motion planner solving a typical motion planning
problem. This example illustrates all of the major com-
ponents of the problem solving process, including d e
composing the problem, selecting features for indexing,

494

el PARSER

Figure 4: All three planners used to solve a single prob-
lem

case retrieval, modification, testing, and repair. The
system architecture is illustrated in figure 5.

Retrieval of appropriate cases is what essentially
drives our system, and so the issue of case indexing is
very important. An input motion planning problem is
specified by the initial and goal configurations of the
robot, a description of the geometry of the robot, and a
list of the vertices of the obstacles in the workspace. Our
planner must go to some lengths to extract a set of ex-
plicit goals from this initial problem description. This is
done in three steps. First the workspace is decomposed
into a quadtree (where leaves in the quadtree may be la-
beled as obstacle or free space). Next, a path of free cells
in the quadtree decomposition is constructed, such that
the first cell contains the initial robot position, and the
final cell contains the goal position. Finally, the system
constructs a generalized description of each cell-to-cell
transition in this path. .
This generalized description of the path, composed of

left turns, right turns, and channels (where a channel is
a sequence of adjacent cells with no change in direction)
serves as input to our Case-Based Planner. The planner
takes this description of the shape of the path to be
navigated, and searches its memory of old motion plans
for a plan that is indexed by a similar description.

Once a case has been retrieved, the system uses mod-
ification critics to transfer the knowledge stored in the
case (i.e. the type of motion plans used, along with any
necessary parameters) to the appropriate portions of the
path. This retrieval and modification process results in
a new plan that is ready to be tested on the current
problem. A successful test means that the problem has
been solved and the system has learned a new case for
its case library.

Figure 5: The system architecture

Testing the plan may show that it is faulty. In such a
situation, the Repairer is used to ‘diagnose’ or ‘explain’
the nature of the failure. The system will then extract
a set of symbolic descriptors from the explanation to
be used as indices into its library of repairs. This repair
library is similar to the case library, but instead of stored
motion plans, it contains repair strategies for Werent
types of failures. Each repair strategy is indexed by
a set of features that define the failure that the repair
is designed to handle. Once an appropriate repair has
been found and applied, the motion plan is retested.
This cycle of diagnosis and repair continues until the
motion plan is deemed successful, or until a failure is
encountered that has no clear fix. In the latter case,
the system abandons the cells in that part of the path
involved in the failure, and searches for a detour.

We illustrate this problem solving process in figures 6
through 9. The initial workspace and quadtree decom-
position is shown in figure 6 (the bold lines in the figure
indicate obstacles). The result of this decomposition is
a connectivity graph. Each node in the graph represents
a free cell and is identified with a unique name, and a
list of its neighbors and their relative directions. Once
a graph has been established, a path is found between
the robot’s initial position and its goal position.

The planner will generate a plan for each compo-
nent of the path, and the Simulator will execute these
plans. This is illustrated in figure 7. The first plan uses
SF. The next plan is for a right turn, and uses d P F .
However, the parameter settings determined through re-

Figure 6:
keespace in the workspace

Decomposition and connectivity of the

t r i e d and modification are such that a collision occurs.
The Repairer is invoked once a failure has been d o

tected. After a few diagnorb-repair cycles, a successfd
set of parameter values is found, figure 8. Our simula-
tion figures show the entire diagnosis-repair cycle, there
fore the collisions that app- in figure 8 occurred as
the Repairer was trying to converge on a succesdd set
of dP3 parameter values. Each collision represents an
unsuccessful repair. The Repairer stops when the robot
is able to navigate the turn without any collisions.

The remainder of the plans are tested in the Simda-
tor, and all (including the repaired plan) are stored for
future use. The final composite plan is shown in figure
9. Again, this figure shows the complete simulation of
each plan, thus the coUisions seen in this figure are those
the diagnosis-repair cycle shown in figure 8.

5 Conclusions
In this paper, we have outlined an architecture for a
Case-Based robot motion planning system. Our purpose
here is to provide insight into the approach by way of
a brief description and an illustrative example. In our
experiments, we have found that planning performance
improves as the system gains experience, and that the
planner is generally able to find solutions when they
exist. A more detailed account of the system can be
found in [19].

References
Robot m e

tion planning: A distributed representation a p
proach. International Journal of Robotics Research,
10(6):628-649, December 1991.

[l] J. Barrsquand and J. C. Latombe.

Figure 7: A planning failure has occurred

Figure 8: The Repairer is successful and the robot
rounds the corner

496

Figure 9: The system has solved the problem

[2] R. Brooks and T. Losano-Perez. A subdivision algo-
rithm in configuration space for findpath with rota-
tion. In Proc. Int. Joint Conf. on Art. Intell., pages

Solving the find-path problem by
good representation of free space. IEEE %ns.
on Systems, Man, and Cybernetics, 13(3):190-197,
1983.

[4] J. F. Canny. The Complezity of Robot Motion Plan-
ning. MIT Press, Cambridge, MA, 1988.

[5] F. Daube and B. Hayes-Roth. A case-based me-
chanical redesign system. In Proc. Int. Joint Conf.
on Art. Intell., pages 1402-1407, 1989.

[6] B. Faverjon. Obstacle avoidance using an octree in
the configuration space of a manipulator. In Proc.
IEEE Int l Conference on Robotics and Automa-
tion, pages 504-512, Atlanta, 1984.

[7] K. Hammond. Explaining and repairing plans that
fail. Artificial Intelligence, 45:173-228, 1990.

[8] Kristian J. Hammond. Case-Based Planning, View-
ing Planning as a Memory Task. Academic Press,
Inc., San Diego, CA, 1989.

[9] Y. K. Hwang and N. Ahuja. Path planning using
a potential field representation. Technical Report
UICU-ENG-88-2251, University of Illinois at Ur-
bana Champaign, 1988.

[lo] 0. Khatib. Real-time obstacle avoidance for manip , ulators and mobile robots. International Journal of
Robotics Research, 5(1):90-98, 1986.

[ll] D.E. Koditschek. Robot planning and control via
potential functions. In The Robotics Review 1,
pages 349-367. MIT Press, 1989.

799-806,1983.
[3] R.A. Brooks.

[12] J . Kolodner. Extending problem solving capa-
bilities through case-based inference. Proc. of
the DARPA Workshop on Case-Based Reasoning,
pages 21-31, May 1988.

[13] J. Kolodner and R. Simpson. The mediator: Analy-
sis of an early case-based problem solver. Cognitive
Science, 13:507-549, 1989.

[14] L. Kopeikina, R. Bandau, and A. Lemmon. Case-
based reasoning for continous control. Proc. of
the DARPA Workshop on Case-Based Reasoning,
pages 250-260, May 1988.

Robot Motion Planning.
Kluwer Academic Publishers, Norwell, MA, 1991.

Casebased problem solving with a
large knowledge base of learned cases. In Proc. Am.
Assoc. Art. Intell., pages 301-306, 1987.

A simple motion-planning al-
gorithm for general robot manipulators. IEEE
%ns. on Robotics and Automation, RA-3(3):224-
238, 1987.

[18] Tomas Lozano-Perez and Michael A. Wesley. An
algorithm for planning collision-free paths among
polyhedral obstacles. Communications of the ACM,

[19] S. Pandya. A casebased approach to robot mo-
tion planning. Master’s thesis, University of Illinois
at Urbana-Champaign, Dept. of Computer Science,
1992.

[20] Bruce W. Porter, Ray Bareiss, and Robert C.
Holte. Concept learning and heuristic classifica-
tion in weak-theory domains. Artificial Intelligence,

[21] J . T. Schwartz and M. Sharir. On the piano movers’
problem: 11. general techniques for computing topo-
logical properties of real algebraic manifolds. In
J. T. Schwartz, M. Sharir, and J . Hopcroft, edi-
tors, Planning, Geometry, and Complezity of Robot
Motion, pages 51-96. Abler, Norwood, NJ, 1987.

[22] R. Spence and S. A. Hutchinson. Dealing with un-
expected moving obstacles by integrating potential
field planning with inverse dynamics control. In
Proc. IEEE Int l Conf. on Intelligent Robots and
Systems, pages 1485-1490,1992.

New heuristic al-
gorithms for efficient hierarchical path planning.
IEEE %ns. on Robotics and Automation, 7(1):9-
20, February 1991.

[15] Jean-Claude Latombe.

[16] W. Lehnert.

[17] T. Lozano-Perez.

22(10):560-570,1979.

45:229-263, 1990.

[23] D. Zhu and J.-C. Latombe.

497

