
CS 8803RMP, Spring 2019 PROBLEM SET 1 Due Feb. 19

Reading: Principles of Robot Motion Chapter 3 and Appendix E. In addition, you may find it helpful to
consult the suggested readings that are listed in the lecture schedule for the course.

Configuration space: topology, parameterizations

Problems:

1. Determine the configuration space for each of the following.

(a) A mobile robot that can translate and rotate in the plane.
Soln: Q = SE(2)

(b) A six-link anthropomorphic arm.
Soln: Q = T 6, the 6-torus

(c) A quadrotor.
Soln: Q = SE(3), since the quadrotor is essentially a rigid object moving in <3.

(d) A mobile manipulator that comprises a robot base (which can rotate and translate in the plane) and
a six-link anthropomorphic arm.
Soln: Q = SE(2) × T 6, which is the direct product of the configuration spaces for the mobile
manipulator and the arm.

(e) A simple bipedal robot with two legs and a torso, each leg attached to the torso by one revolute
joint, and each leg containing one revolute knee joint.
Soln: Q = SE(3)× T 4. We can take any link of the robot as the reference link, and since this link
is a rigid body, its configuration space is SE(3). Once we fix the position of one link, this robot can
be viewed as a kinematic chain with four joints, whose configuration space is the 4-torus.

2. Construct an atlas for SO(2) consisting of two charts. You must show that the two charts satisfy the
conditions required for an atlas.
Soln: To construct an atlas of two charts, we use the parameterization

R =

[
x1 x2
x3 x4

]
=

[
cos θ − sin θ
sin θ cos θ

]
Define U1 = {R ∈ SO(2) | x1 6= 1}, and U2 = {R ∈ SO(2) | x1 6= −1}, i.e., U1 is the set of all rotation
matrices such that θ 6= 0, i.e., U2 is the set of all rotation matrices such that θ 6= π.

The two argument arctangent function Atan2 : <2\(0, 0)→ [−π, π] maps the point x, y in the plane to
the unique angle Atan2(y, x) = θ ∈ [−π, π] such that cos θ = x√

x2+y2
, and sin θ = y√

x2+y2
.

Using Atan2, we may define φi as

φ1(R) =

{
Atan2(x3, x1), x3 ≥ 0

Atan2(x3, x1) + 2π, x3 < 0

φ2(R) = Atan2(x3, x1)

The intersection U1 ∩ U2 consists of two disjoint subsets: V1 = {R ∈ SO(2) | x3 > 1} and V2 = {R ∈
SO(2) | x3 < 1, }. To show that the two charts are C∞-related, we merely compute φ1 ◦ φ−12 and φ2 ◦ φ−11

for V1 and V2. For R ∈ V1 we have φ1 ◦ φ−12 (θ) = θ, which is (obviously) smooth. For R ∈ V2 we have
φ1 ◦ φ−12 (θ) = θ + 2π, which is also smooth. In the other direction φ2 ◦ φ−11 = θ for both V1 and V2.



3. Consider the ZYX Euler angles α, β, γ such that R = Rz,αRy,βRx,γ and R ∈ SO(3). Show that these
Euler angles cannot be used to construct a global chart for SO(3). What is the relationship between these
Euler angles and roll, pitch and yaw angles?
Soln: The equation for R = Rz,αRy,βRx,γ is given in eq. E.12 of [Choset]. Thus α, β, and γ are the roll,
pitch and yaw angles (respectively). For θ = ±π/2, the matrix of eq. E.12 takes the form

R =

 0 −sφcψ + cφsψ sφsψ + cφcψ
0 sφsψ + cφcψ −cφsψ + sφcψ
−1 0 0

 =

 0 sψ−φ cψ−φ
0 cψ−φ −sψ−φ
−1 0 0


and in this case there are infinitely many solutions for ψ and φ. This is analogous to the Z-Y-Z Euler angle
singularity for θ = 0.

4. The two dimensional torus T 2 embedded in <3 can be defined by

f : <2 → <3, f(θ1, θ2) = ((R+ r cos θ1) cos θ2, (R+ r cos θ1) sin θ2, r sin θ1)

in which R is called the major radius and r is the minor radius. Since f is not a bijection, it cannot be
used to define a single global chart on T 2. However, it is easy to define a charts on the torus by using f
and restricting its domain. For example, let

V1 = {(θ1, θ2) ∈ <2 | 0 < θ1 < 2π, 0 < θ2 < 2π}
V2 = {(θ1, θ2) ∈ <2 | 0 < θ1 < 2π, −π < θ2 < π}

and let Ui denote the image of Vi under f , i.e.,

f(Vi) = {(x, y, z) ∈ <3 | (θi, θj) ∈ Vi, f(θ1, θ2) = (x, y, z)} = Ui ⊂ T 2

Then we can define the charts (Ui, φi), with φi : Ui → Vi defined by φi = f−1(x, y, z).

(a) Sketch the sets U1 and U2 (draw two separate tori).

(b) Show that the charts (U1, φ1) and (U2, φ2) are C∞ related.
Soln: The compositions φ1 ◦ φ−12 and φ2 ◦ φ−11 are merely piecewise translations (as in Problem 2
above), and are thus smooth.

(c) Construct an atlas for T 2 using (U1, φ1) and (U2, φ2), and defining as many additional (Ui, φi) as
necessary. You do not need to show that the collection of charts is C∞ related; you
demonstrated your ability to do so in Part b.
Soln: We need two additional charts, which can be defined in a manner analogous to the definition
of U1 and U2:

V3 = {(θ1, θ2) ∈ <2 | −π < θ1 < π, 0 < θ2 < 2π}
V4 = {(θ1, θ2) ∈ <2 | −π < θ1 < π, −π < θ2 < π}

and let Ui denote the image of Vi under f given above.
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5. The torus T 2 can also be defined by the constraint
(
R−

√
x2 + y2

)2
+ z2 − r2 = 0, i.e.,

T 2 = {(x, y, z) ∈ <3 |
(
R−

√
x2 + y2

)2
+ z2 − r2 = 0}

Use the implicit function to show that the torus is a manifold of dimension 2. Note: you will need to apply
the implicit theorem more than once.
Soln: First, consider the variable assignment u1 = x, u2 = y, and v = z, and write the constraint as

f(u1, u2, v) =

(
R−

√
u21 + u22

)2

+ v2 − r2 = 0

(note, since we use r to denote the minor radius, we use u and v as the variables for application of the
implicit function theorem). The Jacobian of f w.r.t. v is given by J = 2v, and thus for v = z 6= 0 we can
parameterize the torus by u1 = x, u2 = y.

Now consider the variable assignment u1 = x, v = y, and u2 = z, and write the constraint as

f(u1, u2, v) =

(
R−

√
u21 + v2

)2

+ u22 − r2 = 0

and the Jacobian is given by

J =
∂

∂v
f = −2

(
R−

√
u21 + v2

)(
v√

u21 + v2

)

In this case, we have J = 0 when v = y = 0 or when R −
√
u21 + v2 = R −

√
x2 + y2 = 0. In the latter

case, we have z = ±r. Thus, for z 6= ±r and y 6= 0, we can parameterize the torus by u1 = x, u2 = z. At
this point, we have covered the entire torus except for two points, x = R± r, y = 0, z = 0.

Finally, consider the variable assignment v = x, u1 = y, and u2 = z, and write the constraint as

f(u1, u2, v) =

(
R−

√
v2 + u21

)2

+ u22 − r2 = 0

and the Jacobian is given by

J =
∂

∂v
f = −2

(
R−

√
v2 + u21

)(
v√

v2 + u21

)

In this case, we have J = 0 when v = y = 0 or when R −
√
v2 + u21 = R −

√
x2 + y2 = 0. In the latter

case, we have z = ±r. Thus, for z 6= ±r and z 6= 0, we can parameterize the torus by u1 = y, u2 = z.
Since the three cases above cover the entire torus, we may conclude that the torus is a 2-manifold.
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6. For a unit quaternion Q, let R(Q) denote the corresponding rotation matrix (see eqn. E.28 of the text).

(a) For v = (v1, v2, v3) , show that v′ = R(Q)v is given by (0, v′) = Q(0, v)Q∗. There are several possible
solutions; the most straightforward is to work out the Quaternion product, and show that the result
is equal to the product R(Q)v. Some hints: The vector triple product and the scalar triple product
might be useful. The vector cross product operation is neither commutative nor associative.

Soln: Let’s simply work out the Quaternion product:

Q(0, v)Q∗ = (q0, q)(0, v)(q0,−q)
= (−qT v, q0v + q × v)(q0,−q)

Let’s consider the scalar and vector parts individually. For the scalar part we have

Scalar part = (−qT v)q0 − (q0v + q × v)T (−q)
= (−qT v)q0 + q0v

T q + (q × v)T q

= (q × v)T q

= q · (q × v) Now, apply the scalar triple product: a · (b× c) = c · (b× a)

= v · (q × q) = 0

Thus, the scalar part satisfies the required condition.

Now, for the vector part we have a bit of tedious vector algebra:

Vector part = v′ = (−qT v)(−q) + q0(q0v + q × v) + (q0v + q × v)× (−q)
= (qT v)q + q20v + q0(q × v)− (q0v + q × v)× q
= (qT v)q + q20v + q0(q × v) + q × (q0v + q × v) since a× b = −b× a
= (qT v)q + q20v + q0(q × v) + q0(q × v) + q × (q × v)

Now use vector triple product: a× (b× c) = b(a · c)− c(a · b)
= (qT v)q + q20v + q0(q × v) + q0(q × v) + q(qT v)− v(qT q)

= 2(qT v)q + q20v + 2q0(q × v)− (qT q)v

Now, simply carry out the multiplications, using the notation q = (q1, q2, q3)
T and v = v1, v2, v3)

T :

= 2(q1v1 + q2v2 + q3v3)

 q1
q2
q3

+ q20

 v1
v2
v3

+ 2q0

 −q3v2 + q2v3
q3v1 − q1v3
−q2v1 + q1v2

− (q21 + q22 + q23)

 v1
v2
v3


=

 2q21v1 + 2q1q2v2 + 2q1q3v3 + q20v1 − 2q0q3v2 + 2q0q2v3 − q21v1 − q22v1 − q23v1
2q1q2v1 + 2q22v2 + 2q2q3v3 + q20v2 + 2q0q3v1 − 2q0q1v3 − q21v2 − q22v2 − q23v2
2q1q3v1 + 2q2q3v2 + 2q23v3 + q20v3 − 2q0q2v1 + 2q0q1v2 − q21v3 − q22v3 − q23v3


=

 2q21 + q20 − q21 − q22 − q23 +2q1q2 − 2q0q3 +2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q22 + q20 − q21 − q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q23 + q20 − q21 − q22 − q23

 v1
v2
v3


Since we are dealing with unit quaternions: − q21 − q22 − q23 = q20 − 1

=

 2(q2o + q21)− 1 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 2(q20 + q22)− 1 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 2(q20 + q23)− 1

 v1
v2
v3


And this expression matches exactly eq. E.28 of [Choset].
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(b) For unit quaternions Q1 and Q2, show that the composite rotation is given by Q = Q1Q2, i.e.,
show that R(Q) = R(Q1)R(Q2) for Q = Q1Q2. Hint: You should not need eqn. E.28 for this
demonstration.

Soln: Consider a vector v, and define v′ and v′′ as

v′ = R(Q2)v

v′′ = R(Q1)v
′ = R(Q1)R(Q2)v

From Part a, we have

(0, v′) = Q2(0, v)Q∗2

(0, v′′) = Q1(0, v
′)Q∗1

Substituting the first equation into the second yields

(0, v′′) = Q1 (Q2(0, v)Q∗2)Q
∗
1

= (Q1Q2) (0, v) (Q∗2Q
∗
1)

(c) For unit quaternions Q1 and Q2, show that (Q1Q2)
∗ = Q∗2Q

∗
1.

Soln: It suffices to show that (Q1Q2)(Q
∗
2Q
∗
1) = (Q∗2Q

∗
1)(Q1Q2) = (1, 0), where (1, 0) is the identity

element of Q, which corresponds to no rotation. Using the associativity of quaternion multiplication,
and the fact that QQ∗ = Q∗Q = (1, 0) (see eq. E.32), we have

(Q1Q2)(Q
∗
2Q
∗
1) = Q1(Q2Q

∗
2)Q

∗
1 = Q1Q

∗
1 = (1, 0)

(Q∗2Q
∗
1)(Q1Q2) = Q∗2(Q

∗
1Q1)Q2 = Q∗2Q2 = (1, 0)

(d) Show that RT (Q) = R(Q∗).
Soln:

I = R(QQ∗) since QQ∗ corresponds to the null rotation

= R(Q)R(Q∗) using the result from part b

RT (Q) = R(Q∗) since RT (Q) = R−1(Q)

7. Let Q denote the set of unit quaternions.

(a) Show that Q is a 3-manifold.

Soln: Unit quaternions satisfy the constraint q20 + q21 + q22 + q23 = 1, i.e., the set of unit quaternions
is in fact the surface of the unit 3-sphere, i.e., Q = S3. This suffices to demonstrate that Q is a
3-manifold, since S3 is a 3-manifold. To prove the result directly, simply apply the implicit function
theorem, using the constraint q20 + q21 + q22 + q23 = 1.

(b) Show that there does not exist a global diffeomorphism φ between Q and SO(3), i.e., show that there
does not exist φ : Q → SO(3), such that φ is a C∞ bijection.

Soln: For any quaternion Q = (q0, q), the quaternion Q′ = (−q0,−q) satisfies R(Q) = R(Q′). This
can be seen from eqn. E.28, or by noting that rotation by θ about an axis k is equivalent to rotation
by −θ about the axis −k.

Thus, for any φ : Q → SO(3), the inverse mapping φ−1 is not well defined, i.e., for any R, we have
φ−1(R) = {Q,Q′} for R = φ(Q).
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(c) Construct a chart for Q. Since no global chart exists, you must specify both an open set U ⊂ Q, and
a mapping φ. You are not required here to construct a full atlas.

Soln: This can be done using the implicit function theorem. The set of unit quaternions Q is
implicitly defined by the constraint q20 + q21 + q22 + q23 = 1. To apply the implicit function theorem,
rewrite this constraint as r21 +r22 +r23 +s2−1 = 0. The Jacobian of this constraint is given by J = 2s,
and we have detJ 6= 0 for s 6= 0. Thus, we may define a chart (U, φ) by

U = {Q = (q0, q1, q2, q3) ∈ Q | q3 6= 0}
φ(q0, q1, q2, q3) = (q0, q1, q2) and φ−1(q0, q1, q2) = (q0, q1, q2,

√
1− q20 + q21 + q22)

8. Many path planning methods require the ability to compute a path in configuration space that connects
two distinct configurations. This can be accomplished by interpolating between the two configurations.
Here, we consider the problem of interpolating between orientations for several different parameterizations
of SO(3) by defining a continuous function g, such that g(0) is the initial orientation and g(1) is the final
orientation.

(a) Define a continuous function g : [0, 1] → SO(3) such that g(0) = I and g(1) = R, for a given
R ∈ SO(3). It may be tempting to use a simple linear interpolation of the form g(t) = I + t(R− I).
Although this choice of g satisfies the boundary conditions, it is easy to show that g(t) /∈ SO(3) for
general t ∈ (0, 1). Find an appropriate g. (Hint, think of axis-angle parameterization).
Soln: Let Rk,θ denote the rotation matrix that corresponds to a rotation by angle θ about the unit
vector k (see Appendix E.3 of [Choset]). Then we may define g(t) = Rk,θt. Clearly Rk,θt ∈ SO(3) for
all t, since θt is merely an angle such that 0 ≤ θt ≤ θ for t ∈ [0, 1].

(b) Define a continuous function g : [0, 1] → SO(3) such that g(0) = R1 and g(1) = R2, for given
R1, R2 ∈ SO(3).
Soln: Consider a rotation matrix R(t) such that R1R(0) = R1 and R1R(1) = R2. It is easy to see that
R(0) = I. Further, if we multiply both sides of R1R(1) = R2 by RT1 we obtain R(1) = RT1R2. Thus,
we arrive to the problem of finding a rotation matrix R(t) such that R(0) = I and R(1) = RT1R2,
which is exactly the problem that we solved in part (a) above, i.e., merely define angle θ and axis k
such that R(1) = Rk,θ, and we arrive to g(t) = R1Rk,θt.

(c) For ZYX Euler angles α, β, γ such that R = Rz,αRy,βRx,γ , define a continuous function g : [0, 1]→
SO(3) such that g(0) = I and g(1) = R, for a given α, β, γ.
Soln: We may extend the results of part (a) above in a straightforward way to obtain the interpolating
function g(t) = Rz,αtRy,βtRz,γt. Since Rk,θt ∈ SO(3) for all t ∈ [0, 1] and any axis k (as above), we
have Rz,αt, Ry,βt, Rz,γ ∈ SO(3) for all t ∈ [0, 1], and clearly g(0) = I and g(1) = Rz,αRy,βRx,γ .

(d) Define a continuous function g : [0, 1]→ Q such that g(0) = (1, 0, 0, 0) and g(1) = Q = (q0, q1, q2, q3),
for a given Q ∈ Q.
Soln: From eq. E.26 [Choset] we can express Q as a rotation about an axis,

Q = (cos θ/2, nx sin θ/2, ny sin θ/2, nz sin θ/2)

Thus, we may define g(t) as

g(t) = (cos θt/2, nx sin θt/2, ny sin θt/2, nz sin θt/2)

and it is clear that g(0) = (1, 0, 0, 0), g(1) = Q, and g(t) ∈ Q for all t ∈ [0, 1].
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