
PETGEN: Personalized Text Generation Attack on
Deep Sequence Embedding-based Classification Models

Bing He, Mustaque Ahamad, Srijan Kumar
Georgia Institute of Technology

Atlanta, Georgia, USA
bhe46@gatech.edu,mustaq@cc.gatech.edu,srijan@gatech.edu

ABSTRACT
What should a malicious user write next to fool a detection model?
Identifying malicious users is critical to ensure the safety and in-
tegrity of internet platforms. Several deep learning based detection
models have been created. However, malicious users can evade deep
detection models by manipulating their behavior, rendering these
models of little use. The vulnerability of such deep detection mod-
els against adversarial attacks is unknown. Here we create a novel
adversarial attack model against deep user sequence embedding-
based classification models, which use the sequence of user posts
to generate user embeddings and detect malicious users. In the
attack, the adversary generates a new post to fool the classifier.
We propose a novel end-to-end Personalized Text Generation At-
tack model, called PETGEN, that simultaneously reduces the efficacy
of the detection model and generates posts that have several key
desirable properties. Specifically, PETGEN generates posts that are
personalized to the user’s writing style, have knowledge about a
given target context, are aware of the user’s historical posts on
the target context, and encapsulate the user’s recent topical inter-
ests. We conduct extensive experiments on two real-world datasets
(Yelp and Wikipedia, both with ground-truth of malicious users) to
show that PETGEN significantly reduces the performance of popular
deep user sequence embedding-based classification models. PETGEN
outperforms five attack baselines in terms of text quality and at-
tack efficacy in both white-box and black-box classifier settings.
Overall, this work paves the path towards the next generation of
adversary-aware sequence classification models.

CCS CONCEPTS
• Computing methodologies→ Anomaly detection.

KEYWORDS
Adversarial Text Generation; Sequence Classification; User Classifi-
cation; Attack; Deep Learning

ACM Reference Format:
Bing He, Mustaque Ahamad, Srijan Kumar. 2021. PETGEN: Personalized
Text Generation Attack on Deep Sequence Embedding-based Classification
Models. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467390

Figure 1: Deep user sequence embedding-based classifica-
tion models are used to detect malicious users (top row).
However, an evasion attack by an adversary by creating a
new fake post can lead the same model to misclassify it as
a benign user (bottom row). Our method, PETGEN, generates
personalized text posts to adversarially attack the classifier.

Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event,
Singapore. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3447548.3467390

1 INTRODUCTION
As Web platforms, such as e-commerce, social media, and crowd-
sourcing platforms, have gained popularity, they are increasingly
targeted by malicious actors for their gains [10, 11, 20]. The pro-
liferation of undesirable users, such as fake accounts [20], spam-
mers [3, 23], fake news spreaders [15, 26], abnormal users [1], van-
dal editors [12], fraudsters [11], and sockpuppets [10], poses a threat
to the safety and integrity of online communities. To give an exam-
ple, on Facebook, roughly 5% of monthly active users in 2019 were
fake accounts [20]. Similarly, on Amazon, 63% reviews on beauty
products were from fraudulent users [2]. Thus, the identification
of malicious accounts is a critical task for all web and social media
platforms.

Deep user sequence embedding-based classification models are
increasingly gaining popularity for platform integrity tasks, in-
cluding the TIES model at Facebook [20]. These models train a
deep learning model to generate user embeddings by utilizing the
temporal sequence of actions and post content of a user. The user
embedding is then used to make predictions about the user. For
example, Figure 1 shows a deep user sequence embedding-based
classification model trained to identify malicious users from the
user’s sequence of posts (top row).

However, deep learning models can be vulnerable to adversarial
attacks [21]. While adversarial attacks on deep learning models
have received a lot of attention in graph representation learning,
natural language processing, and computer vision domains [21], the
vulnerability of deep user sequence embedding-based classification
models remains unknown. For example, in Figure 1, the malicious
user can create a new post, so that the entire user sequence is mis-
classified as benign by the classifier (bottom row). Thus, identifying

https://doi.org/10.1145/3447548.3467390
https://doi.org/10.1145/3447548.3467390
https://doi.org/10.1145/3447548.3467390

(a) F1 score after attack (b) Attack Rate (c) BLEU score (d) Target Context Similarity (e) Recent Post Similarity (f) Context Post Similarity

Figure 2: Comparison between the performance of PETGEN and existing attack methods on the fake reviewer detection model
in the Yelp dataset. PETGEN performs the best by reducing the F1 score after attack to the lowest value and its attack rate is
the highest. Simultaneously, PETGEN generates better quality text by having the highest BLUE score, and target context, recent
post, and context post similarities.

the vulnerabilities of deep user sequence classification models is
crucial to improve the models for real-world robustness.

In this paper, we conduct an adversarial evasion attack on deep
user sequence embedding-based classification models. Our attack
setting is as follows: given a pre-trained deep user sequence classi-
fication model F (trained to classify users as malicious or benign),
a user’s sequence of posts, and a target topic context, the goal of
the attacker is to generate a new post on the target context such
that the entire user sequence is now misclassified by F .

Generating a fake attack post poses three major challenges.
First, how can the text generation process effectively use the user’s
post sequence, such that the generated post aligns with the user’s
historical posts on similar contexts? Second, how to generate ad-
versarial text that can fool a sequence embedding-based classifier?
Finally, how to generate text that is personalized? Specifically, how
can the text capture the user’s writing style, be aware of user’s
recent vs past interests, and be knowledgeable about target context.

Existing text generation methods suffer from three major
shortcomings with respect to our attack setting: (a) recent work
has adversarially attacked fake news detection classifiers by gen-
erating fake reply comments on the posts [15]. However, these
models can not be directly used to attack sequence classification
models, as generated text is not personalized to the user and thus,
can be identified by anomaly detection models [1]. (b) Adversarial
posts generated by flipping characters [4] or minimally changing
characters or words [17] can be easily detected by robust detection
systems that employ spell-checkers or human evaluators. Attacks
that append short random text or phrases to the original text can
also be detected by topic coherence checkers [15]. (c) Many attacks
require editing existing text, which is not always possible in real at-
tack settings (e.g., on Twitter, tweets can not be edited once written).
Our attack setting requires creation of a new post altogether.

Present work. In this work, we create a Personalized Text
Generation attack framework, called PETGEN, to generate adversar-
ial text to attack deep user sequence embedding-based classification
models. PETGEN is an end-to-end model. It leverages the sequential
history of user posts (solution to challenge 1) by utilizing the rela-
tionship between the user’s historical posts and the target context,
and builds a context-biased user sequence embedding. This is used
to generate an initial version of the attack post. Next, the model
adopts a multi-stage multi-task learning approach to manipulate
the text to effectively attack the classification model (solution to

challenge 2) and personalize the text to the user’s writing style,
recent interests, and make the text relevant to the global discus-
sions in the target topic context (solution to challenge 3). This step
outputs the final attack text of PETGEN.

We evaluate the attack effectiveness and text quality of our
model. We use two popular datasets: Yelp fake reviewer dataset [23]
and Wikipedia vandal editor dataset [12], both with ground truth
malicious users. We evaluate two popular deep user sequence
embedding-based classification models: TIES, a model that is used
in production at Facebook [20] and HRNN, a sequence classifica-
tion model that uses sequential text embedding [16]. We compare
PETGEN against five baseline and recent attack models that can gen-
erate attack text. Experiments reveal several key findings. First,
both deep user sequence classification models are vulnerable to
the fake text generation attack. Their model performance drops
with even one generated post. Second, PETGEN generates attack text
that results in a larger classification performance drop compared to
existing attack methods. Third, the text generated by PETGEN has
higher quality and is more personalized than existing attack meth-
ods. Experimental results on Yelp dataset are in Figure 2. Fourth,
PETGEN is highly effective in both the white-box setting (when the
attacker has access to the details of the classification model) and the
black-box attack setting (when the attacker does not know anything
about the classification model). Finally, human evaluators rate text
generated by PETGEN as being more realistic over text generated by
existing generation-based attack methods.

Overall, our main contributions are:
• New attack setting: To the best of our knowledge, we are
the first to investigate the problem of text generation attack
on deep user sequence embedding-based classifiers, where
adversaries generate a new piece of text added at the end of
post sequence to fool the sequential classifier.
• Attack model: We create PETGEN, a multi-stage multi-task
personalized text generation model that can generate at-
tack that can effectively attack the sequence classifier and
generate high-quality personalized text.
• Effectiveness: Extensive experiments on two datasets show
that our methods can outperform five strong baselines in
terms of the attack performance. Moreover, our method gen-
erates text with higher quality, both in terms of quantifiable
metrics and as evaluated by human evaluators.

The code and data are at: http://claws.cc.gatech.edu/petgen.

http://claws.cc.gatech.edu/petgen

Notation Description
p𝑡𝑢 User 𝑢’s post at time 𝑡
P1:𝑇𝑢 User 𝑢’s sequence of past 𝑇 posts
p̂𝑇+1𝑢 User 𝑢’s generated post at time 𝑇 + 1
c𝑡𝑢 User 𝑢’s context for post p𝑡𝑢
C1:𝑇
𝑢 User 𝑢’s sequence of contexts c𝑡𝑢 , 𝑡 ∈ {1, ...,𝑇 }
b𝑢 The target context for user 𝑢
𝑦𝑢 The ground truth label of user 𝑢
G The text generator
F The pre-trained user sequence classifier

Table 1: Table of notations used in the paper.

2 RELATEDWORK
2.1 Deep User Sequence Classification Models
To determine whether a user is malicious or not, existing meth-
ods usually focus on building deep sequence embedding models
to encode the sequential information and use the embedding for
downstream applications [13, 16, 30]. For example, Facebook first
creates a temporal embedding from users’ sequence of posts, then
predicts users’ dynamic embedding when users write a new post,
and finally uses these embeddings for fake account detection [20].
However, vulnerabilities of these deep user sequence embedding-
based classification models have not been explored. To fill this gap,
in this work, we first introduce a new next post generation attack
on these models and further propose a attack framework to conduct
this attack. Our work reveals the vulnerabilities of these models.

2.2 Sequential Text Classification Models
Many works formulate classification of the sequence of a user’s
posts as a sequential text classification [16, 28] or document classi-
fication problem [28]. In practice, Convolutional Neural Network
(CNN) and RNN are widely utilized to capture the sequential re-
liance between text posts and encode the text features for detec-
tion [16]. However, these sequential text classification models can
be vulnerable to adversarial attacks, which is relatively unexplored.

2.3 Adversarial Text Generation
Generating adversarial text to attack text classifiers is an important
task due to its contribution tomodel robustness [29]. Thesemethods
can mainly be grouped into two categories: (1) Modification-based
attacks: these approaches mainly make minor modifications to ex-
isting text to generate new text. Modifications include changing or
adding characters, words, or phrases [4, 9, 17, 27]. However, these
models have various shortcomings: they are incapable of fully lever-
aging a user’s rich history of posts, they can not generate original
content, and their modifications can be easily detected by finding
misspelled words and improperly manipulated sentences [22]. (2)
Generation-based attacks: these methods (e.g., TextGAN [19]) gen-
erate a new piece of text to achieve the attack goal. A recent attack
model called Malcom [15] generates new fake reply comments to
news articles to fool detectors. This model achieves high success
in fooling the detector. However, these attack models have some
shortcomings: they are not designed to leverage a user’s rich history
of posts and the generated text is not personalized to the user. To
overcome the above drawbacks of both the generation-based and
modification-based methods, we propose PETGEN, an end-to-end

personalized text generation model that leverages user sequences
to output personalized posts to effectively fool classifiers.

3 PROBLEM DEFINITION
In this section, we formally define our problem as follows:

Preliminaries:We are given 𝑁 users𝑈 = {𝑢1, ...𝑢𝑁 } and a set
of user ground truth labels Y = {𝑦𝑢 }, where 𝑦𝑢 = 0 means user 𝑢
is a benign user and 𝑦𝑢 = 1 means 𝑢 is a malicious user. For each
user 𝑢, we are given a sequence of chronologically ordered posts
P1:𝑇𝑢 = {p1𝑢 , ..., p𝑡𝑢 , ..., p𝑇𝑢 }, P1:𝑇𝑢 ∈ R𝑇×𝑑 where p𝑡𝑢 ∈ R𝑑 denotes
user𝑢’s post at time 𝑡 and𝑑 is the number of tokens in the post. Each
post has an associated context, describing the topic, background, or
metadata of the post in detail. So, the sequence of contexts is C1:𝑇

𝑢 =

{c1𝑢 , ..., c𝑡𝑢 , ..., c𝑇𝑢 },C1:𝑇
𝑢 ∈ R𝑇×𝑑′ where c𝑡𝑢 is the topic context of

post p𝑡𝑢 and 𝑑 ′ is the number of tokens in context. We are given
a pre-trained deep user sequence embedding-based classification
model F , which generates user𝑢’s predicated label F (P1:𝑇𝑢). Model
F is trained to predict F (P1:𝑇𝑢) = 𝑦𝑢 ,∀𝑢 ∈ 𝑈 .

Attacker goal: Given user 𝑢’s sequence of posts P1:𝑇𝑢 , contexts
C1:𝑇
𝑢 , ground truth label 𝑦𝑢 , and target context b𝑢 , we aim to gen-

erate next post p̂𝑇+1𝑢 , such that F ([P1:𝑇𝑢 , p̂𝑇+1𝑢)]) = 1 − 𝑦𝑢 . Here
[P1:𝑇𝑢 , p̂𝑇+1𝑢] represents a sequence where the post p̂𝑇+1𝑢 is concate-
nated at the end of the sequence P1:𝑇𝑢 . Thus, the goal of the attacker
is to flip the prediction result of the classifier on the user’s original
post sequence. Our modeling goal is to train a text generator G
that generates the post p̂𝑇+1𝑢 using the user’s historical posts. Thus,
p̂𝑇+1𝑢 = G(P1:𝑇𝑢 ,C1:𝑇

𝑢 , b𝑢). We list the symbols in Table 1.

4 METHODOLOGY
4.1 System Overview
In this paper, we propose an end-to-end personalized text genera-
tion system, called PETGEN, to attack deep user sequence classifi-
cation models. Specifically, the input is the user’s historical post
sequence, corresponding contexts, the target context, and the pre-
trained user sequence classifier F . PETGEN has two major modules:
in the first module, it leverages the user sequence and target context
to generate sequence-aware contextual text. In the second module,
this text is fine-tuned using amulti-stage multi-task learning setting
such that it achieves the attack goal of fooling the classifier, adopts
the user’s writing style and ensures relevance to recent posts and
to the target context. The resulting text is the output of PETGEN,
which can successfully attack the target classifier. The overview of
the system is shown in Figure 3.

4.2 Sequence-aware Conditional Text
Generator

In this module, PETGEN generates text on the input target context
given a user’s sequence of historical posts and contexts. The goal of
this module is to generate text such that the text incorporates the
user’s historical views on the target context, as expressed in the past
posts with contexts similar to the target context. Thus, among all
the posts in the user’s sequence, the text generator should give more
importance to posts that are on the same or similar context as the
target context, motivated by multi-document summarization [18].

Figure 3: Overview of the PETGEN architecture: The sequence-
aware text generator utilizes the sequence of post and con-
text to generate text that maintains the contextual post rel-
evance. Then, the multi-stage multi-task learning module
fine-tunes the text by different tasks to generate attack text.

Here we treat the text generation process as a conditional lan-
guage model which can leverage additional information [14, 15].
To this end, we propose a conditional text generation model in-
corporating the sequential post relevance through an attention
mechanism, as shown in Figure 4. Specifically, G(P1:𝑇𝑢 ,C1:𝑇

𝑢 , b𝑢) is
a conditional text generator that outputs next post p̂𝑇+1𝑢 , by sam-
pling one token in one step. The output is based on (1) the sequence
of posts P1:𝑇𝑢 , (2) the sequence of context C1:𝑇

𝑢 , (3) the target context
b𝑢 , (4) previously generated tokens.

We select Relational Memory Recurrent Network (RMRN) as the
basic text generationmodel𝑔 ofG, following previous work [15, 19],
as RMRN models have shown remarkable performance in gener-
ating long text posts. Like traditional recurrent networks, 𝑔 can
convert each post in the sequence into a post embedding, obtained
by the hidden state of 𝑔:

e𝑡𝑢 = 𝑔(p𝑡𝑢) (1)

where e𝑡𝑢 is the embedding vector of the post p𝑡𝑢 ,∀𝑡 ∈ 1, . . .𝑇 .
To generate personalized text that is aware of the user sequence,

we bias the text generator towards historical user posts that are
contextually-relevant to the target context. This will ensure that
the generated text has similar views as what the user has expressed
in the past on the same context [18]. Specifically, we create an
attention vector to quantify the contextual importance of each post
in text generation. The attention vector is generated by calculating
the similarity between the target context b𝑢 and each post’s context
c𝑡𝑢 . We create a context similarity function 𝐴(·) to capture the
relationship as:

𝑎𝑡𝑢 = 𝐴(𝑉𝑒𝑐𝑡 (b𝑢),𝑉𝑒𝑐𝑡 (c𝑡𝑢)) (2)

where 𝑎𝑡𝑢 , 𝑡 ∈ {1, ...,𝑇 } is the resulting attention score of the post p𝑡𝑢
and it ranges from 0 to 1. 𝑉𝑒𝑐𝑡 (·) is a function to transfer text into
vector. Following the similar vectorization method in the previous
works [15], we use the Latent Dirichlet Allocation model trained on
the whole text to compute the vector representation. A high value
of 𝑎𝑡𝑢 means c𝑡𝑢 is highly related to the target context b𝑢 . Thus, the
generated text should be more influenced by the corresponding
post p𝑡𝑢 . The attention vector is used to generate a Context-biased

User Sequence Embedding vector s𝑢 as follows:

s𝑢 =
∑

𝑡 ∈1,...,𝑇

𝑒𝑥𝑝 (𝑎𝑡𝑢)∑
𝑡 ∈1,...,𝑇 𝑒𝑥𝑝 (𝑎𝑡𝑢)

etu (3)

Thus, s𝑢 is a representation of the user sequence which is biased
towards user’s historical posts with similar contexts as the target
context.

We use s𝑢 in the text generation process to generate personalized
and contextually-relevant text. Specifically, we combine 𝑠𝑢 and the
embedding vector of the generated token by addition to generate
the next token. This ensures that each generated token is user
sequence-aware. Formally, we have:
𝑝𝑇+1𝑢 (𝑖 + 1) ← 𝑅𝑀𝑅𝑁 (LayerNorm(FeedForward(s𝑢) +Embed(𝑝𝑇+1𝑢 (𝑖)))

(4)
where Embed is the embedding layer for tokens, FeedFoward is
a feedforward layer to match dimensions during addition, Layer-
Norm is a normalization layer, and 𝑝𝑇+1𝑢 (𝑖) is a token at step 𝑖 when
generating p̂𝑇+1𝑢 . Note that a post has 𝑑 tokens and thus the gen-
eration is done for 𝑑 steps. The first token is initialized randomly.
As we can see, each token is influenced by both the previous token
and context-biased user embedding vector.

Finally, when outputting a token, each token is sequentially
sampled using the conditional probability and the probability of
the whole post can be presented as follows:

𝑝 (p̂𝑇+1𝑢 |P1:𝑇𝑢 ;C1:𝑇
𝑢 ; b𝑢 ;𝜃G) = Π𝑝 (𝑝𝑇+1𝑢 (𝑖) |𝑝𝑇+1𝑢 (𝑖−1), 𝑝𝑇+1𝑢 (𝑖−2)

, ..., 𝑝𝑇+1𝑢 (1); P1:𝑇𝑢 ;C1:𝑇
𝑢 ; b𝑢) (5)

where 𝜃G are the parameters of G. Similar to the training of con-
ditional language model [14, 15], we train G by using Maximal
Likelihood Estimation (MLE) with teacher-forcing and minimize
the loss of negative log-likelihood for all posts based on the corre-
sponding posts and contexts. To optimize the generator, we use the
following objective function:

min
𝜃G

𝐿𝐺𝐸𝑁
G = −

∑
𝑢∈𝑈

p̂𝑇+1𝑢 log𝑝 (p̂𝑇+1𝑢 |P1:𝑇𝑢 ;C1:𝑇
𝑢 ; b𝑢 , 𝜃G) (6)

Finally, after training, the generator can output user 𝑢’s next
post as:

p̂𝑇+1𝑢 = G(P1:𝑇𝑢 ,C1:𝑇
𝑢 , b𝑢) (7)

In our experiments, we use cosine similarity as the context sim-
ilarity function 𝐴(·) to compute the attention score. Next, when
training the generator G, we use the last post as (𝑇 + 1)-th post,
the second last as 𝑇 -th post and so on so forth. Additionally, since
the sampling process is nondifferentiable, we use Gumbell-softmax
relaxation trick to solve this problem [8, 19].

4.3 Multi-Stage Multi-Task Learning
In this module, the generated text post p̂𝑇+1𝑢 is modified to make
the text realistic, personalized, and achieve the attack goal. We set
it up as a multi-task learning module, which has four key tasks.

4.3.1 Style Task. The generated post will only be personalized if it
mimics the writing style of the user. This is especially important
when advanced classifiers, such as those deployed in practice [20],
are equipped with a robust detector that detect posts that are way
too different from the user’s previous writing style and the account
is flagged as being malicious. Therefore, keeping the writing style

Figure 4: The overview of the sequence-aware conditional text generator in PETGEN. We first create the sequence embedding
from the post embedding of each post in a sequence. We also compute the attention score between the target context and the
user’s historical contexts to capture their pairwise relevance, resulting in a context-aware attention vector. After multiplying
the generated sequence embedding and attention vector, we get the context-biased user sequence embedding. We concatenate
it with the generated tokens for sequence-aware conditional text generation.

similar is important for a successful attack. To achieve this goal, we
create the style task to tune the generator G.

We construct a text-GAN model for text style transfer, where
a post style discriminator D is deployed to co-train with G by a
Relativistic GAN loss [5, 19]. In particular, the discriminator D de-
termines whether the generated post p̂𝑇+1𝑢 by G is less realistic than
user’s historical post p𝑡𝑢 ,∀𝑡 ∈ [1,𝑇] while the generator G targets
to generate realistic post to fool the discriminator D. Formally, we
have two objective functions to alternatively refine D and G:
min
𝜃G

𝐿𝑆𝑇𝑌
G = −E(P1:𝑇𝑢 ,C1:𝑇𝑢 ,b𝑢)∼𝑝 (P1:𝑇 ,C1:𝑇 ,B) 𝑙𝑜𝑔 (𝜎 (D (p

𝑡
𝑢) − D(p̂𝑇+1𝑢)))

min
𝜃D

𝐿D = −E(P1:𝑇𝑢 ,C1:𝑇𝑢 ,b𝑢)∼𝑝 (P1:𝑇 ,C1:𝑇 ,B) 𝑙𝑜𝑔 (𝜎 (D (p̂
𝑇+1
𝑢) − D(p𝑡𝑢)))

(8)

where 𝜎 is a sigmoid function, 𝜃D are the parameters of D, B =

{b𝑢 } is the set of all users’ target contexts, P1:𝑇 = {P1:𝑇𝑢 },C1:𝑇 =

{C1:𝑇
𝑢 } is the set of all users’ posts and contexts. In our experiment,

we use multi discriminative representations [19] as the architecture
of the discriminator D.

4.3.2 Attack Task. The primary goal of the generated text is to
fool the target sequential classifier. Thus, we create the attack task
to tune generator𝐺 to achieve this goal. The sequential classifier
F is originally trained using a binary cross entropy loss over the
training data:

min
𝜃F

𝐿F = − 1
𝑁

∑
𝑢

𝑦𝑢 logF (P1:𝑇𝑢) + (1−𝑦𝑢) log(1−F (P1:𝑇𝑢)) (9)

In a white-box attack, we directly use the trained classifier F . In
a black-box attack, we train a surrogate classifier F ′ to mimic the
predictions of F . Note that once trained, both F and F ′ are not
modified. Without loss of generality, we refer to the classifier we
aim to attack as F .

The classifier F is utilized to tune generator G such that the
generated post p̂𝑇+1𝑢 fools the classifier into making incorrect pre-
dictions about the user F ([P1:𝑇𝑢 , p̂𝑇+1𝑢]) = 1 − 𝑦𝑢 . Formally, we
create the following objective function to optimize:

min
𝜃G

𝐿𝐴𝑇𝑇G = − 1
𝑁

∑
𝑢

(1 − 𝑦𝑢) logF ([P1:𝑇𝑢 , p̂𝑇+1𝑢])

+ 𝑦𝑢 log(1 − F ([P1:𝑇𝑢 , p̂𝑇+1𝑢]) (10)

After the attack task is successful, the generated post will fool
the classifier into predicting malicious users as benign users, and
vice-versa.

4.3.3 Target Context Relevance Task. Given a target context to
generate a post, the attacker must ensure that the generated post is
on-topic and is knowledgeable about the context. Otherwise, the
generated post can be simply flagged as off-topic by a human or
an automated topic detector. To ensure that the generated post is
relevant to the target context, we minimize the mutual information
gap between the target contexts {b𝑢 } of all users and the generated
posts {p̂𝑇+1𝑢 } of all users 𝑢 ∈ 𝑈 . A non-parametric Maximum Mean
Discrepancy (MMD) based on the Reproducing Kernel Hilbert Space
(RKHS) is utilized to effectively estimate this kind of distance [25].
Thus, we optimize the following objective function:

min
𝜃G

𝐿𝐶𝑇𝑋G = 𝑀𝑀𝐷 ({b𝑢 }, {p̂𝑇+1𝑢 })

= | | 1
𝑁

∑
𝑢

𝜙 (b𝑢) −
1
𝑁

∑
𝑢

𝜙 (p̂𝑇+1𝑢) | |H
(11)

whereH is a universal RKHS, and 𝜙 is transfer function to change
the space to the target RKHS space.

In experiments, the target context of the generated post is set to
be the same as the context of the ground truth post at time T+1.

Algorithm 1: PETGEN Algorithm
Input: a sequence of a user’s posts and associated contexts,
the target context and the user’s label ;
Output: the user’s next post;
Train G with contextual post relevance by MLE loss (Eqn 6);
while Not Converge do

Train G with D on the Style Task (Eqn 8);
Train G on the Attack Task (Eqn 10);
Train G on the Target Context Relevance Task (Eqn 11);
Train G on the Recent Post Relevance Task (Eqn 12);

end

Dataset Yelp Wikipedia

Number of users 3,940 794
Number of benign users 2,016 397
Number of malicious users 1,924 397
Total number of posts 35,123 11,547
Median posts per user 9 15

Table 2: Dataset Statistics

4.3.4 Recent Post Relevance Task. This task ensures continuity and
smoothness between the generated post and the most recent posts
made by the user. This is important because real users typically
express such consistency in the real world [24]. Here, we quantify
it as relevance towards recent posts, calculated as the mutual infor-
mation distance between the generated post and the latest 𝑘 posts
of the user. Similar to the target context relevance task, we optimize
such information gap by the following objective function:

min
𝜃G

𝐿𝑅𝐸𝐶G = 𝑀𝑀𝐷 ({P𝑇−(𝑘−1) :𝑇𝑢 }, {p̂𝑇+1𝑢 })

= | | 1
𝑁

∑
𝑢

∑
𝑘

𝜙 (p𝑇−1−𝑘𝑢) − 1
𝑁

∑
𝑢

𝜙 (p̂𝑇+1𝑢) | |H
(12)

where 𝑘 is the number of recent posts that have an impact on the
next post generation. 𝑘 is a hyper-parameter, which we typically
set to 3 (more details are in the appendix).

4.3.5 Multi-stage Multi-task Learning Algorithm. To achieve the
personalized text generation objective, we optimize for the four
tasks of style, attack, target context relevance and recent post rel-
evance in a multi-stage process. Thus, we deploy the multi-stage
multi-task learning framework to optimize:

min
𝜃F

𝐿F ; min
𝜃D

𝐿D ; min
𝜃G
(𝐿𝑆𝑇𝑌G + 𝐿𝐴𝑇𝑇G + 𝐿𝐶𝑇𝑋G + 𝐿𝑅𝐸𝐶G) (13)

where Eqn 13 is reflected in the while loop in the overall algorithm
as presented in Algorithm 1. Finally, after tuning by the multi-task
learning framework, the text generator finally generates person-
alized high-quality text for adversarial attack against the target
sequential classifier.

5 EXPERIMENTS
In this section, we examine the performance of the proposed PETGEN
by conducting extensive experiments. Specifically, we aim to answer
the following research questions:

• RQ1: Is PETGEN able to successfully attack the deep user
sequence classification model under both white-box and
black-box attack settings?
• RQ2: Beyond the attack performance, what is the quality
of generated text, specifically its the relevance to the target
context, contextual posts, and recent posts?
• RQ3: What is the contribution of the sequence-ware con-
ditional text generator module and the multiple learning
modules of PETGEN towards its performance?
• RQ4: When compared with other attack methods, is the
text generated by PETGEN realistic enough from a human
perspective?

5.1 Datasets
We evaluate the proposed method on real data from two popular
platforms: Wikipedia and Yelp. Their statistics are shown in Table 2.
(a) Wikipedia dataset: This dataset consists of Wikipedia users
(or editors) making edits on Wikipedia articles [12]. There are
two types of editors: benign editors and vandal editors. Vandal
editors were identified and removed from the Wikipedia platform
by administrators. For each editor, the sequence of edits he or she
made on Wikipedia articles is available. We consider each edit as
one post. For each post, the leading paragraph of the edited page is
set as the context of the post.
(b) Yelp dataset: This dataset consists of Yelp users giving reviews
to restaurants [23]. Users are either benign reviewers or fraudulent
reviewers. Fraudulent reviewers are identified by Yelp’s proprietary
classification algorithm. For each reviewer, the sequence consists
of its reviews on restaurants. Each review is one post. To create the
context for each post, other reviews given on the same restaurant
by other benign users are concatenated.

In both datasets, to ensure user sequences have enough informa-
tion, we remove users with less than 5 posts and posts with less
than 5 tokens. We use the latest 20 posts to create a user sequence.

5.2 Baselines
We compare PETGEN with five representative state-of-the-art adver-
sarial text generation models.
(a) Copycat: Copycat randomly selects one post with similar con-
text from the users’ historical posts as the generated post. Three
following baselines (Hotflip, UniTrigger, and TextBugger) use the
Copycat post in their own attack.
(b) Hotflip [4]: Hotflip modifies the post generated by Copycat.
It first detects the most important word in the post, based on the
gradient of each input token with respect to the sequential classifier,
and then swaps the most important word with a similar one.
(c)Universal adversarial Trigger (UniTrigger) [27]: UniTrigger
generates an input-agnostic and fixed-length sequence of tokens to
attack the classifier when concatenated to the end of an existing
post. We turn to the topic modeling function in this specific applica-
tion setting, similar to that adopted in prior work [15]. Particularly,
we retrieve first topic-dependent words and contexts by the topic
model and then prepend these universal prefix to a post.
(d) TextBugger [17]: TextBugger first uses various methods like
deletion and swap to find carefully crafted tokens in a post and
replaces some parts of the post with these tokens for attack.

Model
HRNN classifier Min. improvement of TIES classifier Min. improvement of

Wikipedia Yelp PETGEN over baseline Wikipedia Yelp PETGEN over baseline
F1↓ Atk↑ F1↓ Atk↑ F1 Atk F1↓ Atk↑ F1↓ Atk↑ F1 Atk

Without attack 0.601 - 0.636 - - - 0.617 - 0.686 - - -
Copycat 0.550 21.3 0.610 8.0 9.836% 26.761% 0.513 16.3 0.625 11.5 6.823% 47.239%
Hotflip 0.581 21.2 0.591 9.5 6.937% 27.358% 0.514 15.0 0.641 10.3 7.004% 60.000%

UniTrigger 0.495 24.5 0.602 7.8 4.242% 10.204% 0.515 15.7 0.679 9.1 7.184% 52.866%
TextBugger 0.550 21.4 0.610 8.3 9.836% 26.168% 0.520 16.3 0.637 11.0 8.077% 47.239%
Malcom 0.479 25.5 0.570 18.0 1.044% 5.882% 0.560 18.0 0.538 21.8 6.877% 33.333%

PETGEN (proposed) 0.474 27.0 0.55 21.2 - - 0.478 24.0 0.501 35.8 - -
Table 3: White-box attack performance of PETGEN and existing methods on HRNN and TIES classifiers. PETGEN is the most
effective attack (lowest F1 and highest Atk score).

Model
HRNN classifier Min. improvement of TIES classifier Min. improvement of

Wikipedia Yelp PETGEN over baseline Wikipedia Yelp PETGEN over baseline
F1↓ Atk↑ F1↓ Atk↑ F1 Atk F1↓ Atk↑ F1↓ Atk↑ F1 Atk

Without attack 0.601 - 0.636 - - - 0.617 - 0.686 - - -
Copycat 0.53 22.1 0.609 9.0 3.585% 8.597% 0.615 15.0 0.618 12.0 6.016% 64.167%
Hotflip 0.538 22.3 0.585 11.1 5.019% 7.623% 0.642 13.8 0.635 11.0 9.969% 79.091%

UniTrigger 0.529 22.0 0.624 7.5 3.403% 9.091% 0.601 17.9 0.601 15.0 3.827% 31.333%
TextBugger 0.545 21.0 0.607 9.5 6.239% 14.286% 0.627 14.0 0.617 12.2 7.815% 61.475%
Malcom 0.524 20.0 0.573 17.5 2.481% 20.000% 0.599 19.9 0.573 15.4 3.316% 27.922%

PETGEN (proposed) 0.511 24.0 0.53 22.3 - - 0.578 33.0 0.554 19.7 - -
Table 4: Black-box attack performance of PETGEN and existing methods on HRNN and TIES classifiers. PETGEN is the most effec-
tive attack (lowest F1 and highest Atk score).

(e)Malcom [15]: Malcom is the current state-of-the-art model in
adversarial text generation to fool classifiers. It leverages the con-
ditional language model to generate a new post where the attack
and relevancy objective functions are deployed.

5.3 Evaluation Metrics
To comprehensively evaluate text generation result, we use several
metrics to measure attack effectiveness and text quality.
(a) Attack Effectiveness: F1 score after attack (F1): This mea-
sures the classifier performance of the classifier. We compare the
change in F1 score after the attack, compared to when there is no
attack. If the resulting F1 score after the attack drops considerably,
then the attack is successful. Attack Rate (Atk): It measures the
efficacy of the attack regrading changing predictions of the clas-
sifier. Specifically, a M% attack rate means the attack can fool the
classifier M% of the time on the sequences that the classifier has
previously correctly labeled.
(b) Text Quality: BLEU: Like previous works on text genera-
tion [19], we deploy BLEU to indicate the quality of generated post
by comparing them with testing data. Higher scores indicate better
text. Target Context Similarity (TCS): We compute the similar-
ity between the generated posts and the target context as follows:
1
𝑁

∑
𝑢 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑉𝑒𝑐𝑡 (b𝑢),𝑉𝑒𝑐𝑡 (p̂𝑇+1𝑢), where 𝑐𝑜𝑠𝑖𝑛𝑒 (·) is the cosine

similarity function and 𝑁 is the number of users. Higher scores
indicate more relevant text. 𝑉𝑒𝑐𝑡 (·) is the previously-defined LDA-
based function to transfer text into vector.Recent Post Similarity
(RS): Similar to target context similarity, recent post similarity score
computes the distance between the generated post and the most re-
cent𝑘 posts as: 1

𝑁

∑
𝑢

∑
𝑡 ∈{𝑇−(𝑘−1),...𝑇 } 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑉𝑒𝑐𝑡 (p𝑡𝑢),𝑉𝑒𝑐𝑡 (p̂𝑇+1𝑢)).

Context Post Similarity (CPS): Similarly, the context post simi-
larity computes the similarity between the generated post and the

posts in the user sequence that are of similar context as the target
context. This is calculated as:
1
𝑁

∑
𝑢

∑
𝑡 ∈{1,2,...,𝑇 } 𝑎

𝑡
𝑢 ∗ (𝑐𝑜𝑠𝑖𝑛𝑒 (𝑉𝑒𝑐𝑡 (p𝑡𝑢),𝑉𝑒𝑐𝑡 (p̂𝑇+1𝑢)), where 𝑎𝑡𝑢

is the previously mentioned attention score which captures the
relationship between the contexts c𝑡𝑢 and b𝑢 of posts p𝑡𝑢 and p̂𝑇+1𝑢

respectively.

5.4 Target Classification Models
In this paper, we target two deep user sequence classification mod-
els to test the generality of our attack.
(1)HierarchicalRecurrentNeuralNetwork (HRNN) is amodel
where the sequential pattern of the input text is captured by the
hierarchical structure for accurate classification [30]. In HRNN,
each user post is first converted to a vector and the sequence of
user post vectors is converted into a compact user embedding. This
user embedding is used for user classification.
(2) Temporal Interaction EmbeddingS (TIES) is a model used
by Facebook for malicious account detection. We use the tempo-
ral embedding component of the TIES model for classification (as
there is no graph structure in our datasets). Note that TIES is the
state-of-the-art deep user sequence embedding-based classification
model for malicious user detection.

5.5 Experiment Setup
We split the dataset by five-fold cross-validation and report the
average numbers. By default, we set 𝑘 = 3 as the number of recent-
𝑘 posts (more details on impact of value 𝑘 are in the appendix),
the number of tokens in a post and a context to be 𝑑 = 𝑑 ′ = 30
and the learning rate as 1e-5. We use Adam as the optimizer with
mini-batch size of 64 [6].

Attack Wikipedia Dataset Yelp Dataset
HRNN TIES HRNN TIES

Model BLEU↑ TCS↑ RS↑ CPS↑ BLEU↑ TCS↑ RS↑ CPS↑ BLEU↑ TCS↑ RS↑ CPS↑ BLEU↑ TCS↑ RS↑ CPS↑
Copycat 0.378 0.362 0.188 0.171 0.406 0.383 0.211 0.221 0.810 0.524 0.302 0.299 0.802 0.476 0.271 0.270
Hotflip 0.333 0.363 0.191 0.203 0.365 0.385 0.211 0.234 0.785 0.527 0.309 0.309 0.782 0.479 0.275 0.273
UniTrigger 0.213 0.397 0.214 0.192 0.239 0.410 0.230 0.223 0.737 0.527 0.325 0.326 0.725 0.463 0.273 0.272
TextBugger 0.341 0.372 0.192 0.172 0.374 0.393 0.214 0.226 0.771 0.520 0.311 0.312 0.768 0.478 0.280 0.279
Malcom 0.914 0.312 0.175 0.240 0.878 0.484 0.209 0.213 0.849 0.540 0.349 0.354 0.856 0.515 0.321 0.291
PETGEN 0.893 0.463 0.275 0.281 0.896 0.474 0.233 0.254 0.852 0.544 0.401 0.410 0.870 0.519 0.397 0.398

Table 5: Comparison the quality of text generated by different attack strategies. PETGEN generates higher quality text in all but
one case across all metrics.

Model Wikipedia Dataset Yelp Dataset
F1↓ Atk↑ BLEU↑ TCS↑ RS↑ CPS↑ F1↓ Atk↑ BLEU↑ TCS↑ RS↑ CPS↑

PETGEN Base Text Generator 0.479 26.5 0.899 0.375 0.268 0.247 0.625 11.7 0.857 0.382 0.349 0.187
w/ Style 0.576 21.1 0.895 0.390 0.218 0.249 0.59 17.5 0.871 0.481 0.324 0.301
w/ Attack against TIES 0.478 25.0 0.894 0.368 0.216 0.216 0.499 45.3 0.843 0.476 0.357 0.250
w/ Attack against HRNN 0.465 27.5 0.895 0.388 0.240 0.249 0.530 29.5 0.846 0.445 0.315 0.157
w/ Recent Post Relevance 0.486 23.8 0.887 0.463 0.275 0.267 0.592 17.7 0.851 0.495 0.43 0.215
w/ Target Context Relevance 0.483 23.9 0.887 0.459 0.258 0.258 0.571 18.0 0.830 0.559 0.361 0.203
w/ Contextual Post Relevance 0.566 21,2 0.705 0.397 0.225 0.276 0.554 19.2 0.845 0.514 0.331 0.451

PETGEN against HRNN 0.474 27.0 0.893 0.463 0.275 0.281 0.550 21.2 0.852 0.544 0.401 0.410
PETGEN against TIES 0.478 24.0 0.896 0.474 0.233 0.254 0.501 35.8 0.870 0.519 0.397 0.398

Table 6: Ablation studies showing the contribution of each component in PETGEN.

5.6 RQ1: Adversarial Attack on Sequential Post
Classification

In this section, we evaluate the proposed attack model on both
white-box classifiers and black-box classifiers.
Attack on White-Box Classifiers. In a white-box attack, the at-
tacker has access to the model parameters of the target classifiers.
Thus, they attack the trained model directly. The results compar-
ing the performance of PETGEN with baseline models is shown in
Table 3 on both Wikipedia and Yelp datasets, with both the HRNN
and TIES models as classifiers. The table also shows the results of
the classification models without any attack.

We have several important findings. First, without any attack,
the TIES model has a higher model performance (F1 score) com-
pared to the HRNN model on both the datasets. Second, under
attack, the model performance of both TIES and HRNN reduces,
showing the vulnerability of both these models to text generation
attacks. Next, comparing all attacks, PETGEN attack results in the
lowest F1 score and highest attack rate on both datasets, making
it the most successful attack. On the TIES classifier, PETGEN has
at least 6.82% improvement over all baselines in terms of F1 score
and on the HRNN classifier, at least 1.04% improvement on F1. This
is important as TIES is the state-of-the-art classifier that is being
used at Facebook. Successfully attacking TIES shows the strength
of our PETGEN attack. Finally, we find PETGEN attacks TIES more
efficiently than HRRNwith larger drop in F1 score and higher attack
rate over baselines. A possible reason is that the more complex deep
sequential model like TIES can provide more signal in computing
cross entropy loss, finally enabling the attacker to learn more about
how to downgrade the performance.
Attack on Black-Box Classifiers. In the black-box setting, the
attacker does not have access to the parameters of the sequential
post classifier. Thus, we train a surrogate HRNN classifier to mimic

the classification of the original black-box classifier. The text gen-
eration attack methods create the fake post using this surrogate
classifier, and then this generated text is used to attack the original
black-box classifier. The results of the performance drop on black
box classifiers is shown in Table 4.

First, as before, we see that PETGEN beats all the existing attack
methods in terms of F1 score and attack rate. Next, similar to the
result in the white-box setting, PETGEN can more effectively attack
the HRNN and TIES models compared to existing attack approaches.
Finally, comparing attacks on the same model under white-box and
black-box setting, it is harder for the attackers to attack the black-
box classifier. For all models, the drop in F1 score is lower during
black-box attack compared to white-box attack.

5.7 RQ2: Personalized Text Generation
Beyond the attack performance, we present text quality of the
generated post in Table 5. As we can see, PETGEN always generates
post with higher quality in all four evaluation metrics compared to
the other five baseline methods. This is reflected in the BLUE score
and in the relevance of the generated post to the previous posts of
the user and the target context.

The reasons of higher quality text generation is the following.
Compared to the four word-perturbation attack methods, namely,
Copycat, Hotflip, UniTriggr and Textbugger, our method PETGEN is
an end-to-end text generation framework that can effectively pick
a less diverse set of words that are highly relevant to the target
context, historical post, and recent post. This enables PETGEN to
output text with higher quality. Compared to the Malcom model,
PETGEN deploys the context-aware text generator and the learning
task of recent post relevance to leverage the historical post and
recent post information for generation. It makes text more real and
personalized, thus having higher scores on all text quality metrics.
Evaluating Consistency in Attacker Goal: To further examine

the effectiveness of our attack models, we compare the sentiment
of generated adversarial post with that of the original post under
the same context. We use Vader [7] to compute the sentiment score
on the posts in the Yelp dataset. We find that 70.8% of generated
posts have the same sentiment as the original post, indicating that
the attacker’s generated post has the same positive or negative tone
as desired to uprank or downrank a restaurant.

5.8 RQ3: Ablation Study
To examine the effectiveness of each component in PETGEN, we
conduct the ablation study where we test the performance of differ-
ent variants of PETGEN, and the results are in Table 6. The simplest
model is simply the PETGEN base text generator, which is the tradi-
tional RMRN text generator and no other modules are used. As we
can see, PETGEN with all the modules always performs the best or
the second best among all other variants for all six metrics. Compar-
ing the different variants, we find the attack task can help decrease
the F1 score and increase the attack rate, making the adversarial
attack successful. Meanwhile, the task of post style, target context
relevance and recent post relevance can enhance the target context
and recent post similarity score. The sequence-aware text gener-
ation setting to capture the contextual historical post relevance
increases the context post similarity score.

5.9 RQ4: Human Evaluation on Generated Text
To better evaluate the quality of the generated text, we conduct
human evaluations. Specifically, we test whether posts generated by
PETGEN are more realistic compared to those generated by Malcom
(the SOTA end-to-end adversarial text generation method). We
recruit two non-author evaluators and give them each 50 pair of
posts, generated for 50 randomly selected user sequences. In each
pair, one post is generated by PETGEN and the other by Malcom. The
evaluators are not told which post is generated by which method.
Their task is to mark which of the two posts is more realistic, or
whether they are equally (un-)realistic.

We get the following result. The two reviewers achieve an inter-
rater agreement score of 0.66 and 40% posts are labeled as equally
realistic. Among the remaining posts, reviewers label 58.33% posts
by PETGENmore realistic than Malcom. From this result, we can see
our method is able to outperform Malcom in generating realistic
posts, and has great potential in real-world applications.
6 CONCLUSION
Overall, in this paper, we created a new attack framework to evalu-
ate the robustness of deep user sequence classification models and
showed its effectiveness. This work has some shortcomings. First,
it is currently only applicable for posts in the English language,
while social media posts can be in any language. Second, the model
can only work with sequences, while does not incorporate complex
structures, such as graphs. Third, the attack is restricted to gener-
ating new posts. Other attack capabilities can be explored in the
future. Future directions of research also include creating defense
against these attacks to create robust user classification models.
ACKNOWLEDGMENTS This research is supported in part by
Facebook, NSF IIS-2027689, Georgia Institute of Technology, IDEaS,
Adobe, and Microsoft Azure. We thank the reviewers at KDD for
their insightful comments. We thank Duen Horng (Polo) Chau for
material for Figure 1 and the members of the CLAWS Data Science

research group for their feedback on paper, Ankur Bhardwaj for
dataset preparation, and Rohit Mujumdar and Shreeshaa Kulkarni
for generated text evaluation.

REFERENCES
[1] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly

detection: A survey. arXiv preprint arXiv:1901.03407 (2019).
[2] Teodora Dobrilova. 2020. https://review42.com/what-percentage-of-amazon-

reviews-are-fake/. [Online; accessed 02-02-2021].
[3] Yingtong Dou, Guixiang Ma, Philip S Yu, and Sihong Xie. 2020. Robust spammer

detection by nash reinforcement learning. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 924–933.

[4] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2017. Hotflip: White-box
adversarial examples for text classification. ACL (2017).

[5] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
networks. arXiv preprint arXiv:1406.2661 (2014).

[6] Jeff Heaton. 2017. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep
learning: The MIT Press, 2016, 800 pp, ISBN: 0262035618. Genetic Programming
and Evolvable Machines 19, 1-2 (2017).

[7] Clayton Hutto and Eric Gilbert. 2014. Vader: A parsimonious rule-based model
for sentiment analysis of social media text. In ICWSM, Vol. 8.

[8] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization
with Gumbel-Softmax. ICLR (2017).

[9] Xiaowei Jia, Sheng Li, Handong Zhao, Sungchul Kim, and Vipin Kumar. 2019.
Towards robust and discriminative sequential data learning: When and how to
perform adversarial training?. In SIGKDD. 1665–1673.

[10] Srijan Kumar, Justin Cheng, Jure Leskovec, and VS Subrahmanian. 2017. An
army of me: Sockpuppets in online discussion communities. In WWW. 857–866.

[11] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
VS Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating platforms. In
WSDM. 333–341.

[12] Srijan Kumar, Francesca Spezzano, and V.S. Subrahmanian. 2015. VEWS: A
Wikipedia Vandal Early Warning System. In SIGKDD. ACM.

[13] Srijan Kumar, Xikun Zhang, and J. Leskovec. 2019. Predicting Dynamic Embed-
ding Trajectory in Temporal Interaction Networks. SIGKDD (2019).

[14] Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying Zhang, Saizheng Zhang,
Aaron C Courville, and Yoshua Bengio. 2016. Professor forcing: A new algorithm
for training recurrent networks. In NeuIPS. 4601–4609.

[15] Thai Le, Suhang Wang, and Dongwon Lee. 2020. Malcom: Generating malicious
comments to attack neural fake news detection models. ICDM (2020).

[16] Ji Young Lee and Franck Dernoncourt. 2016. Sequential short-text classification
with recurrent and convolutional neural networks. NAACL (2016).

[17] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2018. Textbugger:
Generating adversarial text against real-world applications. NDSS.

[18] Yang Liu and Mirella Lapata. 2019. Hierarchical Transformers for Multi-
Document Summarization. In ACL.

[19] Weili Nie, Nina Narodytska, and Ankit Patel. 2018. Relgan: Relational generative
adversarial networks for text generation. In ICLR.

[20] Nima Noorshams, Saurabh Verma, and Aude Hofleitner. 2020. TIES: Temporal
Interaction Embeddings For Enhancing Social Media Integrity At Facebook. In
SIGKDD. 3128–3135.

[21] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In EuroS&P. IEEE, 372–387.

[22] Danish Pruthi, Bhuwan Dhingra, and Zachary C Lipton. 2019. Combating adver-
sarial misspellings with robust word recognition. ACL (2019).

[23] Shebuti Rayana and Leman Akoglu. 2015. Collective opinion spam detection:
Bridging review networks and metadata. In SIGKDD. 985–994.

[24] Gisela Redeker. 2000. Coherence and structure in text and discourse.
[25] Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu.

2013. Equivalence of distance-based and RKHS-based statistics in hypothesis
testing. The Annals of Statistics (2013), 2263–2291.

[26] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news
detection on social media: A data mining perspective. ACM SIGKDD explorations
newsletter 19, 1 (2017), 22–36.

[27] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019.
Universal Adversarial Triggers for Attacking and Analyzing NLP. In EMNLP.

[28] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
2016. Hierarchical attention networks for document classification. In NAACL.

[29] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. 2020.
Adversarial attacks on deep-learning models in natural language processing: A
survey. ACM TIST 11, 3 (2020), 1–41.

[30] Yi Zhao, Yanyan Shen, and Junjie Yao. 2019. Recurrent Neural Network for Text
Classification with Hierarchical Multiscale Dense Connections.. In IJCAI.

https://review42.com/what-percentage-of-amazon-reviews-are-fake/
https://review42.com/what-percentage-of-amazon-reviews-are-fake/

Value of k
Wikipedia Dataset Yelp Dataset

HRNN TIES HRNN TIES
F1↓ Atk↑ RS↑ F1↓ Atk↑ RS↑ F1↓ Atk↑ RS↑ F1↓ Atk↑ RS↑

1 0.485 24.0 0.213 0.491 22.9 0.209 0.601 17.3 0.342 0.571 23.6 0.337
2 0.482 24.1 0.252 0.476 24.0 0.211 0.57 18.1 0.379 0.565 24.1 0.369
3 0.474 27.0 0.275 0.478 24.0 0.233 0.55 21.2 0.401 0.501 35.8 0.397
4 0.489 23.9 0.269 0.483 23.5 0.217 0.569 19.3 0.391 0.518 34.7 0.396
5 0.493 22.1 0.184 0.489 20.9 0.199 0.573 18.5 0.357 0.542 27.3 0.375

Table 7: The effect of recent-𝑘 posts on next post generation

7 APPENDIX
7.1 Effect of k in Recent-k Posts
Here we evaluate the effect of the number of recent 𝑘 posts on the
recent post similarity score because it has impact on the results. As
shown in the following Table, we find that using recent three posts
has the best attack performance and the highest text quality. This
is true on both datasets and both classifiers HRNN and TIES. When

𝑘 = 3, the model can boost the recent post similarity most while the
latest post alone and more previous posts have less improvement. A
possible reason is that the latest one post may not contain enough
information to enhance the recent post relevance and the signal
of earlier posts may be out-of-date, thus contributing less to the
similarity score. In our experiments, we use 𝑘 = 3 as the optimal
score.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep User Sequence Classification Models
	2.2 Sequential Text Classification Models
	2.3 Adversarial Text Generation

	3 Problem Definition
	4 Methodology
	4.1 System Overview
	4.2 Sequence-aware Conditional Text Generator
	4.3 Multi-Stage Multi-Task Learning

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Evaluation Metrics
	5.4 Target Classification Models
	5.5 Experiment Setup
	5.6 RQ1: Adversarial Attack on Sequential Post Classification
	5.7 RQ2: Personalized Text Generation
	5.8 RQ3: Ablation Study
	5.9 RQ4: Human Evaluation on Generated Text

	6 Conclusion
	References
	7 Appendix
	7.1 Effect of k in Recent-k Posts

