
Learning Agile Motor Skills on Quadrupedal Robots
using Curriculum Learning

Zuoxin Tang
Georgia Institute of Technology

ztang315@gatech.edu

Donghyun Kim
University of Massachusetts Amherst

donghyunkim@cs.umass.edu

Sehoon Ha
Georgia Institute of Technology

sehoonha@gatech.edu

Abstract—Deep reinforcement learning offers an automated
approach for developing complex motor controllers. While this
method is convenient and widely used, it is known for its
notorious high sample complexity, which hinders its use in many
practical applications. One reason for the high sample complexity
is the sparsity of reward signals, which are easy to design but slow
down the convergence of policy gradient algorithms. In this work,
we propose two different curriculum approaches for converting
sparse reward signals to more dense formulations: environment-
driven curriculum and task-driven curriculum. We demonstrate
that our curriculum design allows us to learn a variety of
agile locomotion skills and acrobatic motions for quadrupedal
robots such as jumping, flipping, double-jumping, and wall-back-
flipping.

Index Terms—Legged Robot, Reinforcement Learning, Cur-
riculum Learning

I. INTRODUCTION

Achieving animal-level agility has been a long dream for
roboticists. Unlike quadrupeds in nature that can gracefully
execute a sequence of highly dynamic motions, robots typi-
cally demonstrate conservative movements to stay in the safe
operation region constrained by actuator limits and sensor
noise. One of the most notables examples is locomotion.
There exists a clear gap between the locomotion skills of real
quadrupedal animals, such as dogs or cats, and legged robots.
Even with the recent advances in hardware and software, the
motor skills of legged robots seem far from smooth and fluent
animal movements that negotiate a variety of environments.

To reduce the gap between robots and animals, many
researchers have proposed various approaches for achieving
agile motor skills on legged robots. One popular approach is
model-based planning that designs controllers based on the
identified dynamics of legged robots. Typically, this approach
decomposes the control problem into several layers, such as
planning of simplified dynamics, footstep planning, feedback
control design, model predictive control, joint-level control,
and so on. Although it has been proven effective for many agile
motor skills, such as jumping or flipping, it is known to require
in-depth prior knowledge per each motor skill. On the other
hand, recent deep reinforcement learning (deep RL) offers a
bit more automated approach for developing control policies.
By simply describing the desired behaviors using reward
functions, algorithms automatically find the best weights for
neural-network represented control policies. However, naive

reward functions are often very difficult to learn due to their
sparsity, which leads the optimizer to local minima.

In this paper, we investigate two different curriculum ap-
proaches for converting sparse reward signals into more dense
formulations. The first is an environment-driven curriculum,
where a curriculum parameter modifies the environment. One
notable example is the jumping task: by gradually increasing
the height of the obstacle, the RL agent can start to learn
a policy for an easier task that gives us more meaningful
reward signals. once it can overcome a shorter obstacle, we can
gradually increase the height of the obstacle until it reaches
the robot’s capability. The second is a task-driven curriculum.
In this approach, a curriculum parameter modifies the reward
function. For instance, a robot can start to learn how to walk,
and gradually increase the target speed. These two approaches
change different entities in the formulation of the Markov
Decision Process (MDP) but both can make the learning
process much easier.

We evaluate two curriculum learning approaches on various
agile motor tasks, including jumping, flipping, and double-
jumping. For different control problems, we use one of the
approaches and demonstrate that it allows us to learn effective
control policies. We also investigate different observation
spaces to analyze the learend policies.

II. RELATED WORK

A. Proximal Policy Optimization

Proximal Policy Optimization (PPO) algorithm [15] is one
of the most widely used policy gradient methods. It penalizes
changes that make new policy far away from the old policy.
Instead of using the original objective function,

L(θ) = Êt
[
πθ(at|st)
π′
θ(at|st)

Ât

]
= Êt[rt(θ)Ât] (1)

it uses a clipped objective function

Lclip(θ) = Êt[min{rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât}] (2)

Comparing to its predecessor, Trust Region Poliy Optimization
(TRPO) [14], PPO is easier to implement and more scalable
to large models and parallel implementation.



B. Curriculum Learning

Curriculum Learning (CL) was introduced for Supervised
Learning earlier [2], however it becomes an important tech-
nique in reinforcement learning and robot motion control re-
cently. This method usually start with an easy task and evolve
gradually into a difficult task. For example, [19] designed
curriculum as assistive force introduced by a proportional-
derivative (PD) controller, and its coefficients become the
curriculum space. A window in that space is sliding from
the part where PD controller does most of the work to
another extreme where PD controller is disabled. Some other
work [18] uses an adaptive curriculum update algorithm to
reduce number of hyper-parameters to tune and show that
adaptive curriculum outperforms naive curriculum. On top of
curriculum design, [1] introduces domain randomization in its
curriculum to counter uncertainties existing in the real world
such as sensor error and motor delays. Our project is mainly
inspired by [19]. To shape the behavior of robot, we also
change environment gradually. With proper reward design, we
successfully train policies that can perform highly dynamic
skills.

C. Robot motion control

In the area of robot motion control, Model-free RL algo-
rithm is often used to train a fixed policy that map from robot
observation to its action (or decision). Previous work [5], [11],
[12] has shown the power of neural network polices that can
map from high dimensional observation to high dimensional
action. The advantage of this method is that, after training,
the execution time of policy is short. We can also mask
some of the observation to fit our test environment while
using privileged information in our training environment [3].
Another category of robot motion control algorithm is model-
based algorithm, where an optimization is performed during
execution. There are many works that use this method, such
as [8], [9], [17], or use a combination of both model-free and
model-based algorithms [4], [10]. In this paper, we focus on
model-free RL algorithm.

III. METHODS

A. Reinforcement learning

Reinforcement learning (deep RL) aims to learn a policy
that maximizes the expected sum of rewards [16]. We formu-
late the visual navigation task as Partially Observable Markov
Decision Processes (POMDPs), (S,O,A, T , r, p0, γ), where
S is the state space, O is the observation space, A is the action
space, T is the transition function, r is the reward function, p0
is the initial state distribution and γ is a discount factor. We
take the approach of model-free reinforcement learning to find
a policy π, such that it maximizes the accumulated reward:

J(π) = Es0,a0,...,sT

T∑
t=0

γtr(st,at), (3)

where s0 ∼ p0, at ∼ π(ot), ot ∼ c(st) and st+1 = T (st,at).

B. Curriculum Learning Approaches

Curriculum learning is a technique for solving complex
problems by gradually ramping up the task difficulty from
simple to the end. The effectiveness of the algorithm has been
proven in many robotic applications, including locomotion,
grasping, and navigation. In curriculum learning, the difficulty
of a task is tuned by a task parameter µ that is ranged from 0
to 1. Intuitively, we can imagine that a task with the parameter
µ = 0 is an easy task while a task with the parameter µ = 1 is
the hardest task. For instance, the locomotion task with µ = 0
is to walk on flat terrain while the locomotion with µ = 1
is to negotiate a challenging terrain with many obstacles. We
utilized two types of curriculum in this study.

The first is an environment-driven curriculum, where the
task parameter µ directly modifies the environment, such as
the size of the obstacles in the environment. In the example of
the jumping task, we map the task parameter µ with the size
of the obstacle. We start from the small height which can be
easily jumped over by the robot, and gradually increase the
height when the robot can successfully overcome the given
height. We use this approach for the tasks that have obstacles
in the robot’s path.

The second is a task-driven curriculum, where the task
parameter µ modifies the reward function. For instance, the
task parameter of basic locomotion training is mapped to the
target velocity term in the reward function and we progres-
sively increase the target speed from low to high. In the other
tasks like flipping jumps, the sample principles are applied. We
guide the training to learn flipping motion first and gradually
add the safety penalty in the final posture to encourage the
robot to learn safe landing.

Another important design factor of curriculum learning is
how to advance the task parameter µ. Instead of using a
fixed scheduling technique, we increase the task parameter
by a small amount when the robot can successfully execute
the current task. We measure the success of the task by
comparing the episodic reward against some threshold, R̄,
which is separately configured for each task.

IV. EXPERIMENTS

We use RaiSim [7] and PPO [6] for training and testing. The
RaiSim supports vectorized simulation and has fast simulation
speed. The dynamics simulation runs in 400 Hz and policy
control update frequency is set to 100 Hz. The agent will
be give its IMU information (direction of gravity in its
local coordinate system), information from its motor encoder
(including joint position and velocity), position and velocity
of robot’s trunk. We test four different tasks: running jump,
backflip, barrel roll, and double jump. The different reward
design of each task will be described below. Similar to [11],
we introduce early termination and termination penalty in the
training and reward. Finally, to avoid jerky motion, we add a
low-pass filter [13] (cutoff frequency is lower than 7.5 Hz) in
the joint controller.



Fig. 1. Dynamic motion demonstration. Various agile motor tasks are learned using the proposed curriculum learning algorithms. From the top, the
demonstrated motions are running jump, back flip, barrel roll, double jump, and wall backflip.

A. Running Jump

In the running jump task, the robot is asked to run forward
and do one obstacle clearance. Our reward function is designed
to: 1. reward forward velocity 2. penalize use of joint torque 3.
penalize deviation from guiding trajectory 4. penalize contact
with obstacle. 5. penalize early termination. The guiding
trajectory is a manually set cubic spline so that the robot will
do running jump instead of stopping in front of the obstacle
and go around it. At the beginning of curriculum, the obstacle
does not present, and robot is trained to run forward. The
curriculum is set as follows: once the reward of the agent
reaches a certain threshold, the obstacle will grow a small
amount of height, until it reaches our desired height.

Fig. 2. Running jump

B. Backflip

In this task, the robot performs backflip on the ground. Re-
ward function is set as followings: 1. reward angular velocity
perpendicular to its sagittal plane 2. penalize angular velocity
along its trunk direction 3. penalize use of joint torque 4.
penalize early termination. The curriculum is designed as two
phase: first we set early termination to be zero. Once the robot
is able to do a complete flip, we gradually introduce early
termination penalty so that the robot can land safely.

Fig. 3. Backflip

C. Barrel Roll

Barrel Roll is similar to backflip except that it will flip
around its front direction. Minimum tuning on the weight of
each reward is conducted to encourage natural barrel roll.



Fig. 4. Barrel Roll

D. Double jump

In the double jump task, the robot needs to jump twice in
order to reach a higher platform. To reduce the task difficulty,
we limit the robot in 2D, namely we reduce the DoF of robot
trunk to be three and force the movement of robot’s limbs to
be symmetric along both sides of sagittal plane. The reward
function consists of two parts: 1. reward forward velocity 2.
penalize early termination.

Fig. 5. Double jump

E. Wall Backflip

In this task, we teach the robot to kick off the wall and
perform a backflip. We design a curriculum to negotiate a
wall with different angles. Once the robot lands on the wall,
the wall exerts the force on the robot to help its backflip. This
is done until the robot successfully executes the task.

Fig. 6. Wall Backflip

F. Results and Discussion

Our curriculum learning algorithm display success on all
our four tasks. To our surprise, backflip and barrel roll are
much easier than running jump and double jump in terms of
training samples. This is counter intuitive because for human,
jumping over obstacles is easy but doing flipping is difficult.
We suspect that this is because of the training cost of each
sample. Doing backflip is much more dangerous than doing
running jump and therefore in practice. This shows the value of
researching on sim-to-real transfer where we can ignore much
of the sampling risk. Another hypothesis is that, flipping is
easier because of its shorter task horizon.

We also do experiments on whether certain observation is
vital to the agent. We tried remove global position of trunk
in running jump task to see how it will affect the result. The
environment steps vs. obstacle height curve of this experiment
is shown in Figure 7, where ro means reduced observation,
fo means full observation, sn means small network (two
hidden layers with 128 neurons each layer), ln means large
network (two hidden layers with 256 neurons each layer).
This curriculum curve shows that removing some important
observation from the agent can hinder training but increasing
the policy network can somehow remedy the result. Besides,
as we expect, small network will finish the first stage (no
obstacle exists) earlier while it takes some more samples for
larger network until obstacle starts to grow.

Fig. 7. Experiments on full/reduced observation

V. CONCLUSION AND FUTURE WORK

In this project, we use curriculum learning and reinforce-
ment learning to train robot to do highly dynamic skills
in simulation environment. With the power of vectorized
environment and fast simulation, we are able to train policies
successfully for different skills of robot within reasonable
amount of time. One of the possible future work of this project
is to concatenate different skills together, for example, doing
multiple obstacle clearances or doing a wallflip, a combination



of running and flipping. Further more, it is also interesting
to investigate how we can use a higher level meta policy to
control different skills so that robot can do tasks with longer
horizon.

REFERENCES

[1] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn
Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand.
arXiv preprint arXiv:1910.07113, 2019.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
Curriculum learning. In Proceedings of the 26th annual international
conference on machine learning, pages 41–48, 2009.

[3] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl.
Learning by cheating. In Conference on Robot Learning, pages 66–
75. PMLR, 2020.

[4] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.
Dream to control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

[5] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel,
Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al.
Emergence of locomotion behaviours in rich environments. arXiv
preprint arXiv:1707.02286, 2017.

[6] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi
Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg
Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

[7] Jemin Hwangbo, Joonho Lee, and Marco Hutter. Per-contact iteration
method for solving contact dynamics. IEEE Robotics and Automation
Letters, 3(2):895–902, 2018.

[8] Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and
Sangbae Kim. Highly dynamic quadruped locomotion via whole-
body impulse control and model predictive control. arXiv preprint
arXiv:1909.06586, 2019.

[9] Taesoo Kwon, Yoonsang Lee, and Michiel Van De Panne. Fast and
flexible multilegged locomotion using learned centroidal dynamics.
ACM Transactions on Graphics (TOG), 39(4):46–1, 2020.

[10] Sergey Levine and Vladlen Koltun. Guided policy search. In Interna-
tional conference on machine learning, pages 1–9. PMLR, 2013.

[11] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.
Deepmimic: Example-guided deep reinforcement learning of physics-
based character skills. ACM Transactions on Graphics (TOG), 37(4):1–
14, 2018.

[12] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne.
Deeploco: Dynamic locomotion skills using hierarchical deep reinforce-
ment learning. ACM Transactions on Graphics (TOG), 36(4):1–13, 2017.

[13] Bernd Porr. Dsp iir realtime c++ filter library. https://github.com/
berndporr/iir1, 2020.

[14] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. Trust region policy optimization. In International
conference on machine learning, pages 1889–1897. PMLR, 2015.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[16] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[17] Alexander W Winkler, C Dario Bellicoso, Marco Hutter, and Jonas
Buchli. Gait and trajectory optimization for legged systems through
phase-based end-effector parameterization. IEEE Robotics and Automa-
tion Letters, 3(3):1560–1567, 2018.

[18] Zhaoming Xie, Hung Yu Ling, Nam Hee Kim, and Michiel van de
Panne. Allsteps: Curriculum-driven learning of stepping stone skills.
In Computer Graphics Forum, pages 213–224. Wiley Online Library,
2020.

[19] Wenhao Yu, Greg Turk, and C Karen Liu. Learning symmetric and low-
energy locomotion. ACM Transactions on Graphics (TOG), 37(4):1–12,
2018.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/berndporr/iir1
https://github.com/berndporr/iir1

	Introduction
	Related Work
	Proximal Policy Optimization
	Curriculum Learning
	Robot motion control

	Methods
	Reinforcement learning
	Curriculum Learning Approaches

	Experiments
	Running Jump
	Backflip
	Barrel Roll
	Double jump
	Wall Backflip
	Results and Discussion

	Conclusion and Future Work
	References

