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M2P2: Multimodal Persuasion Prediction using
Adaptive Fusion

Chongyang Bai, Haipeng Chen, Srijan Kumar, Jure Leskovec, and V.S. Subrahmanian

Fig. 1: Real-time prediction of debate persuasiveness (number of votes) using our proposed model M2P2. The debate is from
a Chinese debate TV show, Qipashuo. M2P2 closely predicts the ground truth number of votes.

Abstract—Identifying persuasive speakers in an adversarial
environment is a critical task. In a national election, politicians
would like to have persuasive speakers campaign on their behalf.
When a company faces adverse publicity, they would like to
engage persuasive advocates for their position in the presence
of adversaries who are critical of them. Debates represent a
common platform for these forms of adversarial persuasion.
This paper solves two problems: the Debate Outcome Prediction
(DOP) problem predicts who wins a debate while the Intensity
of Persuasion Prediction (IPP) problem predicts the change in
the number of votes before and after a speaker speaks. Though
DOP has been previously studied, we are the first to study IPP.
Past studies on DOP fail to leverage two important aspects
of multimodal data: 1) multiple modalities are often semanti-
cally aligned, and 2) different modalities may provide diverse
information for prediction. Our M2P2 (Multimodal Persuasion
Prediction) framework is the first to use multimodal (acoustic,
visual, language) data to solve the IPP problem. To leverage
the alignment of different modalities while maintaining the
diversity of the cues they provide, M2P2 devises a novel adaptive
fusion learning framework which fuses embeddings obtained
from two modules – an alignment module that extracts shared
information between modalities and a heterogeneity module that
learns the weights of different modalities with guidance from
three separately trained unimodal reference models. We test
M2P2 on the popular IQ2US dataset designed for DOP. We
also introduce a new dataset called QPS (from Qipashuo, a
popular Chinese debate TV show ) for IPP. M2P2 significantly
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outperforms 4 recent baselines on both datasets.

Index Terms—Multimodal learning, Persuasion, Adaptive fu-
sion

I. INTRODUCTION

Controversial topics (e.g. foreign policy, immigration, na-
tional debt, privacy issues) engender much debate amongst
academics, businesses, and politicians. Speakers who are per-
suasive often win such debates. Given videos of discussions
between two participants, the goal of this paper is to provide a
fully automated system to solve two persuasion related prob-
lems. The Debate Outcome Prediction problem (DOP) tries to
determine which of two teams “wins” a debate. Suppose the
two teams are A and B and suppose befA, befB denote the
number of voters for A and B’s positions respectively before
the debate and aftA, aftB denote the same after the debate.
Hence, befA + befB < n and aftA + aftB < n where n
is the total number of voters in the audience. In the DOP
problem, we say that team A (resp. team B) wins the debate
if aftA − befA > aftB − befB (resp. <). We say a speaker
is a winner if s/he belongs to the winning team. The Intensity
of Persuasion Problem (IPP) tries to predict the increase (or
decrease) in the number of votes of each speaker (as opposed
to a team). We use the same notation as before but assuming
we have two speakers S1, S2. The intensity of speaker X’s
persuasiveness is aftX−befX

n for X ∈ {S1, S2}. It is clear
that both these problems are important. In a business meeting,
it might be important to win (DOP), but in other situations,
peeling away support for an opponent might be important
(IPP). The more support a speaker can peel away from the
opponent, the more persuasive s/he is.
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Fig. 2: In multimodal content, the modalities are semantically
aligned. This example shows a case where the visual modality
(facial expressions) and the language modality (the content of
the speech) are closely aligned.

Solving DOP and IPP using video data alone can pose many
challenges. In this paper, we test our M2P2 algorithm against
two datasets, the IQ2US dataset1 from a popular US debate TV
show and the QPS dataset from the popular Chinese TV show
Qipashuo2. Real-world videos such as these come with three
broad properties: (i) as we can see in Figure 3b, the detected
language can be very noisy — this must be accounted for,
(ii) as we can see from Figure 3a, there can be considerable
noise in the video modality as well — for instance, a man’s
face might be shown in the video while a woman is speaking
and these kinds of audio-video mismatches must be addressed,
(iii) but in some cases — as shown in Figure 2, the modalities
might be nicely aligned where the audio, language, and video
modalities are all correct and the speaker’s speech and visual
signals are aligned. The problem of identifying these types
of mismatches poses a major challenge in building a single
model to predict both DOP and IPP.

Though we are not the first to take on the DOP problem, we
are the first to solve IPP. DOP has been addressed by [1], [2],
[3] who use multimodal sequence data to predict who will win
a debate. However, these efforts do not address all the three
challenges described above. To the best of our knowledge,
there is no existing dataset that addresses the IPP problem
and there are no algorithms to solve the IPP problem. In this
paper, we develop a novel algorithm called M2P2 and show
that M2P2 improves upon past solutions to DOP by 2%–3.7%
accuracy (statistically significant with a p-value below 0.05)
and beats adaptations of past work on DOP to the IPP case
by over 25% MSE (statistically significant with p < 0.01).
Figure 1 shows a sample of how our M2P2 framework predicts
speaker persuasiveness at interim points during a debate from
the QPS dataset — the reader can readily see that the M2P2
prediction of number of votes (orange line) closely matches
the ground truth (green line).

When all three modalities (audio, video, language) agree,
then that “common” information must be correctly captured by
a predictive model. In this case, we say that the modalities are
aligned. However, there can be cases where some modalities
suggest one thing, while the other(s) suggest something dif-
ferent. In this case, we say the modalities are heterogeneous.
Our solution, M2P2, captures both aspects and also learns
how to weight the two aspects in order to maximize predic-

1https://www.intelligencesquaredus.org
2https://www.imdb.com/title/tt4397792/

(a) There are cases where the visual modality is noisy, while the
language modality is clean. In 4 consecutive frames when the woman
is speaking, the face of a man appears (see frames 2 and 3) and the
man’s face is incorrectly assumed to be the woman’s. The language
modality, however, is correct.

(b) There are cases where the language modality can be noisy, while
the visual modality is clean. In the video frame (the right side of the
figure), the subtitles extracted by the OCR system (the left side) are
incorrect due to the milk ads shown. Moreover, the font and color of
subtitles vary from video to video, so it is difficult to automatically
separate these subtitles from other texts.

Fig. 3: Individual modalities can be noisy. Here we show
examples where the visual or the language modality are wrong.
M2P2 learns to down-weight the noisy modalities.

tion accuracy. M2P2 first leverages the Transformer encoder
structure [4] to project the three modalities into three latent
spaces. To combine the information from the latent spaces,
the model then devises two major modules: alignment and
heterogeneity.

The alignment module learns to highlight the shared,
aligned information across modalities. It enforces an alignment
loss in the loss function as a regularization term during
training. This ensures that there is relatively little discrepancy
between the latent embeddings of different modalities when
they are aligned.

The heterogeneity module first learns the weights of
modality-specific information and applies weighted fusion to
harden the model against noisy modalities (cf. Figure 3).
M2P2 uses a novel interactive training procedure to learn the
weights from three separately trained reference models, each
corresponding to a single modality. Intuitively, a modality with
smaller unimodal loss should be assigned a higher weight in
the multimodal model. Finally, the outputs of both modules are
combined with the debate meta-data for persuasion prediction.

We evaluate M2P2 on the IQ2US and QPS datasets. IQ2US
was first used by [1] to evaluate the DOP problem. The
IQ2US dataset only has the final debate outcomes, without any
labels about how persuasive each speaker is during the debate.
Hence, IQ2US cannot be used to evaluate IPP. To this end,
we created a new dataset QPS, based on an extremely popular
Chinese entertainment debate TV show called Qipashuo2. In
QPS, the audience provides real-time votes before and after
each speaker in order to gauge how persuasive the speaker
is. QPS therefore provides a direct measure of each speaker’s
persuasiveness for training and evaluation. We use the IQ2US
dataset for the DOP problem and the QPS dataset for IPP
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problem. M2P2 outperforms baselines based on four recent
papers [1], [2], [3], [5] which were originally designed to
predict debate outcomes (or other related problem scenarios).
We also conduct ablation studies and visualize our results
to show the effectiveness of different novel components in
M2P2.

To summarize, we make the following contributions:
• To the best of our knowledge, M2P2 is the first to solve

the IPP problem.
• We design a novel adaptive fusion learning framework to

solve the IPP and DOP problems.
• We curate a new dataset QPS from the well-known

Chinese debate TV show Qipashuo. QPS will be a strong
benchmark for future work on persuasion prediction as
well as multimodal learning.

• M2P2 outperforms reasonable baselines adapting recent
papers [1], [2], [3], [5] in IPP and DOP problems — and
these improvements are statistically significant.

II. RELATED WORK

Unimodal persuasion prediction. There has been some work
on using a single modality for predicting persuasion. [6], [7],
[8], [9] explored the linguistic modality by studying style,
context, semantic features and argument-level dynamics in
English transcripts to solve DOP. For the visual modality, Joo
et al. [10] defined nine visual intents related to persuasion (e.g.
dominance, trustworthiness) and trained SVMs to predict them
and persuasion using hand-crafted features. Huang et al. [11]
improved these results by fine-tuning pre-trained CNNs. In the
case of audio, MFCC features and LSTM were used by [12]
to solve DOP.
Multimodal persuasion prediction. Brilman et al. [1] solved
DOP by extracting facial emotions, voice pitch and word
category related features and then training separate SVMs for
each modality. The overall prediction for DOP was obtained
through a majority vote by the three models. Nojavanasghari et
al. [2] solved DOP by first building a Multi-Layer Perceptron
(MLP) for each modality, then concatenating the predicted
probabilities,and sending them as input to yet another MLP.
Because both methods use simple aggregate feature values
(e.g. mean, median), they ignore the dynamics of features over
time. As a result, these two approaches do not work well with
short video clips, and do not leverage temporal dynamics. To
address this problem, Santos et al. [3] used an LSTM to take
each time-step into account, but their feature-level multimodal
fusion considers all modalities to be equally important — thus
ignoring the noise, heterogeneity, and alignment properties.

M2P2 is the first to address the Intensity of Persuasion
Prediction problem (IPP). Moreover, M2P2 captures temporal
dynamics via a multi-headed attention mechanism that: (i)
learns the importance of different modalities at different times
in long video sequences, and (ii) thus learns better represen-
tations of multiple modalities. Moreover, M2P2 is the first to
capture both alignment and heterogeneity — hence addressing
noise. With these innovations, M2P2 performs well in both
IPP and DOP.
General Multimodal Learning. A body of multimodal learn-
ing methods defines constraints between modalities in a

latent space to capture their inter-relationships. Andrew et
al. [13] extended Canonical Correlation Analysis by deep
neural networks to maximize inter-modal correlations. Song
et al. [14] further proposed to maximize the correlation of
the residual matrices of multimodal features. Such correlation
constraints have since been used in human action recognition
[15], emotion recognition [16] and video captioning [17]. In
addition to capturing the shared relationship, [18], [19], [5]
tried to extract the individual component of each modality
through low-rank estimation. [20], [21] trained cross-modal
encoders to reconstruct a modality from another modality.
While these efforts provide important insights for creating
multimodal embeddings, they do not show how to combine
the learned embeddings for accurate prediction.

A second body of work explores architectures for fusing
embeddings from modalities. Zadeh et al. [22] introduced
bimodal and trimodal tensors via cross products to express
inter-modal features. Mai et al. [23] further proposed to com-
bine local and global interaction learning for time-dependent
multimodal fusion. As cross products significantly increase the
dimensionality of the feature space, [24], [25], [26] introduced
bilinear pooling techniques to learn compact representations.
Although these methods explicitly model inter-modal relation-
ships, they introduce additional features that require larger
networks to be learned for subsequent prediction tasks. In
contrast, attention-based fusion [27], [28] learns the weighted
sum of multimodal embeddings taking the prediction task into
account. However, they require huge amounts of data to learn
the optimal attention weights. In order to capture long-term
dependencies, M2P2 uses the Transformer encoder [4], [29] to
learn latent embeddings for modalities. On one hand, inspired
by the first class of work, M2P2 uses a shared projector and
enforces high correlation among the encoded embeddings. On
the other hand, M2P2 computes a weighted concatenation of
latent unimodal embeddings, where the weights are guided by
the persuasiveness loss of each embedding through interactive
training. These two innovations lead to a compact embedding
that can be learned with a small dataset.

III. THE M2P2 FRAMEWORK

Figure 4 shows an overview of our M2P2 architecture with
a brief description of its major components. Note that the
key novelties of this paper are the two novel modules (i.e.,
the alignment module and the heterogeneity module shaded
in yellow in Figure 4) that constitute the adaptive fusion
framework (Section III-C) 3.

A. Generating Primary Input Embeddings

Given a video clip, we respectively represent the acous-
tic, visual and language input as XA ∈ RTA , XV ∈
R(H×W×C)×TV , XL ∈ RD×TL , where TA, TV , TL are re-
spectively the lengths of the audio signal, face sequence,
and word sequence. H,W,C are the height, width and the
number of channels of each image, and D is the length of

3Our proposed adaptive fusion framework has the potential of being broadly
utilized in other multimodal learning tasks. We leave that exploration for future
work.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 11,2021 at 18:17:49 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3134168, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 4

Final
Prediction

Reference
Models

Weighted
Concat

Transformer

 Encoder 

Max PoolingMean Pooling

MLP

LossConcat

Legend

Alignment

Heterogeneity

Fig. 4: M2P2 architecture. First, audio, face and language sequences are extracted from a video clip and fed to three separate
modules to get primary input embeddings. Second, each of these embeddings is fed to a Transformer encoder [4] followed by a
max pooling layer, which yields the latent embeddings. Third, the latent embeddings are fed to the alignment and heterogeneity
modules to generate the embeddings Halign and Hhet. Last, we concatenate Halign, Hhet and the debate meta-data XM which
is fed to an MLP for persuasiveness prediction. The latent embeddings interact with two procedures alternately: optimize the
alignment loss Lalign and persuasiveness loss Lpers, and learn weights through 3 reference models.

our dictionary of words. In addition, we also use two debate
meta-data features: the number of votes before a speech and
the length of the speech. We generically denote the debate
meta-data as a vector XM ∈ RdM , where dM = 2.

We first extract features from the three modalities, then add
a fully-connected (FC) layer for each modality to obtain low
dimensional primary input embeddings. The generated primary
input embeddings are depicted as multi-dimensional bars (as
a symbol of vector sequences) in Figure 4. Here we describe
the detailed feature extraction components.
Feature extraction from the acoustic modality. For each
audio clip, we use Covarep [30] to extract MFCCs4, Glottal
source parameters, pitch-related features, and features using
the Summation of Residual Harmonics method [31]. These
features capture human voice characteristics from different
perspectives and are all shown to be relevant to emotions [32].
These 73 dimensional features are averaged over every half
second.
Feature extraction from the visual modality. Since the
speakers in both datasets can be highly dynamic and occluded,
we capture only their faces as Brilman et al. [1] did to reduce
noisy input. The details of face detection and recognition are
in Section IV. Given each facial image, we use the VGG19
architecture [33] pre-trained on the Facial Emotion Recogni-
tion FER2013 dataset5 and extract the 512 dimensional output
before the last FC layer as the face features.
Feature extraction from the language modality. We use the
Jieba6 Chinese text segmentation library to segment Chinese
sentences (utterances) into words. We use the Tencent Chinese

4The energy-related 0th coefficient is excluded
5https://www.kaggle.com/c/challenges-in-representation-learning-facial-

expression-recognition-challenge/overview
6https://github.com/fxsjy/jieba

embedding corpus [34] to extract 200 dimensional word em-
beddings. In the case of English, we extract 64 dimensional
Glove word embeddings [35] trained from all transcripts from
the IQ2US debates.

All features are passed to a learnable FC+ReLU layer which
converts the initial features into primary input embeddings.
The primary input embeddings thus obtained for each of the
three modalities are respectively Hin

A ∈ Rdin×T ′
A , Hin

V ∈
Rdin×T ′

V , Hin
L ∈ Rdin×T ′

L , where din = 16 is the row-
dimension of the primary input embeddings, which is same
across different modalities. T ′A, T

′
V , T

′
L denote the sequence

lengths of the modalities, where T ′V = TV , T
′
L = TL. Note

that in our primary input embeddings, the timestamps of the
acoustic, visual, and language modality respectively represent
a short time window, a frame, and a word.

B. Generating Compact Latent Embeddings of Modalities with
Transformers

To get a compact representation of the primary input embed-
dings for each modality, we aggregate the sequence of features
into a single representation vector using one Transformer
encoder per modality. Transformer encoders have been shown
to outperform many other deep architectures, including RNNs,
GRUs, and LSTMs in many sequential data processing tasks
in computer vision [36] and natural language processing [37].
The multi-head self-attention mechanism of Transformer better
memorizes the long-term temporal dynamics [4].

With the Transformer encoder, the primary input embed-
ding Hin

m ,m ∈ {A, V, L} of each modality is respectively
transformed into a representation as:

Htrans
m = TransformerEncoder(Hin

m ), (1)
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where Htrans
m ∈ Rdtrans×T ′

m , and dtrans = 16 is the
dimension of the latent space after the Transformer encoder.

To convert arbitrary length time sequences into standardized
latent embedding vectors H latent

m ∈ Rdtrans×1, we addition-
ally use a max pooling layer:

H latent
m = MaxPool(Htrans

m ). (2)

H latent
m intuitively captures the maximum activation over the

time sequence along each dimension of dtrans.

C. Balancing Shared and Heterogeneous Information with
Adaptive Fusion

As mentioned earlier, there are two conflicting aspects of
multimodal data. First, data from different modalities within
the same time frames may sometimes be highly aligned (i.e.,
have shared information). Second, different modalities may
sometimes contain diverse cues which may not be equally
important for prediction. To balance the aligned and heteroge-
neous multimodal information, we propose a novel adaptive
fusion framework consisting of two key modules: an alignment
module and a heterogeneity module (shaded in yellow in
Figure 4).

1) Alignment Module: To extract information shared across
different modalities, we first use a shared multi-layer percep-
tron (MLPs) to project the latent embeddings of each modality
m = A, V, L into the same latent space:

Hs
m = MLPs(H latent

m ) (3)

Here, Hs
m ∈ Rds , where ds = 16 is the dimension of the

shared projection space. MLPs is shown as three rounded grey
boxes in Figure 4.

Inspired by existing multimodal representation learning
work [13], [38] and the success of domain adaptation tech-
niques [39], [40], [41], [42], for each pair of modalities
{m,n}, we use a cosine loss term lcos(m,n) and a domain
adaptation loss term lda(m,n) to measure the alignment of
m,n in the shared projection space:

Lalign =
∑

{m,n}⊂{A,V,L}

lcos(m,n) + lda(m,n) (4)

The cosine loss term measures the similarity between embed-
dings of modalities m,n of one sample:

lcos(m,n) = 1− cos(Hs
m, H

s
n)

and the domain adaptation loss is one deep coral loss [39],
which measures the distance between the correlation matrices
of modalities m,n:

lda(m,n) =
1

4d2s
‖Cs

m − Cs
n‖

2
F

where Cm and Cn are correlation matrices of the embeddings
in the shared space for modalities m,n respectively. The
cosine loss aligns the modalities in sample basis whereas
the domain adaptation loss aligns the two modalities in a
distribution level.

During training, the alignment loss Lalign will be added to
the entire prediction loss function as a regularization term to

penalize lack of alignment between the 3 modalities in the
projected space.

After the shared MLP layer, the regularized embeddings
Hs

m are in the same latent space. We apply mean pooling to
average the three embeddings:

Halign = MeanPool(Hs
A, H

s
V , H

s
L) , (5)

Halign ∈ Rds now contains shared information from all
modalities.

2) Heterogeneity Module: Another key observation dis-
cussed in Section I is that different modalities may contain
diverse information, and therefore make unequal contributions
to the final prediction of persuasiveness (e.g., due to the
noisy data from certain modalities as shown in Figure 3).
We therefore propose a novel heterogeneity module which
utilizes an interactive training procedure (Algorithm 1) to learn
weights for different modalities.

Intuitively, the importance of each modality should be
inversely proportional to the “error” caused by the modality.
To estimate this error term, we create three unimodal MLP
reference models (represented as dashed arrows and rounded
grey boxes at the central bottom of Figure 4) parameterized by
φA, φV , φL for the acoustic, visual, and language modalities
respectively. Each unimodal MLP takes the compact latent
embedding H latent

m generated by the Transformer encoder
as input and generates a unimodal prediction Ŷ ref

m for each
modality m = A, V, L:

Ŷ ref
m = MLPref

m (φm;H latent
m ) . (6)

We use Tval to denote the validation set, Yval ∈ R|Tval| are
the labels, and Ŷ ref

m,val ∈ R|Tval| are the predictions made by
the unimodal reference model for modality m. The reference
models (φm’s) are updated using the following Mean Squared
Error (MSE) loss alone:

Lref
m =

∥∥∥Yval − Ŷ ref
m,val

∥∥∥2
2

|Tval|
(7)

After several epochs of training φm’s, we are able to obtain
a converged MSE loss of each reference model. We then use
the updated reference model to estimate the prediction errors
by Lref

m . Lref
m is used to guide the weights wm of latent

embeddings H latent
m (m = A, V, L) to be concatenated in the

heterogeneity module:

Hhet = wAH
latent
A ⊕ wVH

latent
V ⊕ wLH

latent
L . (8)

wA, wV , wL are scalars incrementally updated over epochs:

wm = αwm + (1− α)w̃m, (9)

where α ∈ (0, 1) controls the rate of update, and w̃m is
obtained using the following softmax function of the reference
model validation losses:

w̃m =
exp{−βLref

m }∑
m′=A,V,L exp{−βLref

m′ }
,∀m = A, V, L (10)

β > 0 is a scaling factor. Since
∑

m w̃m = 1, combining
Equation (9), it is guaranteed that

∑
m wm = 1.
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3) Adaptive Fusion with Interactive Training: The rep-
resentations obtained from the alignment module (Halign)
and the heterogeneity module (Hhet) are then concatenated
together with the debate meta-data XM and fed into a final
MLP layer to make the final prediction Ŷ :

Ŷ = f(θ;XA, XV , XL, XM ) = MLP(Halign ⊕Hhet ⊕XM )
(11)

where θ is the set of parameters of the M2P2 model excluding
the reference model parameters φm. The modality weights in
Hhet are adapted from the losses of the unimodal models.
Together with Halign, the representations from both modules
are learned adaptively through an interactive training process.

To train the M2P2 model, we have two loss terms: a novel
alignment loss Lalign, and a persuasiveness loss term Lpers. In
the case of the IPP problem, Lpers is the MSE loss. In the case
of DOP, we use cross-entropy loss for the binary classification.
The total loss function is a weighted combination:

Lfinal = Lpers + γLalign, (12)

where γ is a weight factor.
The entire training proceeds in a master-slave manner, as

shown in Algorithm 1. In each epoch of the master training
procedure (Lines 4 to 14), we use the total loss function in
Equation (12) to update the parameters θ of the main M2P2
components. The weights wA, wV , wL of the 3 modalities
are obtained using reference models φm, and their losses
Lref
m are then updated in the slave procedure. In each epoch

of the slave procedure (Lines 8 to 10), we take the latent
embeddings from the master procedure as input and update
the reference models with the loss function in Equation (7).
We then obtain the weights wA, wV , wL of different modalities
in the heterogeneity module.

IV. DATASETS

We describe our two datasets below.

A. QPS Dataset

We created the QPS dataset by getting videos7 from the
popular Chinese TV debate show Qipashuo. In each episode
of the TV show, 100 audience members initially vote ‘for’
or ‘against’ a given debate topic. Debaters from ‘for’ and
‘against’ teams speak alternately, and the audience can change
their votes anytime. In general, there are 6–10 speech turns.
Final votes are turned in after the last speaker. The winner is
the team which has more votes at the end than at the beginning.
For example, if the initial and final ‘for’ vs. ‘against’ votes are
30:70 and 40:60, respectively, then the ‘for’ team wins because
they increased their votes from 30 to 40 (even though they
still have fewer votes than the “against” team). In total, we
collected videos of 21 Qipashuo episodes with 205 speaking
clips spanning a total of 582 minutes.

We extracted the transcripts from the video subtitles. To
sufficiently preprocess the videos for subtitle extraction, we
took the following steps. First, we sampled 2 frames per

7An example can be found in https://youtu.be/P5ehhs0hpFI.

Algorithm 1: M2P2 interactive training procedure
Input: Training dataset T , validation datset Tval;

Number of epochs n and N
Output: Multi-modality model

f(θ;XA, XV , XL, XM ), modality weights
wm (∀m = A, V, L)

1 Initialize three unimodal reference models
φm(∀m = A, V, L) and θ;

2 Initialize wA = wV = wL = 1/3;
3 % Master Procedure Start
4 for epoch=1,. . . ,N do
5 Update θ with loss function Equation (12);
6 Get latent embeddings H latent

m ,∀m = A, V, L;
7 % Slave Procedure Start
8 for epoch=1,. . . ,n do
9 Update φm,∀m = A, V, L with loss function in

Equation (7);
10 end
11 % Slave Procedure End
12 Get reference model losses Lref

m ,∀m = A, V, L;
13 Update modality importance weights

wm,∀m = A, V, L using Equations (9)-(10);
14 end
15 % Master Procedure End
16 return θ, wm(∀m = A, V, L)

second and binarize the images with a threshold 0.6, which
can avoid the influence from various colors of subtitles in
videos. Second, we cropped the subtitles by a fixed bounding
box since the position of subtitles is fixed in all the videos.
Third, we clustered the binarized images into buckets such that
any two binarized images in the same bucket are identical
on 90% or more pixels. We then randomly selected one of
these images to represent the cluster. This helps reduce noise
(e.g. from advertisements displayed on the image). Finally,
the surviving binary images were fed into an OCR API to get
accurate transcripts. We used Baidu’s off-the-shelf pre-trained
OCR API8, so no extra data is needed for training.

If we take each speaking clip as a train/test instance, there
would be a total of 205 data points. This paucity of information
poses a huge challenge for machine learning. We therefore
segment each speaking clip into clips of 50 utterances each
according to the transcript we extract above. Note that 50 is
the smallest number of utterances in any speaking clip of our
dataset. Moreover, note that these “sub-clips” of 50 utterances
yield a temporal sequence whose temporal dynamics can be
important. The labels are shared for segments extracted from
the same clip. This trick yields 2297 such segments which are
used as train/test instances in our evaluation.

As the speakers are highly dynamic and often occluded,
we only use speakers’ faces as the visual input. We extract 2
frames per second from videos and use Dlib9 for face detection
and recognition. The recognition is based on one pre-annotated
profile for each speaker and is only needed for training. To

8https://ai.baidu.com/tech/ocr
9http://dlib.net
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further reduce false positives (i.e., extracting the face of the
non-speakers), we first use the model from [43] to remove
faces in the image that are not speaking, and then use the
method from [44] for face tracking.

B. IQ2US

We also evaluate M2P2 on the benchmark IQ2US TV
debate dataset used by [1], [12], [6], [7], [8]. This dataset
was originally collected by [1]. The audience can only vote
at the beginning and at the end of the debate, and the winner
is determined in the same way as in Qipashuo. Note that we
cannot use the same set of videos as [1], since they were
interested in predicting the result of the whole debate, which
doesn’t require the transcripts to be aligned within shorter
clips. Of the 100 episodes we collected, only 58 had transcripts
that were correctly aligned with the visual modality at the
minute level. Finally, we get 852 one-minute single-speaker
clip instances from the 58 episodes — 428 of them belong
to the winning side. As transcripts are available in the IQ2US
data, no pre-processing is required for the language modality
in this dataset. For the visual modality, we use the same
procedures as in the QPS dataset to extract the face image
sequences of the speakers. Since there are no intermediate
votes in IQ2US, we only predict the debate outcome (i.e.
whether a single-speaker clip instance belongs to the winning
team).

V. EXPERIMENTAL EVALUATIONS

Our experiments assess the performance of M2P2 on the
DOP and IPP tasks. Specifically:

1) (IPP) We predict the change of votes after a speech by
a debater — this is done on the QPS dataset. Note that
the number of votes are scaled by the total number of
audience members and hence is guaranteed to lie in the
[0,1] interval. Hence, the change of votes always lies in
the [-1,1] interval.

2) (DOP) We predict whether a clip in which a debater is
speaking is part of the winning team of the debate —
this is done on the IQ2US dataset.

In addition, we also conduct an ablation study that assesses the
contributions of different components of M2P2. Moreover, we
assess the importance of different modalities as well as time
frames using the QPS dataset. Finally, we test the sensitivity
of the optimal hyper-parameters used in the model..

A. Experimental Settings

QPS uses a 10-fold rolling window prediction. Specifically,
we construct 10 sequences of consecutive episodes of the
show. For instance, if E1, . . . , Ek represent the set of all QPS
episodes, then one sequence would be Seqk = E1, . . . , Ek,
another would be Seqk−1 = E1, . . . , Ek−1. For any such
sequence Seqi = E1, . . . , Ei, we set Ei as the test episode (i.e.
the episode on which we make predictions). We learn a model
from the first i − 3 episodes E1, . . . , Ei−3 and identify the
best parameters for our model by using episodes Ei−2, Ei−1
as the validation set. As the same subject can occur in multiple

episodes of QPS, in order to avoid information leakage from
training to test data, we do not train a model from Ei to predict
Ej,j<i,∀i, j.

For IQ2US, 10-fold cross validation is used since a debater
can only appear in one episode. The initial vote score and
speaking length features are normalized to [0, 1].

Denote FCn as a fully-connected layer that outputs n-
dimension vectors. The MLPs in the reference models and
final multimodal prediction model are all configured as
FC16+ReLU, FC8+ReLU, and FC1+Sigmoid. The shared
MLP in alignment module is FC16+ReLU. M2P2 uses Batch
Normalization [45] right after each of the FC layers for input
embeddings, and uses 0.4 as dropout [46] after all FC16 layers.
For the Transformer encoder, we use a single layer with 4
heads, where the input, hidden, and output dimension are all
16. We use the Adam [47] optimizer with a weight decay of
10−5. The numbers of epochs in Algorithm 1 is N = 200
and n = 10. The learning rate lr, alignment loss weight γ,
update scalar α, scaling factor β are finalized by grid search.
We ended up using lr = 0.001, γ = 0.1, α = 0.5, β = 50 as
these yield the best results on the validation sets.

B. Comparison with Baselines

We compare both tasks with three multimodal persuasion
prediction baselines: early fusion + SVM [1], deep multimodal
late fusion [2], early fusion + LSTM [3], and a more recent
multimodal fusion baseline, DeepCU [5]. Brilman et al. [1]
extract audio, visual and linguistic features from IQ2US debate
videos and concatenate these features, which are fed into an
SVM for classification. Although [1] also solves the DOP
problem on the IQ2US dataset, it is different from our work
in that (i) the used episodes are different (see Section IV-B
and (ii) it uses long video inputs (9–36 minutes) of all debates
while we only use a short speaking clip (1 minutes) of a single
speaker. Thus, for fair comparison, we implemented their
method and ran experiments in our data. Nojavanasghari et
al. [2] first feed features of each modality to a neural network
to get predictions of the modality, then uses a fusion neural
network to combine the modality-based predictions. Santos et
al. [3] model the temporal dynamics by using an LSTM on
the concatenated features from all modalities. Verma et al. [5]
propose a deep model to integrate both common and unique
latent information for multimodal sentiment analysis.

In the case of the IPP problem, we adapt the first baseline
by modifying it to use an SVM regressor (rather than an
SVM classifier). For the other three baselines, we replace the
final layers by a regression and use MSE loss to train the
models. For fairness, we also allow the baselines to use the
two debate meta-data features. The results comparing M2P2
on IPP and DOP with past approaches are shown in Tables I
and II, respectively.

IPP Problem. Table I shows the MSE obtained by different
approaches in each fold and the average on the QPS dataset.
Note that the vote scores are normalized to lie in the [0, 1]
interval. The last line of Table I shows the decrease percentage
of MSE which is defined as dec. = 1-MSE(M2P2)/MSE(the
best baseline). For instance, from the first column of Table I,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 11,2021 at 18:17:49 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3134168, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 8

Fold 1 2 3 4 5 6 7 8 9 10 Average
Brilman et al. [1] (early fusion) 0.009 0.011 0.016 0.017 0.030 0.018 0.020 0.012 0.013 0.018 0.016
Nojavanasghari et al. [2] (late fusion) 0.007 0.015 0.019 0.011 0.027 0.014 0.020 0.012 0.020 0.015 0.016
Santos et al. [3] (early fusion) 0.025 0.019 0.018 0.019 0.018 0.017 0.029 0.016 0.024 0.018 0.020
Verma et al. [5] 0.012 0.013 0.016 0.012 0.021 0.016 0.016 0.019 0.012 0.016 0.015
M2P2 without DA loss 0.006 0.010 0.015 0.015 0.020 0.015 0.012 0.009 0.009 0.013 0.012
M2P2 (proposed method) 0.006 0.010 0.011 0.014 0.017 0.015 0.012 0.010 0.008 0.012 0.011
dec. % 14.2 9.1 31.3 -27.3 5.6 -7.1 25.0 16.7 33.3 20.0 26.7

TABLE I: MSE for each test fold of different approaches to solving the Intensity of Persuasion Prediction (IPP) on the QPS
Dataset. The last row shows the MSE decrease percentage of M2P2 compared to the best baseline in each fold. DA loss stands
for the domain adaptation loss lda. On average, M2P2 achieves a lower MSE than the baselines by at least 26.7%, which is
statistically significant with p-val < 0.05. Note that the vote scores we predict are normalized.

Method DOP (Accuracy)
Brilman et al. [1] (early fusion) 0.614
Nojavanasghari et al. [2] (late fusion) 0.615
Santos et al. [3] (early fusion) 0.598
Verma et al. [5] (DeepCU) 0.622
M2P2 without DA loss 0.635
M2P2 with MDD DA loss 0.629
M2P2 (proposed method) 0.639

TABLE II: Prediction accuracy for Debate Outcome Prediction
in IQ2US dataset. Our M2P2 is 1.7%–2.5% better than
baselines. The DA stands for domain adaptation and the MDD
DA loss is employed from [41]. M2P2 improvements over
baselines are statistically significant with p-val < 0.05.

we see that the percentage decrease is 1 − 0.006
0.007 ≈ 0.14

representing a 14% decrease of MSE generated by M2P2
compared to the best of the baselines. We observe that on
average, M2P2 yields a 26.7% decrease of MSE compared
with the best baseline which is statistically significant via a
Student t-test (p-val < 0.01). In addition, the comparison of
the last two methods shows that the domain adaptation loss lda
in Equation 4 improves the performance by 1− 0.011

0.012 = 8.3%.
Moreover, M2P2 is more robust and performs better than all
baselines in 7 out of 10 folds.

DOP Problem. Table II shows the average prediction ac-
curacy over 10 folds on the DOP problem w.r.t. the IQ2US
dataset. When we compare M2P2 (last row) with the four
baselines, it is clear that M2P2 achieves 1.7%–2.5% higher
average accuracy than the baselines. The improvement is
statistically significant (p-val < 0.05). To further investigate
the domain adaptation (DA) loss (lda in Equation 4, we
evaluate two variations of M2P2: M2P2 without DA loss,
and M2P2 with the MDD DA loss [41]. We observe that the
proposed method (with deep coral DA loss) achieves the best,
although the difference among the three are not statistically
significant (p-val = 0.08).

Overall, the two experiments make M2P2 the best perform-
ing system for both the IPP and the DOP problems.

C. Ablation Study

To measure the contributions of the different components
of M2P2, we create four methods, each with one component
removed from M2P2 :
• M2P2 without the domain adaptation (DA) loss lda.

Method MSE
M2P2 without DA loss (lda) 0.012
M2P2 without alignment loss 0.018
M2P2 without reference models 0.014
M2P2-LSTM 0.033
M2P2-Acoustic (unimodal) 0.017
M2P2-Visual (unimodal) 0.019
M2P2-Language (unimodal) 0.016
M2P2 0.011

TABLE III: Ablation study results. All improvements are
statistically significant (p-val < 0.05).

• M2P2 without the alignment loss (lda and lcos).
• M2P2 without reference models. The latent embeddings

are concatenated by equal weights 1/3.
• M2P2-LSTM. The Transformer encoder and max pooling

layer are replaced by a 1-layer LSTM.
• M2P2-unimodal. We input a single modality without

alignment loss and latent embedding concatenation. That
is, the latent embedding is directly concatenated with the
debate meta-feature and fed to the final MLP.

Table III shows the average MSE obtained on the QPS
dataset for both M2P2 and the 7 variations above. First, rows
2,3 and the last row show that if M2P2 does not use the
alignment module and reference models in the heterogeneity
module, the MSE increases from 0.011 to 0.018 and 0.014
respectively. This is statistically significant (p-val < 0.05)
and hence shows the power of both proposed adaptive fusion
modules in Section III-C. Second, we observe the power of
the Multihead-attention Transformer encoder to handle long
sequences, as the M2P2-LSTM model achieves the worst
MSE amongst all methods. Third, we observe from rows 4-
6 that the language modality is the most important in the
prediction task, while the acoustic and visual modalities are
less important.

D. Visualization of Prediction

In this experiment, we show (1) the importance of modal-
ities through their learned weights (cf. Equation (8)), and
(2) the examples of learned temporal attention weights from
different modalities.
Modality weights. We report the modality weights in the
heterogeneity module of the trained M2P2 in all folds of QPS
dataset. Figure 5 shows box plots for the three modalities.
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Fig. 5: Modality weights in the heterogeneity module.

Fig. 6: Temporal attention of visual modality – color coded as
blue. Darker color implies higher attention weight.

The language modality is the most important and robust over
all folds with a median weight of 0.42, while the median
weights of acoustic and visual modalities are 0.24 and 0.33
respectively.
Temporal attention weights. We visualize the temporal atten-
tion weights of two sample sequences of visual (Figure 6) and
language (Figure 7) modalities. For each timestamp t, assume
α
(h)
i,t is the scaled dot-product attention weight from query i

to time t in head h, learned by the Transformer Encoder [4].
We calculate the temporal attention weight at time t as

at =
1

IH

I∑
i=1

H∑
h=1

α
(h)
i,t ,

which represents the amount of attention the model pays to
time t, where I and H are the number of queries and heads.
In Figure 6 (top), the man’s face is not detected correctly in
frames 3 and 6 – and we see that M2P2 assigns near-zero
attention weights to both frames, suggesting that these frames
should be ignored. Moreover, the happy expression in frame
2 gets a high attention weight. The woman below gets high
attention weights when she actively talks to someone (frames
2,4,5). In Figure 7, we notice that reasonable keywords like
‘wear’, ‘shackle’, ‘passive’, and ‘hold’ also get high atten-
tion weights. Therefore, our M2P2 captures the meaningful
long-range temporal dynamics with the help of Transformer
Encoder.

Fig. 7: Temporal attention of language modality – color coded
as red. Darker color implies higher attention weight. The
original Chinese transcripts are translated to English.

E. Parameter sensitivity analysis

We study the sensitivity of the hyper-parameters around
their optimal values obtained from grid search. The update rate
α of modality weights in Equation 9, scalar β for Softmax in
Equation 10, and weight γ of the alignment loss in Equation
12 are studied. We perturb each of them by ±5% while fixing
the other two. We use the modified hyper-parameter value and
evaluate the relative change to the original accuracy 0.639
obtained by M2P2 on DOP task (Table II). As a result, the
relative change is at most 1.1%, 0.8% and 1.7% for perturbing
α, β, γ respectively. α is the most sensitive among the three,
implying that the alignment loss is important in training the
model. However, all the changes are within a very small range,
which indicates that our model is robust.

VI. DISCUSSION

A. Text Encoder Comparison for Linguistic Inputs

In M2P2 , the sequence of word embeddings is used as the
sequence input to the Transformer encoder. Another way is to
encode each sentence to an embedding and feed the sequence
of sentences to the Transformer encoder. We have conducted
experiments to compare these two methods. To get English
sentence embeddings in IQ2US, we employ the pre-trained
Universal Sentence Encoder [48] in TFHub10. For Chinese
sentences in QPS, we train an LSTM to get 128-dimensional
sentence embeddings. We replace word embeddings with
sentence embeddings and conduct the experiments in both
datasets. As a result, the accuracy in IQ2US is 0.623 (1.4%
worse than M2P2) and the mean squared error in QPS is
0.014 (20% worse than M2P2). Thus, the fine-grained word-
level embeddings are better than sentence-level embeddings.
The word order and semantic meaning is already captured by
the word-level embeddings.

B. Heterogeneity Module vs. Attention Mechanism

Intuitively, the heterogeneity module in M2P2 aims to learn
the modality-wise importance from data. An alternative is to
use the attention mechanism to attend the model to different
modalities. However, the attention mechanism introduces extra
amount of trainable parameters into M2P2 . In our early
experiments, this resulted in worse results due to the small
dataset (2297 and 805 data points for QPS and IQ2US resp.).
On the contrary, the parameters introduced by heterogeneity
module are independent from the rest of M2P2 model, which
fuses modalities and achieves better prediction results.

10https://tfhub.dev/google/universal-sentence-encoder/1
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C. Modality importance

The importance of the different modalities is shown in two
experiments: ablation study (Table III) and modality weights
(Figure 5). Table III shows that when using a single modality
as input, the language modality is the best while the visual
modality is the worst. Yet when the three modalities are
combined together in M2P2, Figure 5 shows that the audio
modality makes the smallest contribution while the language
modality is still the strongest.

VII. LIMITATIONS AND FUTURE WORK

First, it is important to note that the adaptive fusion tech-
nique in M2P2 can be generalized to other multimodal se-
quence prediction problems such as video question answering
and video sentiment analysis. We leave this exploration for
future work.

Second, since the importance of modalities can vary from
sample to sample, a future effort could investigate methods to
learn sample-specific modality weights (e.g. different attention
mechanisms), which might further improve the performance.

Third, prior knowledge is an important factor for humans
when judging whether a speaker is persuasive or not. We
were unable to assess the impact of prior knowledge in this
work as we used publicly available datasets from TV shows.
An alternative mechanism would be to conduct such debates
ourselves with a studio audience who fill out a pre-debate
survey that sheds light on their prior knowledge and then gets
their votes periodically during and after the debate. This could
be an important experiment to conduct under appropriate IRB
protocols.

Last, in real-world persuasion challenges, factors such as
logic and the structure of arguments may be more important
than the TV shows we have studied where acting and theatrics
may be unreasonably important. An important future effort
might run IRB-approved experiments involving such persua-
sion challenges data and use that to predict persuasion in other
settings.

VIII. CONCLUSION

In this paper, we have solved two problems. First, we
provide a solution to the Debate Outcome Prediction (DOP)
problem that improves on past work by 2%–3.7%. Though
these numbers are not huge, they are statistically significant.
Second, we are the first to pose and solve the Intensity of
Persuasion Prediction (IPP) problem. We show that we are
able to beat baselines built on top of past solutions to IPP by
25% on average. Our proposed M2P2 framework leverages
both the common and modality-specific information contained
in multimodal sequence data (audio, video, language), while
learning to focus attention on the meaningful part of the data.
Moreover, our newly created QPS dataset provides a valuable
new asset for future research — it will be released upon
publication of this paper.
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