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The recent proliferation of digital microfluidic (DMF) biochips has enabled rapid on-chip implementation of
many biochemical laboratory assays or protocols. Sample preprocessing, which includes dilution and mixing
of reagents, plays an important role in the preparation of assays. The automation of sample preparation
on a digital microfluidic platform often mandates the execution of a mixing algorithm, which determines a
sequence of droplet mix-split steps (usually represented as a mixing graph). However, the overall cost and
performance of on-chip mixture preparation not only depends on the mixing graph but also on the resource
allocation and scheduling strategy, for instance, the placement of boundary reservoirs or dispensers, mixer
modules, storage units, and physical design of droplet-routing pathways. In this article, we first present a
new mixing algorithm based on a number-partitioning technique that determines a layout-aware mixing
tree corresponding to a given target ratio of a number of fluids. The mixing graph produced by the proposed
method can be implemented on a chip with a fewer number of crossovers among droplet-routing paths
as well as with a reduced reservoir-to-mixer transportation distance. Second, we propose a routing-aware
resource-allocation scheme that can be used to improve the performance of a given mixing algorithm on a
chip layout. The design methodology is evaluated on various test cases to demonstrate its effectiveness in
mixture preparation with the help of two representative mixing algorithms. Simulation results show that on
average, the proposed scheme can reduce the number of crossovers among droplet-routing paths by 89.7%
when used in conjunction with the new mixing algorithm, and by 75.4% when an earlier algorithm [Thies
et al. 2008] is used.
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1. INTRODUCTION

The rapid escalation in healthcare cost for cardiovascular diseases, cancer, diabetes,
and global HIV/AIDS crisis has fueled a new field of interdisciplinary research centered
around “lab-on-a-chip (LoC)” [Sista et al. 2008; Tan et al. 2008]. A typical LoC (or a
biochip) implements one or more biochemical laboratory protocols or assays on a single
microfluidic chip that is a few square centimeters in size. In general, digital microflu-
idic (DMF) biochips use electrical actuation to manipulate (i.e., dispense, navigate,
mix/split, wash, and detect) discrete droplets of nano- or picoliter volume of biochemi-
cal fluids on a two-dimensional electrode array [Chakrabarty and Xu 2010]. Recently,
DMF biochips have gained wide acceptance for developing LoC applications because of
their flexibility and programmability [Abdelgawad and Wheeler 2009; Chatterjee et al.
2006; Miller and Wheeler 2009].

A real-life biochemical laboratory protocol often requires mixing of several reagent
fluids. Sample preparation and analyte identification steps in such bioprotocols involve
mixing for mixture preparation, that is, various reactant fluids are to be mixed in a
certain volumetric ratio to obtain the desired mixture. For instance, in the polymerase
chain reaction (PCR) used for DNA amplification, a master-mixture of seven fluids
(reactant buffer, dNTPs, forward primer, reverse primer, DNA template, optimase and
water) is required with a volumetric ratio {10%:8%:0.8%:0.8%:1%:1%:78.4%}.1

Recently, several design automation methods have been proposed for architectural
synthesis (i.e., operation scheduling, resource selection and binding) and physical de-
sign (i.e., module placement and droplet routing) of DMF biochips [Chakrabarty and
Xu 2010; Su and Chakrabarty 2008; Zhao and Chakrabarty 2009]. On-chip mixing of
several reactant fluids with a specified ratio of concentration factors (CFs) is a chal-
lenging problem in automating biochemical laboratory protocols on a DMF biochip.
Furthermore, many CAD algorithms and schemes for automated mixture-preparation
have been reported [Dinh et al. 2014; Hsieh et al. 2012a; Huang et al. 2012; Kumar
et al. 2013; Mitra et al. 2012; Roy et al. 2011b, 2010; Thies et al. 2008]. Hsieh et al.
[2012b, 2014] presented a design methodology with dynamic error recovery for architec-
tural and layout synthesis of a sample preparation biochip. However, it is observed that
the performance of a mixing algorithm depends on resource-allocation, for instance, the
placement of mixer modules, storage units, boundary reservoirs or dispensers on the
chip floor. Moreover, the complexity of the droplet routing depends on the mix-split steps
to be executed for on-chip.

In this article, we present a layout-aware mixing algorithm for efficient and au-
tomated mixture-preparation of three or more fluids on a digital microfluidic (DMF)
biochip. Unlike some previously proposed methods [Kumar et al. 2013; Liu et al. 2013;
Thies et al. 2008], which rely on a bottom-up construction of a mixing graph, this algo-
rithm uses a top-down approach based on fractional decomposition aided with number
partitioning. The method also leads to a relative placement of resources (mixers, fluid
reservoirs) on-chip that facilitates the implementation of the mixing algorithm. For
a desired ratio, the proposed mixing algorithm determines a mixing tree with longer
sub-sequences of mixing steps with a small number of distinct fluids (called “tall di-
lution subtrees”). This property helps in allocating the boundary reservoirs to the
reactant fluids in the proximity of the assigned mixers, which in turn, reduces the total

1PCR Master Mix Calculator; http://www.mutationdiscovery.com.
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droplet-transportation time for moving droplets from the fluid reservoirs to the desig-
nated on-chip mixers.

In addition to conventional DMF biochips, the proposed algorithms are also applica-
ble to the more advanced class of Active-Matrix (AM) based microfluidic architecture,
where the individual electrode resembles a tiny pixel [Hadwen et al. 2012]. Such a
device not only provides a versatile control over droplet volumes and shapes, but also
allows the droplets to move along a random trajectory. Since our algorithms are in-
dependent of electrode architecture and are based solely on the relative placement of
reservoirs and mixers, they translate seamlessly to this new architecture as well.

In a biochip, the mixing modules, storage units (some additional electrodes used to
store intermediate droplets), and the fluid reservoirs at the chip boundary are regarded
as resources. We model the collection of all droplet transportation routes from fluid
reservoirs to mixers with a bipartite graph. In this graph, the boundary dispensers
and on-chip mixers are represented as two linearly ordered disjoint sets of nodes;
an edge, which represents a reservoir-to-mixer droplet routing path, is drawn as a
straight-line, when the graph is embedded on a plane. Next, the total number of edge
intersections (i.e., crossing among droplet pathways) is minimized by reallocating the
fluid reservoirs. The proposed routing-aware technique leads to a suitable allocation
of reservoirs, and placement of mixers on a biochip, which reduce the path-crossovers
as well as the total length of droplet-transportation routes. The scheme also facilitates
the scheduling of droplet-routing paths as a fewer number of stalls (in terms of clock
cycles), are needed in order to avoid unintended mixing of two crossing droplets. It
can also be used to improve the performance of other mixing algorithms. Simulation
results show that on the average (computed by varying the number of available on-chip
mixers), the proposed placement scheme can reduce the number of crossovers among
droplet-routing paths by 89.7% for the new top-down decomposition algorithm, and by
75.4% for an earlier algorithm [Thies et al. 2008].

The remainder of the article is organized as follows. Basic preliminaries and prior
work on automated dilution and mixing algorithms are discussed in Section 2. Section 3
describes the motivation and problem formulation for mixture-preparation with several
reactant fluids. An efficient mixing algorithm for layout-aware mixture-preparation is
introduced in Section 4. In Section 5, we present a routing-aware resource-allocation
scheme that can used to improve the performance of a mixing algorithm. Section 6
presents the integration of the routing-aware resource-allocation scheme with mixing
algorithms. In Section 7, we discuss the resource-allocation problem in the context of
multiple target ratios. Finally, conclusions are drawn in Section 8.

2. AUTOMATED MIXTURE PREPARATION OF BIOCHEMICAL FLUIDS

2.1. Preliminaries

A DMF biochip operates with discrete droplets on a uniform 2D-array of equi-sized
electrodes, hence the volume of a droplet is usually an integral multiple of that of a
single droplet. Various (k : �) mixing models may be considered, where a k-unit volume
of one fluid is mixed with an �-unit volume of another fluid to produce a (k + �)-unit
volume of the resultant mixture in a single mixing operation. Three such mixing models
are: (i) k = � = 1, (ii) k = � �= 1, and (iii) k �= �, where k, � are positive integers. Note
that the first one, that is, the (1 : 1) mixing model is the easiest to implement.

While specifying a sample, the term concentration factor (CF) is used to quantify
the amount of raw fluid in the prepared sample [Herold and Rasooly 2009]. The
concentration factor is defined as the ratio of initial volume of the sample to the final
volume of the prepared mixture (i.e., the inverse of the dilution factor, CF = 1

DF ). The
fluid with which the sample is mixed for dilution is called the diluent or buffer solution,
for instance, water or other liquid, which is neutral to the sample. The pure sample fluid
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is considered as having 100% concentration, that is, CF = 1. Hence, the buffer solution
can be viewed as having 0% concentration with respect to sample, that is, CF = 0. Dilu-
tion is commonly used in biological studies to create a variety of solution concentrations
of a fluid with the help of a buffer solution [Herold and Rasooly 2009]. Hence, dilution is
a special case of mixing of two input fluids, one of which is a buffer solution. In general,
dilution of a sample fluid with CF = C1 can be achieved by mixing it with another sam-
ple of same fluid with CF = C2, if C2 < C1. The CF of the resultant fluid lies between
C1 and C2 because, if the samples with CF = C1 and C2 are mixed in a volumetric ratio
of k : �, then the resulting (k + �)-unit volume fluid has a CF = Cr = k.C1+�.C2

k+�
. After a

balanced splitting of the resultant volume, two ( k+�
2 )-unit volume resultant droplets are

produced.
Mixing is used to prepare a mixture (solution) of three or more different fluids with

a desired ratio of their concentrations. In this work, we assume the (1 : 1) mixing
model for mixing, that is, every mix-split cycle consists of a mix operation between
two unit-volume fluid droplets and followed by a balanced split operation of the mixed
fluid. Thus, if a fluid droplet with CF = C1 is mixed with its another droplet of the
same reagent, with CF = C2 (where 0 ≤ C2 ≤ C1), then the final CF of the each
of the resulting two droplets becomes C1+C2

2 , assuming that the same diluent is used
in preparing the two droplets. One mix operation and a subsequent split are together
called as one mix-split operation, cycle, or step. Since after one (1 : 1) mix-split operation
the resulting CF becomes the mean value of those of the two source droplets, for the
sake of convenience, the desired target CF (Ct) of a sample is expressed as a d-bit binary
fraction (by truncating it off beyond dth-bit), when an accuracy level of d is desired.

In all subsequent discussions, we will use the following notation to indicate various
parameters: N denoting the number of input fluids; d for accuracy level; Tms, the total
number of (1 : 1) mix-split cycles needed in during dilution/mixing; W for the total
number of waste droplets produced; Mlb denoting the minimum number of mixers
required for the earliest possible completion of dilution/mixing steps.

2.2. Prior Work: Dilution and Mixing Algorithms

A number of algorithms have appeared in the literature for performing dilution or
mixing of fluids on a DMF platform [Ren et al. 2003], GAG [Griffith et al. 2006],
twoWayMix [Thies et al. 2008], DMRW [Roy et al. 2010], IDMA [Roy et al. 2011a],
MD [Bhattacharjee et al. 2012], REMIA [Huang et al. 2012], GORMA [Chiang et al.
2013], WARA [Huang et al. 2013], MinMix [Thies et al. 2008], RMA [Roy et al. 2011b],
RSM [Hsieh et al. 2012a], MTCS [Kumar et al. 2013], CoDOS [Liu et al. 2013] and
NFSP [Dinh et al. 2014]. A majority of them [Bhattacharjee et al. 2012, 2014; Chiang
et al. 2013; Dinh et al. 2014; Griffith et al. 2006; Huang et al. 2012; Mitra et al. 2014,
2012; Ren et al. 2003; Roy et al. 2010, 2011a, 2014a, 2014b, 2014c; Thies et al. 2008]
deal with with the task of diluting a fluid to a certain CF by mixing it with a buffer.
Note that the dilution process needs only two input fluids to prepare a target solution,
and up to two mixers are sufficient to complete the task [Roy et al. 2010; Thies et al.
2008]. On the other hand, mixture-preparation needs three or more input fluids to be
mixed in a certain ratio, and a number of mixers are allocated on-chip to speed up
the task. Since several fluids are often required as input, the performance of a mixing
algorithm strongly depends on resource placement and allocation, for instance, the
placement of input reservoirs or dispensers, mixer modules, and on-chip storage units.
It also depends on the number of mixing modules available for concurrent operation,
the type of mixers, scheduling of mix-split steps, and the physical layout of droplet-
routing paths. Implementation of a mixing algorithm with a limited number of on-chip
mixer modules and storage units is also a challenging task.
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Thies et al. [2008] proposed a binary bit-scanning based mixing algorithm, called
MinMix, to determine a (1 : 1) mixing tree for a desired concentration ratio of N dif-
ferent fluids. In this method, the CF values of each of the constituents in the target
ratio is expressed as a d-bit binary fraction. Next, these N d-bit binary representa-
tions are bit-wise scanned from right-to-left to construct, in a bottom-up fashion, a
mixing tree of height d. Another mixing algorithm, namely RSM [Hsieh et al. 2012a]
determines the mixing tree/graph for one/more target ratio(s) of input fluids using
a factorization based technique. Kumar et al. [2013] proposed another mixing algo-
rithm called MTCS, which can reduce the total number of mix-split steps and reactant
usage by reusing intermediate waste droplets. Recently, Liu et al. [2013] described
a mixing algorithm called CoDOS to generate the mixing trees with common dilu-
tion operation sharing in order to recycle the unused intermediate droplets. However,
none of these methods [Hsieh et al. 2012a; Kumar et al. 2013; Liu et al. 2013; Thies
et al. 2008] have addressed the problem of considering the placement geometry of
reservoirs and mixers that determines the droplet-routing overhead during mixture
preparation.

3. MOTIVATION AND PROBLEM FORMULATION

Given a target ratio, the mixing process, that is, the sequence of (1 : 1) mix-split steps is
represented by a task graph known as dilution or mixing graph [Roy et al. 2014c; Thies
et al. 2008]. In a (1 : 1) dilution or mixing tree, each leaf node corresponds to a unit-
volume droplet of an input fluid; an internal (or nonleaf) node denotes the resultant
mixture obtained by applying a (1 : 1) mix-split step on the two droplets corresponding
to its two children. Only one unit-volume droplet of the resultant mixture, is used in
the next mix operation denoted by its parent node. The remaining droplet is either
discarded as waste or stored for reuse in a subsequent mix operation, depending upon
the underlying mixing algorithm [Griffith et al. 2006; Hsieh et al. 2012a; Huang et al.
2012, 2013; Kumar et al. 2013; Liu et al. 2013; Roy et al. 2010, 2011a; Thies et al. 2008].
Such a discarded droplet is referred to as a waste droplet. The mix-split operation
denoted by an internal node can be executed only when each of its two children is
either already processed or is a leaf node. To represent this sequential dependence,
every edge connecting a node (except the root node) to its parent is directed towards the
latter.

For an example target ratio 2 : 3 : 5 : 7 : 11 : 13 : 87 of seven reactant fluids, with an
accuracy level of d = 7 in the target CF, the binary representations used to construct
the mixing tree of Figure 1(b) are shown in Figure 1(a). The total number (1 : 1) mix-
split steps (Tms) in this mixing tree is 18. In this figure, each mix-split step is marked
as mi with i = 1 to 18, where the final mix-split step required to obtain the target
droplets corresponds to the root of the mixing tree. After every mix-split step barring
the one denoted by the root node, only one out of two droplets is used at a subsequent
step, and hence, the total number of waste droplets (W) produced in the process is 17.
Note that the minimum number of mixers required for the earliest completion of the
execution of this mixing tree (Mlb) [Luo and Akella 2011] is four. However, the desired
mixture can also be prepared at a slower speed with a limited number of on-chip mixers.
If the number of available mixers is less than Mlb, on-chip storage units (additional
electrodes) are needed to store intermediate droplets. We assume that only two mixers
M1 and M2 are available and a corresponding scheduling is shown in Figure 1(b). The
table shown in Figure 1(c) depicts the total reservoir-to-mixer transportation workload.
For example, the entry “2” in row-1 and column-3 indicates that two droplets of input
fluid x3 are needed by mixer M1 during the mixing process. This table can be easily
constructed from the mixing tree.
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Fig. 1. For an example ratio 2 : 3 : 5 : 7 : 11 : 13 : 87, (a) bit-representations of the ratio, (b) mixing tree
obtained by MinMix, and (c) a table containing reservoir-to-mixer droplet transportation workload.

Fig. 2. For a DMF biochip layout with three reservoirs and four mixers, (a) initial embedding of the bipartite
graph, (b) reembedding of the bipartite graph, and (b) final embedding of the bipartite graph after reallocation
of reservoirs.

3.1. Impact of Reservoir/Mixer Allocation on Droplet Routing

Given a mixing graph and a number of boundary dispensers, the workload pattern
can be conveniently represented by a bipartite graph. For simplicity, we assume that
all boundary reservoirs and mixers are arranged linearly. The following example il-
lustrates how the impact of reservoir allocation on droplet routing can be perceived
from such a graph representation. Consider a mixture preparation task represented
as a bipartite graph (see Figure 2(a)), in which three reactant fluids x1, x2 and x3
are loaded into three physical resources (reservoirs) R1, R2 and R3, respectively of a
biochip that has deployed four virtual resources (mixers) M1, M2, M3 and M4. The
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linear ordering of the nodes in the embedding of the graph indicates the relative place-
ment of dispensers and mixers. An edge represents a required droplet transportation
from a reservoir to a mixer. For example, the droplets from R1 and R3 should arrive at
mixer M1; in the bipartite graph, this fact is reflected by putting two edges from M1 to
R1 and R3. The transportation workload can be obtained as before from a mixing tree
following a scheduling of mixers; this can be indicated by attaching the corresponding
integer weight w(ei) to an edge ei. Note that in the initial embedding of the bipartite
graph (Figure 2(a)), the total number of edge-crossings (X) is 12. Each cross-point may
mandate a stall during droplet routing if the two corresponding droplets arrive at the
cross-point simultaneously. Thus, the maximum number of stalls that may be needed
at a cross-point of two edges ei and e j can be estimated as min(w(ei), w(e j). There-
fore, considering the workload, we can compute the weighted edge-crossing number as
Xw = ∑

min(w(ei), w(e j)), for every cross-point (ei, e j).
In the initial embedding of the bipartite graph (Figure 2(a)) the total number of

weighted edge-crossings (Xw) is 14. A reembedding of the bipartite graph is shown in
Figure 2(b), in which the weighted edge-crossing number (Xw) is one; in this case, note
that the reservoir placement is changed (or equivalently, input fluids are allocated to
them differently). Finally, by changing the order of mixers (M2; M1; M3; M4), another
embedding of the graph is shown in Figure 2(c). The total weighted edge-crossing (Xw)
remains the same as in the previous case; however, the geometric distance from M1
to R1 and R3 is reduced, and therefore, the total transportation distance reduces as
the workload of these two edges are higher than those to M2. In a general scenario,
the number of crossings can be minimized by permuting the reservoirs (mixers) among
themselves, and placing them around the boundary (on-chip) appropriately. As the
transportation workload of a reservoir-mixer pair increases, the impact of a crossover
point becomes more pronounced in terms of routing distance and the frequency of
stalls. We define “weighted-distance” between a reservoir Ri and a mixer Mj as the
product of geometric distance between them and the weight w(eij) of the edge between
Ri and Mj . Thus, a reembedding that reduces the total weighted-geometric-distance
between the reservoirs and mixers, is also preferable. Note that in a planar embedding
of a quadrilateral where no three points are collinear, the combined length of two
nonadjacent sides is always less than that of the two crossing-diagonals (by virtue
of the triangle inequality). This fact may be utilized to reorder the resources so that
the reservoir-to-mixer weighted-distances are reduced. Hence, in the proposed layout-
aware resource placement technique, by changing the location of the resources, we will
attempt to minimize the weighted-crossing-number and weighted-geometric-distance
so that the number of possible stalls and droplet transportation distance during mixture
preparation are reduced.

3.2. Crossing Number in a Bipartite Graph

A common point of two edges in a drawing of bipartite graph that is not an incident
vertex is called a crossing. The crossing number cr(G) is defined as the minimum
number of crossings in any drawing of G [Buchheim et al. 2013]. Zarankiewicz (and
independently Urbanı́k) conjectured that the crossing number of a complete bipartite
graph Km,n as cr(Km,n) = �m

2 ��m−1
2 ��n

2��n−1
2 � [Buchheim et al. 2013]. However, the cor-

rectness proof of this equation is still unknown [Buchheim et al. 2008, 2013; Richter and
Thomassen 1997; Schaefer 2013; Tamassia 2013]. Garey and Johnson proved that the
general crossing minimization problem is NP-complete [Buchheim et al. 2013; Garey
and Johnson 1979]. Hence, in this article, we propose a heuristic technique to reduce
the total weights of the edge-crossings among all the droplet transportation routes for
a mixture preparation.
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Fig. 3. An example DMF biochip layout for mixture-preparation.

Fig. 4. Droplet routes for the mixing steps of the subtree rooted (a) at m6 of the mixing tree in Figure 1(b),
and (b) of the subtree rooted at m4 of the mixing tree in Figure 5(a).

3.3. Arrangement of Reservoirs and Mixer Scheduling

The reservoirs (fluid dispensers and waste collectors) of a chip are considered as physi-
cal resources and they are usually located around the boundary of the chip. The mixers
on a DMF platform can be thought as virtual resources as they can be instantiated on
a vacant area of the chip as needed. The mixer geometry can have different values of
aspect-ratio, which determine mixing time [Paik et al. 2003a, 2003b]. Figure 3 shows
a layout of a biochip with seven reactant dispensers R1, R2, . . . , R7, two waste reser-
voirs, and two (3 × 3) mix/split modules M1 and M2, which can perform mix and split
operations in both horizontal and vertical directions. We assume that each reactant
fluid is loaded into a dedicated reservoir. In order to implement a mixing graph onto
a physical layout, we need to perform the following two tasks: (1) allocating the reser-
voirs to reactant fluids (reservoir allocation to the leaf nodes of the mixing tree), and
(2) assigning each mix-split operation (an internal node of the mixing tree) to a mixer,
referred to as mixer assignment.

Given a number of mixers, the scheduling scheme OSM (Optimal-Scheduling-With-
M-Mixers) [Luo and Akella 2011] can be used to assign the mixers. Assuming two
mixers M1, M2, their assignments for the ratio 2 : 3 : 5 : 7 : 11 : 13 : 87, are shown
in Figure 1(b). A greedy method is used to obtain a reservoir allocation as shown in
Figure 4(a). Corresponding to the mixing subtree rooted at m6 of Figure 1(b), the droplet
routing paths from the fluid reservoirs are indicated with directed lines in Figure 1(a),
some of which are overlapping. Hence, movement of these droplets should be handled
accordingly in order to avoid any any routing conflict.

We consider another mixing tree for the same target ratio 2 : 3 : 5 : 7 : 11 : 13 : 87 as
shown in Figure 5(a) for which a different reservoir allocation is shown in Figure 4(b).
In this case, the droplet transportation paths corresponding to the mixing subtree
rooted at node m4 of Figure 5(a), are shown in Figure 4(b). Here, the eight mixing
steps in the subtree rooted at m4 can be performed with no crossover. It is observed
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Fig. 5. An alternative mixing tree for the example ratio 2 : 3 : 5 : 7 : 11 : 13 : 87, and (b) a table containing
reservoir-to-mixer droplet transportation workloads.

that for the target ratio 2 : 3 : 5 : 7 : 11 : 13 : 87, if MinMix-tree is executed on a
chip of Figure 4(a), the weighted-crossing number turns out to be four. However, for
the mixing tree of Figure 5(a), this number becomes two. Also, the total reservoir-to-
mixer weighted-distance is reduced in the latter case. Thus, even though the latter
case requires more mix-split steps, the overall performance of the algorithm improves.

Note that if Mlb of a mixing tree is greater than one (Mlb > 1) and only one on-chip
mixer is available, then Tms mix-split cycles are required for completion of the mixing
process, where Tms is the total number of nonleaf nodes in the mixing tree. Clearly,
mixer assignment and reservoir allocation strongly will depend on the characteristics
of the mixing tree, number of reactant fluids, and the number of on-chip mixer modules,
which are concurrently available.

For the following discussions, we define the following terms.

Definition 1 (Dilution/Mixing Subtree). A tallest subtree with only one nonleaf node
at each level of the mixing tree is called a dilution/mixing subtree with a limited
number, typically 2 to 4, of distinct leaf nodes (distinct reactant fluids).

Definition 2 (Dilution Subtree). A dilution/mixing subtree with only two reactant
fluids is called a dilution subtree, and it represents the mixing of two reactant fluids
in a certain ratio of their concentration factors.

A mixing tree may contain multiple dilution/mixing subtrees or dilution subtrees of
different depths in the mixing tree. The sum of the depths of all the dilution subtrees in
a mixing tree is referred to as the total depth of all dilution subtrees and it denoted by
Ldst. In the example mixing tree of Figure 1(b) obtained by MinMix [Thies et al. 2008],
the dilution subtrees are shown within pink-shaded regions (here, Ldst = 6). Similarly,
in the mixing tree of Figure 5(a), the dilution subtrees are marked (here, Ldst = 14).
For the latter tree, the workload table for reservoir-to-mixer droplet transportation is
shown in Figure 5(b). Compared to the workload table as in Figure 1(c), this has more
“zero” entries, and the workload on mixers M1 and M2 are more skewed with respect to
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input reactants. This happens because the mixing tree of Figure 5(a) has taller dilution
subtrees and the value of Ldst is larger compared to those in Figure 1(c). Note that each
dilution subtree can be scheduled and executed in one mixer for consecutive time
steps, and the reservoirs holding the two corresponding reactants can be placed at the
near proximity of that mixer. Such a localized placement of reservoirs around a mixer
provides two advantages: (a) the reservoir-to-mixer weighted-distance is reduced, and
(b) the transportation of droplets from a reservoir to a mixer can be pipelined as long
as the subtree is being executed, and hence no crossover of droplets will occur among
their pathways.

Another interesting observation can be made from Figure 1(b) and Figure 5(a). Note
that the latter consists of three tall dilution subtrees whose input sets of reactants
{x1, x4}, {x2, x6}, {x3, x5} are disjoint. Thus, each pair of reactants can be loaded into two
reservoirs in the near vicinity of the corresponding mixer. On the other hand, in the
mixing graph of Figure 1(b) produced by MinMix, the presence of intersection among
the reactant-sets causes crossovers among the droplet routing paths. This motivates
us to device a new mixing algorithm that will produce taller and disjoint-input dilution
subtrees in the mixing graph, so that its implementation on a biochip will be layout-
friendly. To the best of our knowledge, no such layout-driven mixing algorithm has been
studied in the literature. In this article, we thus focus on two tasks: (i) propose a layout-
friendly mixing algorithm that produces a mixing tree with taller and disjoint-input
dilution subtrees; (ii) given any mixing algorithm, determine reservoir allocation and
mixer placement on the layout that minimizes droplet crossovers and transportation
distance.

Note that the proposed mixing and resource allocation scheme differs from the usual
phase of resource binding that is employed during high-level of synthesis (HLS) of
a biochip. Given a task graph and a layout with physical resources as input, the
objective of HLS is to allocate the physical resources (dispensers, detectors, heaters)
and virtual resources (mixers) on a chip, in space and in time, such that the chip
area and assay-completion time are minimized subject to the fulfillment of all fluidic
constraints [Chakrabarty and Su 2007; Su and Chakrabarty 2004, 2008]. In this work,
our objective is different: to design a task graph (a mixing graph in our context), which
will be more layout-friendly, in terms of fewer crossovers among droplet pathways, and
shorter droplet-transportation distance, during implementation.

3.4. Problem Formulation

The problem of automated mixture-preparation of N reactant fluids can be stated as
follows.

Input. A supply of N reactant fluids x1, x2, . . . , xN, each with CF = 1 and a desired
target ratio of CFs a1, a2, . . . , aN for mixing them; the maximum error in CF of each
component fluid is 1

2d , for a given integer d.
Output. A mixing tree of depth at most d denoting the sequence of (1 : 1) mix-split

steps (mis) for preparing the target ratio.

4. LAYOUT-AWARE MIXING ALGORITHM

In this section, we present a layout-aware mixing algorithm referred to as Ratio-ed
Mixing Algorithm (RMA). The proposed algorithm is based on fractional decomposition
of the algebraic expression corresponding to a desired ratio, which finally leads to a
mixing tree corresponding to the target ratio.

4.1. Algebraic Expression for a Target Ratio

For a desired ratio a1 : a2 : . . . : aN, let L = ∑N
i=1 ai be the sum of ratio components

(nonzero positive integers), the target mixture can be represented by an algebraic
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expression X(N) = a1x1+a2x2+···+aN xN
L , where a1, a2, . . . , aN are the positive integers cor-

responding to the desired ratio and x1, x2, . . . , xN are the variable names correspond-
ing to N reactant fluids. For example, a mixture of seven fluids with a desired ra-
tio 2 : 3 : 5 : 7 : 11 : 13 : 87 can be represented by the algebraic expression
X(7) = 2x1+3x2+5x3+7x4+11x5+13x6+87x7

128 , where L = 128 and x1, x2, . . . , x7 are seven different
reactant fluids. The CF ci of a reactant fluid xi in the target mixture can be represented
by ci = ai

L and
∑N

i=1 ci = 1.

4.2. Fractional Decomposition of the Expression X (N)

For a given target ratio, the algebraic expression X(N) = a1x1+a2x2+···+aN xN
2d can be decom-

posed into a fractional representation, as stated in the following theorem.

THEOREM 4.1. If X(N) = a1x1+a1x2+···+aN xN
2d , where d ≥ N, with all ai’s are positive

integers and
∑N

i=1 ai = 2d, then X(N) can always be expressed as a fractional decom-
position of n terms, n ≥ d: X(N) = ∑

n[ 1
2 (xi1 + 1

2 (xi2 + 1
2 (· · · + 1

2 (xi(r−1) + xir))))], where
xij ∈ {x1, x2, . . . , xN} with repetitions, r ≥ N and r < d. Let q denote the number of “+”
signs in the fractional decomposition; 1 ≤ r < q.

PROOF. Let ai be the largest integer in {a1, a2, . . . , aN}. If ai ≥ 2d−1, we can write

X(N) = a1x1 + a2x2 + · · · + aNxN

2d (1)

= 1
2

(
xi + 1

2d−1

(
a1x1 + · · · + ai−1xi−1 + (ai − 2d−1)xi + · · · + aNxN

))
. (2)

The expression within the inner parentheses can further be decomposed applying the
same process.

If ai < 2d−1, then there exists a j such that a1 + a2 + · · · + aj−1 < 2d−1 < a1 + a2 +
· · · + aj . Hence, X(N) can be written as

X(N) = a1x1 + a2x2 + · · · + aNxN

2d (3)

= 1
2

(
1

2d−1

(
a1x1 + · · · + aj−1xj−1 + a′

j x j
)

+ 1
2d−1

(
(aj − a′

j)xj + aj+1xj+1 + · · · + aNxN
))

, (4)

where a′
j = 2d−1 − ∑ j−1

k=1 ak.
Recursively applying this scheme on the linear algebraic expressions, we obtain

X(N) =
∑ [

1
2

(
xi1 + 1

2

(
xi2 + 1

2

(
· · · + 1

2
(xi(r−1) + xir)

)))]
(5)

where xij ∈ {x1, x2, . . . , xN} with repetitions.

For example, the target ratio 2 : 3 : 5 : 7 : 11 : 13 : 87 can be represented by the
algebraic expression X(7) = 2x1+3x2+5x3+7x4+11x5+13x6+87x7

128 . A fractional decomposition of

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 45, Pub. date: June 2015.



45:12 S. Roy et al.

X(7) can be obtained as follows:

X(7) = 1
2

[
1
2

(
1
2

(
1
2

(
1
2

(
1
2

(
1
2

(x1 + x7) + x7

)
+ x7

)

+ 1
2

(
1
2

(
1
2

(x1 + x4) + x4

)
+ x4

))
+ x7

)

+ 1
2

(
1
2

(
1
2

(
1
2

(
1
2

(x2 + x6) + x2

)
+ x6

)
+ x6

)

+ 1
2

(
1
2

(
1
2

(
1
2

(x3 + x5) + x5

)
+ x3

)
+ x5

)))
+ x7

]
. (6)

Observation 4.1 (Correspondence Between Fractional Decomposition and Mixing
Tree). Each fractional decomposition of the algebraic expression of a target ratio can
be represented by a mixing tree.

Note that (1 : 1) mixing of two different reactant fluids of CF x1 and x2, produces
a mixture denoted by x1+x2

2 . In the next mixing step, one droplet of this mixture is
used to mix with a third reactant fluid, say x3, in a ratio 1 : 1 to produce a mixture
denoted by 1

2 ( x1+x2
2 + x3). Thus, the fractional decomposition obtained from the target

ratio can be mapped into a mixing tree, following the sequences of one (1 : 1) mix
and a consecutive split operation. The depth of the mixing tree is d and the total
number (1 : 1) mix-split steps (Tms) is the total number of “+” signs in the fractional
decomposition, that is, q, where (q + 1) is the number of leaf nodes in the mixing tree
denoting the input reactants. Thus, there is a one-to-one correspondence between a
fractional decomposition and the mixing tree as constructed above, corresponding to a
target ratio. For example, the fractional decomposition of the algebraic expression X(7)
given by Equation (6) can be directly translated to the mixing tree of Figure 5(a) for
the desired ratio 2 : 3 : 5 : 7 : 11 : 13 : 87.

4.3. Proposed Algorithm: RMA

Assume that the desired ratio a1 : a2 : . . . : aN is an approximated ratio for which
the ratio-sum, L = ∑N

i=1 ai = 2d, for an accuracy level d of CFs in the mixture. In
this section, we present the mixing algorithm RMA that uses an integer-partitioning
scheme to obtain a fractional decomposition of the algebraic expression X(N) corre-
sponding to the desired ratio. It distributes the component reactant fluids in a disjoint
manner, as far as possible, from the early stage in a top-down fashion to generate the
mixing tree. The pseudocode of the proposed algorithm RMA written as Algorithm 1;
this calls a procedure Partitioning described by Algorithm 2, with the initial partition
〈P, L〉 corresponding to the algebraic expression X(N). The procedure Partitioning uses
another procedure Expression Partition given by Algorithm 3 to obtain two new parti-
tions 〈P1, L1〉 and 〈P2, L2〉 from the input partition 〈P, L〉. Each time two new partitions
are returned to Partitioning from Expression Partition, two (left and right) child nodes
are created to the parent node in the mixing tree T . The procedure Partitioning recur-
sively calls itself to construct the mixing tree. If a new partition 〈P, L〉 contains only
one variable xi with L = 1, the procedure Partitioning stops partitioning further.

4.4. Analysis of RMA

4.4.1. Characteristics of the Mixing Tree. The procedure RMA works in a top-down fashion
unlike MinMix [Thies et al. 2008], that is, the mixing tree is obtained by decomposing
the algebraic expression that represents the target ratio, which serves as the root of
the tree. The tree is recursively constructed from the root node to the leaves. Note
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ALGORITHM 1: RMA(〈a1 : a2 : . . . : aN〉, d)

1: Obtain the algebraic expression X(N) = a1x1 + a2x2 + · · · + aNxN

L
, where L =

N∑
i=1

ai = 2d.

2: Represent an integer partition as 〈P, L〉, where P = a1x1 + a2x2 + · · · + aNxN =
N∑

i=1
aixi .

3: Create the root node of the mixing tree T with partition 〈P, L〉.
4: T = Partitioning(〈P, L〉).
5: return T .

ALGORITHM 2: Partitioning(〈P, L〉)
1: if L = 1 then
2: return NULL.
3: else
4: Run Expression Partition(〈P, L〉) and obtain two new partitions, 〈P1, L1〉 and 〈P2, L2〉 corresponding

to two (left and right) child nodes of the parent node with 〈P, L〉 in the mixing tree.
5: Create two (left and right) child nodes with these two partitions, respectively, of the parent node with

〈P, L〉 in the mixing tree T .
6: Partitioning(〈P1, L1〉).
7: Partitioning(〈P2, L2〉).
8: end if

ALGORITHM 3: Expression Partition(〈P, L〉)
1: Let ai be the largest integer coefficient in the partition 〈P, L〉 (corresponding to the variable xi).
2: Set L1 = L2 = L

2 .
3: if ai ≥ L1 then
4: Create two partitions as 〈P1, L1〉 and 〈P2, L2〉, where P1 = xi , L1 = 1 and P2 = P − ai xi .
5: else
6: Create two partitions as 〈P1, L1〉 and 〈P2, L2〉, where P1 = aixi and P2 = P − aixi .
7: Compute the required extra integer coefficient in first partition to make L1 = L

2 , E = L
2 − ai .

8: if E = aj for any coefficient aj in 〈P2, L2〉 (corresponding to the variable xj ) then
9: /* If the required extra integer coefficient in the first partition is found exactly equal to an integer

coefficient in the second partition */
10: P1 = P1 + aj xj and P2 = P2 − aj xj .
11: else if E is exactly equal to the sum of n1 coefficients in 〈P2, L2〉 and n1 < � 1

2 ×(the number of
nonzero coefficients in 〈P2, L2〉� then

12: Move those n1 terms from 〈P2, L2〉 to 〈P1, L1〉.
13: else
14: Let ak = be the second largest integer coefficient in 〈P, L〉 (corresponding to the variable xk) and

ak > E.
15: P1 = P1 + E.xk and P2 = P2 − E.xk.
16: end if
17: end if
18: return Two new partitions 〈P1, L1〉 and 〈P2, L2〉.

that the mixing tree is a full binary tree, that is, every node has exactly two children
(representing a 1 : 1 mix/split step), or no children (representing an input reactant,
that is, a variable) [Aho et al. 1974; Roy et al. 2014b]. The root starts at level d. The
partitioning of the tree into a left and a right subtree at a level �, is obtained in such a
way that the sum of the component ratios (or the coefficients of variables) in each child
node becomes 2�−1. We call this condition half-sum. For example, RMA partitions the
algebraic expression X(7) corresponding to the target ratio 2 : 3 : 5 : 7 : 11 : 13 : 87,
as in Figure 6, and the mixing tree of Figure 5(a) can be constructed directly following
the partition.
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Fig. 6. For the ratio 2 : 3 : 5 : 7 : 11 : 13 : 87, partitioning of algebraic expressions to construct the mixing
tree of Figure 5(a).

Equation (5) reveals that the half-sum partitioning condition can always be fulfilled
while keeping at most one common variable (input reactant) between the two subtrees.
For example, in Figure 6, at the top level of partitioning, only the input x7 is kept
common between the two subtrees (second row of Figure 6), and at the next level,
the inputs to the two subtrees, that is, (x1, x4, x7) and (x2, x3, x5, x6), are disjoint (third
row of Figure 6). Since the component ratios are partitioned at every level based on
this principle, the intersection among the input sets of two subtress includes at most
one reactant. As a result, the dilution subtrees tend to become taller and mutually
“almost-disjoint” (having at most one common input reactant between every pair of
subtrees), a property which is desirable for enabling a layout-friendly placement of
reservoirs and mixers. The total depth of all dilution subtrees also increases compared
to that obtained otherwise. Thus, RMA, by virtue of its top-down design, automatically
provides a layout-aware solution of the mixing problem.

4.4.2. Time-Complexity of RMA. The time-complexity of RMA depends on the time-
complexity of the algorithm used to find the exact sum in Step 11 of Expres-
sion Partition. This problem can be stated as a subset-sum problem, that can be solved
by using a pseudo-polynomial time dynamic programming approach [Kleinberg and
Tardos 2005]. The time complexity of the pseudo-polynomial time dynamic program-
ming approach depends on the size of input numbers, that is, O(N.E), where E is the
desired sum to find in a set of N integers. At the lowest level (level 1) of the mixing tree,
at most N

2 times the procedure Partitioning can be called and for a mixing tree of depth
d these calls can recursively occur d times. Hence, at most d. N

2 times the procedure
Expression Partition may be called. At every level �, RMA first searches whether the
half-sum condition is satisfied with two disjoint set of inputs, and if found, proceeds to
the next level with this decomposition. Otherwise, using a greedy approach, it keeps
on including the input coefficients in one partition until their sum exceeds 2�−1, and
selects one of them to split its coefficient so that the half-sum is achieved in both the
resulting partitions. Thus, the time-complexity of the proposed mixing algorithm RMA
is O(N.E.d. N

2 ), that is, O(d.N2), since E � 2d.

4.4.3. Some Examples Highlighting RMA. We simulated both the mixing algorithms (Min-
Mix [Thies et al. 2008] and RMA) for several target ratios with different number of
input reactants that are used in real-life bioprotocols as described in BioCoder tool2.
For example, a target ratio 40 : 10 : 1 : 1 : 48 is used in “Splinkerette PCR method”.
The proposed algorithm RMA determines a mixing tree with taller dilution subtrees
(i.e., the total depth of dilution subtrees, Ldst = 7) as shown in Figure 7(b). In contrast,

2BioCoder: A Programming Language for Biology Protocols, Microsoft Research India, http://research.
microsoft.com/en-us/um/india/projects/biocoder/, December, 2009.
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Fig. 7. For an example ratio 40 : 10 : 1 : 1 : 48 (≡ 51 : 13 : 1 : 1 : 62, in binary scale) used in “Splinkerette
PCR method”, mixing tree obtained by (a) MinMix, and (b) RMA.

Fig. 8. For a target ratio 341 : 341 : 342, mixing trees obtained by (a) MinMix, and (b) RMA.

MinMix constructs a mixing tree as shown in Figure 7(a), which has seven dilution
subtrees (here, Ldst = 7). Due to the presence of many common variables between the
two subtrees of MinMix-tree, a physical implementation of this tree on a layout will
necessitate a number of crossovers among droplet-routing paths (see Figure 3). On
the other hand, RMA offers a more layout-friendly implementation. Note that in the
RMA-tree, the subtree that is rooted at M2 of level 6, and leaves at level 1, needs only
reactant x7 and an intermediate droplet from mixer M2 at every node. Hence, this sub-
tree (whose depth is five), also resembles a dilution subtree and can be implemented
without any droplet crossover in its implementation as well.

For the target ratio 1 : 1 : 1 approximated as 341 : 341 : 342 in the binary scale,
Figure 8(a) and 8(b) depict the mixing trees obtained by MinMix [Thies et al. 2008]
and RMA respectively. The RMA-tree consists of taller dilution subtrees, and it can
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Fig. 9. The same mixing tree obtained by both the methods, MinMix and RMA, for two example target
ratios (a) 25 : 24 : 1, and (b) 1 : 2 : 3 : 1 : 23.

Table I. Comparative Results of MinMix and RMA for Some Randomly Chosen Target Ratios†

Accuracy MinMix RMA
Example Target Ratio Level (d) Tms W Mlb Ldst Tms W Mlb Ldst

1. 40:10:1:1:48 (≡ 51:13:1:1:62) 7 13 12 2 7 13 12 2 7
2. 13:12:5:2 5 7 6 2 3 7 6 2 3
3. 15:7:4:4:1:1 5 10 9 3 5 10 9 3 8
4. 2:3:5:7:11:13:87 7 18 17 4 8 19 18 4 14
5. 341:341:342 10 14 13 2 5 18 17 2 17
6. 12:7:7:3:3 5 11 10 3 5 12 11 3 8
7. 18:5:3:3:3 5 9 8 3 4 10 9 3 7
8. 7:14:11 5 8 7 2 5 8 7 2 7
9. 9:8:8:8:7:7:5:5:4:1:1:1 6 18 17 4 9 20 19 5 13
10. 34:7:5:5:5:4:3:1 6 14 13 4 6 16 15 4 10

†In order to produce two droplets of a target ratio with accuracy level d, Tms: total number of (1 : 1) mix-split
steps, W : total number of waste droplets generated, Mlb: minimum number of mixers required for earliest
completion of executing a mixing tree, and Ldst: total depth of all the dilution subtrees in a mixing tree.

be easily implemented on chip with two mixers without any crossover among droplet
paths. However, the number of mix-split steps (Tms) increases compared to that needed
by MinMix [Thies et al. 2008].

A target ratio, in which the component integers are highly-skewed (for example
1 : 1 : 1 : 1000 or 25 : 24 : 1), both the methods (MinMix [Thies et al. 2008] and
RMA) are likely to provide the same mixing tree. For example, the mixing trees for
two target ratios 25 : 24 : 1 (used in “One step miniprep method”, see footnote 2) and
1 : 2 : 3 : 1 : 23 (used in “Splinkerette PCR method”, see footnote 2) as shown in
Figures 9(a) and 9(b), respectively.

4.5. Simulation Results: MinMix vs. RMA

Table I presents the comparative results of MinMix and RMA for some randomly chosen
target ratios with different accuracy levels (d). It is observed that the total number of
(1 : 1) mix-split steps (Tms), the total number of waste droplets produced (W) and the
minimum number of mixers required for earliest completion of executing a mixing
tree (Mlb) are almost same for both the mixing trees obtained by MinMix and RMA.
Whereas, the total depth of all dilution subtrees in a mixing tree (Ldst) increases in
RMA compared to MinMix.
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Fig. 10. Histograms for the distributions of (a) the total number of mix-split steps, Tms and (b) the total
number of waste droplets, W , in the mixing trees obtained by both MinMix and RMA.

We have also carried out simulation experiments with a large number of target ratios
for a comparative evaluation of RMA and MinMix [Thies et al. 2008]. A detailed dis-
cussion on how the samples are generated by using an integer-partitioning technique,
is presented in the Appendix. For 6058 synthetic target ratios of N different fluids
(3 ≤ N ≤ 12) with the ratio-sum L = 32 (i.e., the accuracy level d = 5), both the mixing
algorithms (MinMix [Thies et al. 2008] and RMA) are studied. We compute different
performance parameters such as the total number of mix-split steps (Tms), the total
number of waste droplets (W) and the total depth of the dilution subtrees in the mixing
tree (Ldst).

Figures 10(a) and 10(b) show that the distributions of Tms and W are very similar
for both the mixing algorithms.

In RMA, the envelopes of the distributions are slightly shifted towards the right
both for Tms and W . Hence, on the average, RMA produces only a slight increase in Tms
and W compared to MinMix. However, in Figure 11, the distribution of Ldst shows a
significant right-shift for RMA compared to that of MinMix. This is indicative of the fact
that on the average, there will be more frequent occurrences of dilution subtrees with
large values of total depth, when RMA is deployed. Thus, RMA will offer greater benefit
over MinMix from the viewpoint of reservoir placement and droplet transportation. In
other words, a reduction in weighted-crossing number and transportation distance is
more likely to be observed during the implementation of RMA. Based on the analysis
discussed in Section 4.4.1 and the above empirical evidence, we now summarize a
characteristic property of the top-down mixing algorithm RMA as follows.

Observation 4.2. The proposed mixing algorithm RMA produces a mixing tree with
taller and almost-disjoint dilution subtrees, and with a higher value of Ldst, that is, the
total depth of dilution subtrees, compared to those obtained by MinMix.

5. ROUTING-AWARE RESOURCE ALLOCATION FOR MIXTURE PREPARATION

As discussed in previous sections, the procedure RMA proposed in this work, provides
a layout-friendly mixing tree. Given such a tree, the boundary reservoirs can be suit-
ably allocated to the reactant fluids and the mixers can be placed such that droplet
crossovers and transportation distances are reduced. In this section, we present an al-
location and placement algorithm that can be used to determine the relative positions
of on-chip mixers, and fluid reservoirs around the chip boundary, based on a graph-
based heuristic approach. The method only only applies to the mixing trees produced
by RMA, but also to those obtained by other algorithms such as MinMix [Thies et al.
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Fig. 11. Histogram for the distribution of the total length of dilution subtrees, Ldst, in the mixing trees
obtained by both MinMix and RMA.

2008] or RSM [Hsieh et al. 2012a]. As a result, droplet transportation time is reduced
during the actual implementation of sample preprocessing.

5.1. Motivation

Given a single target ratio, a mixing tree can be constructed by running RMA, Min-
Mix [Thies et al. 2008], or RSM [Hsieh et al. 2012a]. The last one is also suitable for
producing multiple target ratios, and for such cases, it outputs a mixing graph based
on sharing of intermediate droplets. The placement algorithm proposed in the section
will be applicable to both mixing trees and graphs. Before we execute our placement
algorithm, we adopt the OSM (Optimal-Scheduling-With-M-Mixers) procedure [Luo
and Akella 2011] to assign M mixers to the nodes of a mixing graph. For a given
value of M, this algorithm produces a schedule that optimizes the total time needed
in mix/split operations. However, it does not consider the issues of droplet dispensing
and transportation time. For simplicity, we assume that a droplet can move from an
electrode to its adjacent electrode in one clock cycle, and all mixers require the same
time to complete a (1 : 1) mix-split operation. Depending on the nature of the mixer
modules, a mix-split step may require several clock cycles to complete the task [Roy
et al. 2014a].

For example, consider a target ratio 13 : 12 : 5 : 2 of four reactant fluids x1, x2, x3,
and x4. Figure 12(a) shows the MinMix-tree scheduled with two mixers M1 and M2
(since Mlb = 2). To each internal node, we attach a time-stamp (t) that reflects the
temporal sequence in the task graph. These stamps are labeled as 1 to 5 in ‘red’ font.
A unit time-stamp includes the time needed by a mixer to execute a mix/split step, and
the time needed to transport the input droplets from the corresponding reservoirs or
mixers. Depending on the schedule, some on-chip storage may be necessary to store
the intermediate droplets to be used in subsequent mix operations.

For an illustration, we assume a layout (Figure 12(b)) with two on-chip mixers M1
and M2, and four boundary reservoirs R1, R2, R3, R4 which are loaded with reactant
fluids x1, x2, x3 and x4, respectively.

In the following discussion, by resource-allocation we mean loading of input fluids to
the boundary reservoirs and assignment of nonleaf nodes of a mixing tree/graph to the
on-chip mixers. The allocation of a reservoir Rj to an input fluid xi is denoted by the
mapping xi → Rj , and the mixer assignments are obtained from the scheduled mixing
tree. Figure 12(b) shows the droplet-routing paths for time-stamp t = 1. Figure 12(c)
lists the overall schedule and routing paths.

Let Z(t) denote the number of cells (electrodes) that are activated for transporting all
droplets until time-stamp t. Thus, the total weighted-distance considering all reservoir-
to-mixer droplet transportation can be computed as Z = ∑

t Z(t). Also, the number
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Fig. 12. For a ratio 13 : 12 : 5 : 2, scheduled mixing tree obtained by MinMix and layout, droplet trans-
portation routes and bipartite graphs.

of stalls (�) required while transporting the droplets to a mixer can be estimated
(pessimistically) by the corresponding weighted-crossing number (Xw) in the underlying
reservoir-to-mixer bipartite graph, as described in Section 3.

Figure 12(d) depicts the initial resource-allocation with the workloads as the edge
weights in the initial bipartite graph for the layout of Figure 12(b), for which Xw = 5.
A change in resource allocation, obtained by interchanging M1 and M2, is shown in
Figure 12(e) as the final bipartite graph with the workloads as the edge weights,
where Xw = 1. Also, the total transportation distance Z reduces compared to that in
Figure 12(e).

As discussed in Section 3, reduction in weighted crossing number tends to reduce
both the number of stalls and droplet transportation distance. As a result, the total
time needed for droplet routing will also be reduced. This fact motivates us to solve the
problem of minimizing weighted crossing number in a bipartite graph and explore its
application to on-chip mixture-preparation.

For further illustration, we consider another target ratio 7 : 14 : 11 of three reactant
fluids x1, x2 and x3. The scheduled RMA-tree, and RSM-tree [Hsieh et al. 2012a] are
shown in Figure 13(a) and Figure 14(a), respectively. A layout with two on-chip mixers
and three boundary reservoirs is shown in Figure 13(b) and Figure 14(b). Droplet-
transportation routes and time-stamps for these two cases are listed in Figures 13(c)
and 14(c), respectively. The corresponding initial and final bipartite graphs along with
the workloads as the edge weights are depicted in Figures 13(d) and 13(e), and in
Figures 14(d) and 14(e). In both cases, an improvement in the value of weighted crossing
number Xw, and total transportation distance Z, can be observed.

5.2. Problem Formulation

We envisage resource-allocation as a mapping function φ that provides a linear ordering
of the mixers and the input fluids (loaded into the reservoirs), that is, their relative
positions in the chip layout from left-to-right. Let the initial and final ordering of
mixers and fluid reservoirs be denoted by �i

r (�i
m) and �

f
r (� f

m), respectively. For a
scheduled mixing tree, if the mixers (Mi ’s) and the fluid-to-reservoir loading (xi → Rj)
are relatively ordered in such a way that the weighted crossing number Xw in the
bipartite graph representing the reservoir-to-mixer workload, is minimized, then the
resource-allocation is said to be optimal (φopt).
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Fig. 13. For a ratio 7 : 14 : 11, scheduled mixing tree obtained by RMA and layout, droplet transportation
routes and bipartite graphs.

Fig. 14. For a ratio 7 : 14 : 11, scheduled mixing tree obtained by RSM and layout, droplet transportation
routes and bipartite graphs.

The problem of finding the optimal resource-allocation can be stated as follows.
Inputs: (a) N reactant fluids x1, x2, . . . , xN each with CF = 100%, (b) a target ratio

a1 : a2 : . . . : aN of N reactant fluids such that
∑N

i ai = 2d, where (c) d is the depth of
the mixing tree T , and (d) M on-chip mixers. We assume that the number of reservoirs
that are placed around the chip-boundary is greater than or equal to N.

The depth of the mixing tree (d) is predetermined according to the required accuracy
of the desired CFs of the constituent fluids in the target mixture. For a mixing tree, its
depth d indicates that the maximum error in CF of any component fluid in the target
mixture is 1

2d+1 .
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ALGORITHM 4: RAMP(〈a1 : a2 : . . . : aN〉, d, M)

1: Compute L = ∑N
i ai .

2: Determine mixing tree T (P ∪ Q, E) by a mixing algorithm, where ∀q ∈ Q, f (q) : xi → Ri .
3: Compute Tms = |P|.
4: Set Tlb = d and compute Mlb as provided in [Luo and Akella 2011].
5: if M is not known then
6: Set M = Mlb.
7: end if
8: Schedule T by OSM [Luo and Akella 2011] with M mixers to obtain Tsch(P ∪ Q, E), so that each node p,

p ∈ P, has a pair {time(p), mixer(p)} for time stamp and mixer assignments.
9: Compute Tc = max(time(p)),∀p ∈ P.
10: Set initial orders as �i

r : R1, R2, . . . , RN and �i
m : M1, M2, . . . , MM.

11: Obtain initial embedding of G by GetBipartiteGraph(Tsch) and form the table of reservoir-to-mixer
workloads.

12: Compute the initial crossing number Xi in G.
13: Apply Barycenter heuristic on G to obtain an intermediate embedding of G (φinterm) with the

intermediate orders �r and �m and the reduced crossing number Xinitial.
14: Compute the weighted crossing number Xw in φinterm using the workload table.
15: If Xw > Xinitial, run a procedure for SA-based weighted crossing minimization with the initial

embedding φinterm and two bounds Xinitial and Xw .
16: Obtain final resource-allocation from the final embedding of G, i.e., φopt : (� f

r , �
f
m) and the optimal

weighted crossing number Xopt.

Outputs: (a) A scheduled mixing tree Tsch, and (b) an optimal resource-allocation φopt
for the mixture-preparation biochip.

A scheduled mixing tree Tsch(P∪Q, E) has a set of nonleaf nodes (P), a set of leaf nodes
(Q) and a set of directed edges (E) between two nodes. Each node q, q ∈ Q, indicates a
mapping of fluid xi loaded into the reservoir Rj (i.e., the mapping xi → Rj) denoted by
the function xi = f luid(q). Whereas, each node p, p ∈ P, has an assigned time stamp
t denoted by the function t = time(p) along with an allocated mixer Mj denoted by
the function Mj = mixer(p). The time of completion (Tc) for a scheduled mixing tree
is computed as Tc = max(time(p)),∀p ∈ P. However, as the problem of minimizing
the number of edge-crossings in a bipartite graph is NP-complete [Garey and Johnson
1979], we propose the following heuristic algorithm to solve this resource-allocation
problem.

5.3. Proposed Algorithm: RAMP

In order to obtain a solution of resource-allocation problem, for an application-specific
mixture-preparation biochip, we propose an algorithm called Routing-Aware resource-
allocation for Mixture Preparation (RAMP). The number of on-chip mixers (M) may be
either predetermined or restricted to the minimum number of mixers for minimum-
time completion of mixing tree (Mlb). The pseudo-code for the proposed algorithm is
written as Algorithm 4. It first uses the Barycenter heuristic [Sugiyama et al. 1981]
to reduce the crossing number in a bipartite graph. Then it uses a technique based on
simulated annealing (SA) [Kirkpatrick et al. 1983] to minimize the weighted crossing
number in the bipartite graph. The steps of RAMP are discussed in the following
sections.

5.3.1. Determining the Mixing Tree for a Target Ratio. Given a target ratio, any mixing
algorithm such as MinMix [Thies et al. 2008], RSM [Hsieh et al. 2012a] or RMA, can
be used to determine the mixing tree. In a mixing tree T , the (leaf and nonleaf) nodes
are at different levels 0 to d. The root of T is at level d and the level of any other node is
one less than the level of its parent node. Let Tms be the total number of nonleaf nodes
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Fig. 15. For target ratio 15:7:4:4:1:1 (a) MinMix-tree and (b) RMA-tree, both optimally scheduled by OSM
with M = Mlb.

(mix-split cycles) in T . For an example target ratio 15 : 7 : 4 : 4 : 1 : 1, the MinMix-tree
and RMA-tree are shown in Figures 15(a) and 15(b), respectively.

5.3.2. Scheduling a Mixing Tree. We adopt the OSM scheme [Luo and Akella 2011] for
scheduling the mixing tree (T ) with a given number (M) of mixers. This minimizes the
total time (Tc) needed for mixing operations, and produces a scheduled-tree Tsch that
indicates a sequence of mix-split steps with time-stamps and mixer allocation to each
nonleaf node of Tsch. If only one mixer is available (i.e., for M = 1), one needs Tc = Tms.
As aforementioned, Mlb is the minimum number of mixers required to complete mixing
in minimum time (denoted by Tlb time stamps). Hence, Tlb is the depth of the mixing
tree, that is, Tc = Tlb = d.

Let M∗ and M′ be the values of Mlb for MinMix-tree [Thies et al. 2008] and RMA-tree
of a target ratio, respectively, where M′ may be greater than M∗. For the example target
ratio 15 : 7 : 4 : 4 : 1 : 1, we found Mlb = 3 for both MinMix-tree and RMA-tree with
Tlb = 5 as shown in Figures 15(a) and 15(b), respectively. In the scheduled MinMix-
tree and RMA-tree with three mixers (Figure 15), each nonleaf node is assigned with a
mixer Mi (i = 1, 2 or 3) and a time stamp t (t = 1, 2, 3, 4 or 5). The corresponding tables
of reservoir-to-mixer workload for both the schedules are also shown in Figure 15.

5.3.3. Initial Resource Allocation. An application-specific mixture-preparation biochip
consists of on-chip mixers and fluid-reservoirs, which are placed at fixed locations
around the boundary of the chip. The initial resource-allocation is modeled and de-
termined by GetBipartiteGraph (Algorithm 5) from the scheduled mixing tree Tsch in
accordance to a bipartite graph G(X, Y ). In G(X, Y ), the set of vertices X is partitioned
into two disjoint sets of vertices that represent the set of mixers (Xm), and the set of
reservoirs (Xr). The set of directed edges Y denotes the droplet-transportation routes
from the fluid-reservoirs to mixers, and for each directed edge (v1, v2) ∈ Y , v1 ∈ Xr and
v2 ∈ Xm. For each directed edge an integer weight is assigned which indicates the cor-
responding reservoir-to-mixer workload. The table of reservoir-to-mixer workloads is
computed while constructing G(X, Y ). For the initial embedding of G(X, Y ), the initial
crossing number (Xi) is computed and the weighted crossing number (Xw) is computed
using the workload table. The set of vertices Xr (Xm) of G(X, Y ) has an associated order
�i

r (�i
m) of reservoirs for the input fluids (mixers). The initial orders of reservoirs and

mixers are set as �i
r : R1, R2, . . . , RN and �i

m : M1, M2, . . . , MM. The initial allocations
for the scheduled MinMix-tree and RMA-tree are depicted in Figures 16(a) and 16(c),
respectively.
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Fig. 16. Target ratio 15:7:4:4:1:1. (a) Initial and (b) final bipartite graphs for the scheduled MinMix-tree.
(c) Initial and (d) final bipartite graphs for the scheduled RMA-tree.

ALGORITHM 5: GetBipartiteGraph
(
Tsch(P ∪ Q, E)

)
1: Initialize G = (X, Y ) as X = Xr ∪ Xm and Y = φ, where Xr = {R1, R2, . . . , RN} and

Xm = {M1, M2, . . . , MM}.
2: Initialize all the edge weights in the workload table as zero.
3: for each p ∈ P do
4: if left-child(p) = q, q ∈ Q then
5: xi = fluid(q), Y = Y ∪ (

−−−−−−−−→
Ri, mixer(p)). /* add a directed edge */

6: Update edge weight in the workload table as w(
−−−−−−−−→
Ri, mixer(p)) = w(

−−−−−−−−→
Ri, mixer(p)) + 1.

7: end if
8: if right-child(p) = q, q ∈ Q then
9: xi = fluid(q), Y = Y ∪ (

−−−−−−−−→
Ri, mixer(p)). /* add a directed edge */

10: Update edge weight in the workload table as w(
−−−−−−−−→
Ri, mixer(p)) = w(

−−−−−−−−→
Ri, mixer(p)) + 1.

11: end if
12: end for
13: return G.

5.3.4. Routing-Aware Resource Allocation. As discussed earlier, we first adopt the
Barycenter heuristic [Çakroğlu et al. 2007; Sugiyama et al. 1981] to minimize the
crossing number X in the final embedding of the bipartite graph G. As a result, the
linear ordering of the reservoirs and mixers are changed. Since the physical locations
of the reservoirs and mixers are known, we permute the reservoirs (or the mixers)
to further improve the total droplet-transportation distance Z without increasing Xw.
For the scheduled MinMix-tree and RMA-tree of Figure 15, the bipartite graphs corre-
sponding to the final solution are shown in Figures 16(b) and 16(d), respectively. It is
observed that the number of crossings in the corresponding bipartite graph is reduced
from 11 to 7 for the MinMix-tree and from 9 to 0 for the RMA-tree.

Some snapshots of Barycenter heuristic that transform the initial bipartite graph
to a final solution are from the initial resource-allocation shown in Figure 17. In each
iteration, it computes the row-Barycenter, BC(row), and column-Barycenter, BC(col),
values for all the rows and columns of the matrix corresponding to the bipartite graph.
Then, according to the sorted BC(row) or BC(col) values the rows or columns in the
matrix are permuted to obtain a new matrix. Every time the crossings (X) is determined
for some resource allocation and the procedure is terminated as a stable value of X is
observed over consecutive iterations. As a result, an intermediate embedding of G
(φinterm) is obtained with the intermediate orders �r and �m and the reduced crossing
number Xinitial.

Next, the weighted crossing number Xw in φinterm is computed using the workload
table. Note that Xw may be greater than or equal to Xinitial. Finally, a simulated-
annealing (SA) based technique [Kirkpatrick et al. 1983] is run on an initial embedding
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Fig. 17. Step-by-step application of Barycenter heuristic to the bipartite graph corresponding to the resource
allocation of Figure 16(c).

of G to further minimize the weighted crossing number. The final embedding of G is
either determined by the optimal embedding in SA-based technique (if Xw > Xinitial) or
by the intermediate embedding obtained after applying Barycenter heuristic in RAMP
(if Xw = Xinitial). The proposed algorithm RAMP denotes the final embedding of G as
φopt : (� f

r ,�
f
m) and the optimal weighted crossing number is obtained as Xopt. We obtain

the final resource-allocation from φopt : (� f
r ,�

f
m).

5.4. Discussions on RAMP

When RAMP is applied on the RMA-tree corresponding to the target ratio 15 : 7 : 4 :
4 : 1 : 1, the value of Xw is reduced to zero (final resource-allocation) from seven (initial
resource-allocation) as shown in Figures 16(c) and 16(d). Figures 18(a) and 18(b) depict
the droplet transportation routes at different time-stamps for the initial and the final
placement solutions, respectively.

5.4.1. Benefits of RAMP. Given a mixing algorithm, RAMP can be used to improve
its performance during implementation. As discussed earlier, RAMP provides a suit-
able resource-allocation that reduces droplet crossovers and transportation distances.
Thus, it reduces electrode actuations and the area of the layout. A reduction in crossing
number also reduces the number of stalls, which may be otherwise needed to satisfy
fluidic constraints between two droplets. This in turn, reduces the time of comple-
tion of mixture-preparation. Further, when a multi-target mixing algorithm such as
RSM [Hsieh et al. 2012a] is used to prepare two or more target ratios concurrently
on a chip, a droplet-crossover may be a potential source of contamination. Therefore,
the additional overhead of interleaving wash droplets [Zhao and Chakrabarty 2010]

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 3, Article 45, Pub. date: June 2015.



Mixture Preparation of Biochemical Fluids on Digital Microfluidic Biochips 45:25

Fig. 18. Cycle-wise droplet transportation routes for the scheduled RMA-tree (shown in Figure 15b) in case
of (a) initial and (b) final resource-allocation.

will badly impact the overall completion time. Thus, RAMP, which aims at minimizing
crossovers, will also be useful for the design of such chips.

Figure 19 shows a DMF biochip layout with 13 boundary dispensers, two waste
reservoirs, and four on-chip mixers. This layout can be used for mixture-preparation
of all ten target ratios listed in Table I. For a given ratio, we consider the mixing trees
obtained by MinMix and RMA. The corresponding droplet-pathways and workloads
are determined. In each case, the placement solution obtained by RAMP is compared
with an initial baseline placement. The results are shown in Table II.

5.5. Simulation Results of RAMP

We have carried out simulation experiments with a large number of target ratios
to evaluate RAMP. The data-set is generated by an integer-partitioning technique
as described in the Appendix. For some example ratios, comparative results on Xw

obtained by MinMix [Thies et al. 2008] and RMA are presented in Table II. For some
example ratios, comparative results of Z in RAMP with MinMix [Thies et al. 2008] and
RMA are presented in Table III.

We simulate RAMP for 6058 synthetic target ratios with L = 32 (i.e., d = 5) of N
different fluids, where 3 ≤ N ≤ 12. For all these 6058 target ratios, RAMP is applied
to both MinMix-trees and RMA-trees with M = M∗ number of on-chip mixers (where
M∗ is Mlb of the MinMix-tree). Figures 20(a) and 20(c) show that, for both the mixing
algorithms, an application of RAMP causes a shift in the distribution of Xw towards
the origin. Such shifts indicate that the weighted crossings number among droplet
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Fig. 19. A typical DMF biochip layout for mixture preparation with 13 boundary reservoirs fluids and four
on-chip mixers.

Fig. 20. Histograms for improvements in the number of crossings by RAMP over MinMix for (a) 6058 target
ratios with L = 32 and (b) 533366 target ratios with L = 64, and over RMA for (c) 6058 target ratios with
L = 32 and (d) 533366 target ratios with L = 64, when the mixing trees are scheduled with M = M∗ mixers.

pathways is reduced by RAMP. Hence, for a comparatively large number of target
ratios, we obtained the final resource-allocation with a reduced Xw value compared to
initial resource-allocation. Similarly, for 533366 synthetic target ratios with L = 64
(i.e., d = 6) of N different fluids, where 3 ≤ N ≤ 12, RAMP can reduce Xw in final
resource-allocation as shown in Figures 20(b) and 20(d).

We have run RAMP on the mixing algorithm MTCS [Kumar et al. 2013] for 6058
synthetic target ratios with L = 32 (i.e., d = 5), and for 533366 synthetic target
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Table II. Comparative Results of RAMP with MinMix and RMA for Some Randomly Chosen Target Ratios†

Xw Best Scheduled Tree (Tsch),
MinMix + RMA Order of Reservoirs (� f

m),
Ex. Target Ratio MinMix RAMP RAMP RMA + (N, M) Order of Mixers (� f

m)
40:10:1:1:48 RMA-tree,

1. (≡ 51:13:1:1:62) 1 1 0 0 (5, 2) (R2, R1, R3, R4, R5),
(M1, M2)

RMA-tree,
2. 13:12:5:2 5 1 3 0 (4, 3) (R2, R3, R4, R1),

(M2, M1)
RMA-tree,

3. 15:7:4:4:1:1 11 7 9 0 (6, 3) (R5, R1, R3, R4, R2, R6),
(M2, M3, M1)

RMA-tree,
4. 2:3:5:7:11:13:87 50 16 27 2 (7, 4) (R2, R6, R3, R5, R7, R1, R4),

(M2, M1, M4, M3)
RMA-tree,

5. 341:341:342 1 1 4 0 (3, 2) (R2, R1, R3),
(M1, M2)

MinMix-tree,
6. 12:7:7:3:3 11 1 7 4 (5, 3) (R3, R1, R2, R4, R5),

(M2, M1, M3)
RMA-tree,

7. 18:5:3:3:3 15 4 8 2 (5, 3) (R4, R1, R3, R2, R5),
(M1, M3, M2)

RMA-tree,
8. 7:14:11 2 1 4 0 (3, 2) (R2, R1, R3),

(M2, M1)
RMA-tree, (R3, R4, R6, R10,

9. 9:8:8:8:7:7:5:5:4:1:1:1 42 22 35 1 (12, 4) R1, R5, R7, R9, R11, R2,

R12, R8), (M4, M1, M2, M3)
RMA-tree,

10. 34:7:5:5:5:4:3:1 16 12 21 0 (8, 4) (R3, R1, R8, R2, R6, R5, R7, R4),
(M1, M4, M3, M2)

†In order to produce two droplets of a target ratio, Xw : total weighted crossings in the corresponding (single-
layer) bipartite graph of scheduled mixing tree, N: number of reservoirs, M: number of mixers available
on-chip for scheduling the mixing tree.

ratios with L = 64 (i.e., d = 6). Figures 21(a) and 21(b) show that RAMP causes a
shift of Xw towards the origin for L = 32 and L = 64, respectively. A comparison of
these distribution patterns for MinMix, RMA and MTCS, suggests that RMA offers
the best reduction in droplet-crossing number among them, when implemented on a
chip.

We simulate MinMix and RMA over 6058 target ratios with L = 32 and after schedul-
ing the mixing trees with varying number of mixers (M), we estimate the (μ, σ )-pair
for the distributions of the initial weighted crossings (Xw). Next, RAMP is applied with
MinMix and RMA for the same target set and estimate the (μ, σ )-pair for the distribu-
tions of the final weighted crossings (Xw). Then, we compute the average percentage
improvements in the number of final edge-crossings by RAMP over MinMix and RMA
for varying number of mixers (M). The number of on-chip mixers (M) is chosen as Mlb
of the MinMix-tree or RMA-tree. Table IV shows the results on (μ, σ )-pairs and average
percentage improvements of Xw obtained by RAMP. On the average, RAMP provides
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Table III. Comparative Results of Total Weighted-Transportation-Distance (Z) in RAMP with MinMix
and RMA on Some Example Ratios†

Ex. Target Ratio MinMix MinMix + RAMP RMA RMA + RAMP
1. 40:10:1:1:48 (≡ 51:13:1:1:62) 108 84 78 64
2. 13:12:5:2 68 52 60 36
3. 15:7:4:4:1:1 118 90 110 42
4. 2:3:5:7:11:13:87 302 164 268 104
5. 341:341:342 58 58 90 74
6. 12:7:7:3:3 108 52 82 62
7. 18:5:3:3:3 104 64 110 50
8. 7:14:11 46 46 62 30

Fig. 21. Histograms for improvements in the number of crossings by RAMP over MTCS for (a) 6058 target
ratios with L = 32 and (b) 533366 target ratios with L = 64, when the mixing trees are scheduled with
M = M∗ mixers.

Table IV.
(μ, σ )-pair of distributions and average % improvements by RAMP in # weighted crossings

(Xw) over 6058 target ratios for L = 32.

# Mixers MinMix MinMix+RAMP RMA RMA+RAMP
M (μ, σ ) (μ, σ ) % impr. (μ, σ ) (μ, σ ) % impr.
2 (10.4,6.5) (1.5,2.4) 77.3% (14.2,8.5) (2.2,4.2) 85.4%
3 (18.6,12.7) (3.4,4.1) 75.1% (20.6,14.1) (3.6,5.7) 86.3%
4 (20.0,13.9) (3.7,4.2) 74.5% (22.0,16.6) (2.5,4.7) 90.6%
5 (20.7,15.6) (3.6,3.9) 75.2% (22.9,17.7) (2.2,4.1) 91.2%
6 (20.8,16.1) (3.6,4.0) 75.2% (23.0,17.9) (2.0,3.3) 91.7%
7 (20.9,16.2) (3.6,4.0) 75.2% (22.9,17.8) (1.9,3.1) 91.8%

Mlb (20.9,16.2) (3.6,4.0) 75.2% (22.9,17.7) (1.9,3.0) 91.8%
M∗ (20.9,16.2) (3.6,4.0) 75.2% (23.2,17.6) (2.7,4.4) 88.9%

Average % improvement 75.4% 89.7%

75.4% (89.7%) improvement in edge crossing-number compared to a baseline solution,
when applied on MinMix (RMA).

Table V shows the comparative performance of MinMix, RMA, and MTCS when
RAMP is used for allocating resources. The table presents the mean (μ) and standard
deviation (σ ) of the distributions of Xw for all three mixing algorithms over 6058 target
ratios with L = 32. The average percentage improvements in Xw by RAMP for three
mixing algorithms are also reported in the table. Note that for RAMP provides maxi-
mum improvement when RMA is used.
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Table V.
Mean (μ) and standard deviation (σ ) of the distributions and average % improvement by RAMP in
weighted crossings (Xw) for mixing trees obtained by MinMix, RMA and MTCS over 6058 target

ratios with L = 32.

# Crossings MinMix RMA MTCS
(Xw) −RAMP +RAMP −RAMP +RAMP −RAMP +RAMP

Mean (μ) 20.86 3.61 22.85 1.87 25.39 1.62
Std. Dev. (σ ) 16.17 3.96 17.69 3.00 15.52 1.99

Avg. % Improvement — 75.18% — 91.77% — 89.67%

Fig. 22. Flowchart of using RAMP with MinMix, MTCS and RMA to determine scheduled mixing tree and
on-chip resource-allocation for mixture preparation.

6. INTEGRATION OF RAMP WITH MINMIX, MTCS AND RMA

We have observed that though RMA provides the best solution for a large number
of ratios from the viewpoint of resource allocation, MinMix [Thies et al. 2008] and
MTCS [Kumar et al. 2013] provides a better solution in some cases as well. Also, Min-
Mix always provides the minimum number of mix-split steps. Hence, for the purpose of
optimization, given a target ratio and a number of on-chip mixers (M), we can choose
either MinMix, MTCS or RMA that provides the best solution. The flowchart shown in
Figure 22 describes a tool that serves this purpose.

7. APPLICATION OF RAMP TO MULTI-TARGET MIXTURE PREPARATION

We have already demonstrated the impact of the proposed RAMP algorithm on droplet
crossover and transportation distance considering mixing trees. In this section, we
show that RAMP is equally applicable to mixing graphs as well, for example to those
obtained by RSM algorithm [Hsieh et al. 2012a], which is used to produce multiple
target ratios of three or more reactants on a biochip. When RAMP is run on a multiple-
target mixing graph, an improvement in performance can be observed as the weighted-
crossing-number reduces, which, in turn, reduces the transportation-distance and
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Fig. 23. For two target ratios 3 : 4 : 2 : 7 (Mixture-1) and 3 : 2 : 6 : 5 (Mixture-2), (a) scheduled mixing
graph obtained by RSM and (b) reservoir-to-mixer transportation workload table.

cross-contamination. Note that in the case of a single target ratio, all droplets that
are used in the mixing process, will finally lead to the production of the same target.
Hence, any contamination among crossing droplets will not affect the outcome. How-
ever, when multiple target ratios are produced simultaneously based on a composite
mixing graph as in RSM algorithm, the issue of cross-contamination among crossing
routing paths indeed becomes important, and the presence of such crossing paths may
cause additional overhead in the completion time because of the need for interleaving
wash droplets [Zhao and Chakrabarty 2010]. Thus, a reduction in crossing number also
tends to reduce of possible cross-contamination instances. We illustrate this problem
and its solution using the following example.

Consider an example of generating two target ratios 3 : 4 : 2 : 7 and 3 : 2 : 6 : 5
with four reactants x1, x2, x3, x4 as studied in Hsieh et al. [2012a]. The mixing graph
obtained by RSM algorithm is shown in Figure 23(a). We load the reactants x1, x2, x3, x4
to four dispensers R1, R2, R3, R4 of a chip respectively, which are linearly ordered on
the boundary of the chip. Assume that three mixers M1, M2, M3 are available, which
are assigned to the mixing nodes of the graph as in Figure 23(a). The corresponding
reservoir-to-mixer transportation workload is shown in Figure 23(b). The initial bi-
partite graph that represents the scenario is shown in Figure 24(a). Note that in this
graph, the weighted crossing number (Xw) is four. An application of RAMP modifies
the graph as shown in Figure 24(b), where Xw = 1. Also, because of the reposition-
ing of reservoirs, the weighted-transportation-distance reduces. This observation is
also apparent from the workload table in Figure 23(b). It can be easily verified that
some crossing pairs of edges as shown in Figure 24(a), refer to two droplet paths,
which are involved in the production of two different target ratios. Thus, such a
crossover mandates a need for cross-contamination washing, as a droplet may pick
up the residue left by an earlier one, thereby causing an error in a target ratio. On
the other hand, in the final bipartite graph of Figure 24(b) as obtained by RAMP,
the weighted-crossing number reduces from four to one, which, in turn, reduces the
wash-load.

8. CONCLUSIONS

In this article, we have proposed an efficient mixing algorithm for automated mixture
preparation of three or more reactant fluids, which is based on producing a mixing
tree that includes taller and almost-disjoint dilution subtrees. This algorithm leads
to a layout-friendly implementation that reduces the number of droplet-crossovers
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Fig. 24. For two target ratios 3 : 4 : 2 : 7 and 3 : 2 : 6 : 5, (a) initial and (b) final bipartite graphs for the
scheduled RSM-graph.

and transportation distance among the reservoirs and mixers. Next, we have pro-
posed a routing-aware resource-allocation scheme (RAMP) for determining a suitable
placement of resources. This can be used to improve the performance of any mixing
algorithm. Simulation results show that RAMP provides 75.4% improvement in the
number of droplet-path crossovers compared to a baseline solution when MinMix is
used, and the improvement rises to 89.7% when RMA is used. It also improves the
performance a multiple-target mixing algorithm such as RSM [Hsieh et al. 2012a].

We have used a bipartite graph model in our problem formulation, and we have
approximated the arrangement of reservoirs or mixers as a linear ordering. In practice,
the reservoirs may be placed in a circular arrangement around the chip boundary, and
the mixers and other on-chip resources may be located or instantiated in random
positions. Also, sample-preparation may be just a preprocessing step; the chip may be
used for implementing other complex assays. In order to model these cases, a different
kind of graph representation and formulation will be needed. The optimization of
resource allocation and placement in such an environment is left as an open problem
to study.

APPENDIX: Generating Synthetic Test Cases of Large Number of Target Ratios

For evaluating the proposed scheme related to mixture preparation, we have carried
out simulation experiments on a test data set of a large number of target ratios. In
number theory and combinatorics, integer partitioning is a way of writing an integer
as a sum of positive integers, regardless of their order [Zoghbi and Stojmenović 1998].
By convention, the partitions are usually ordered from the largest to the smallest, for
instances, 4 can be partitioned in five distinct ways: 4, 3+1, 2+2, 2+1+1, 1+1+1+1. We
use different distinct partitions of the ratio-sum L (where L is the sum of ratio integers)
as the target ratios of N fluids after keeping only N-component partitions for N fluids,
where N > 2.

In the case of dilution (i.e., N = 2), a mixing tree can have only one branch and only
one mixer can be assigned to execute mixing steps. Moreover, the dilution algorithms
can be evaluated with the large data set of (2d − 1) target concentration factors (CFs)
based on the accuracy level (d) of the desired target CF. For example, for an accuracy
level of 10, the test data set contains 1023 CFs as follows: 1

1024 , 2
1024 , . . . , 1023

1024 .
In order to evaluate mixing algorithms, while considering the target ratios of more

than two fluids, we keep those partitions in which the integers are set-wise co-prime, so
that two different ratios do not eventually turn into the same ratio. Hence, the target
ratios {2:1:1} and {1:1:1:1} may be considered for L = 4. In real-life bioprotocols, it is
observed that as many as 12 different fluids may need to be mixed to prepare a target
mixture that may be used in a DMF biochip [Ananthanarayanan and Thies 2010].
Hence, the ratio-sum L is partitioned into three to twelve components.

In this thesis, we deal with the (1 : 1) mixing model for automated sample prepara-
tion. Therefore, the value of the ratio-sum (L) increases from L = 4 to L = 64, as the
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Fig. 25. A snapshot of generating test data set of large number of target ratios (using a number partitioning
based technique).

accuracy level (d) of the desired CF increases from 2 to 6 (since L = 2d). It is found that
the data set of synthetic ratios contains two distinct partitions, if L = 4 (i.e., d = 2).
Hence, the size of the corresponding data set, |R4| is 2. If L = 8, 16, 32 or 64, then
|R8| = 15, |R16| = 198, |R32| = 6058 or |R64| = 533366, respectively.

In the data set of synthetic ratios, two ratios are said to be equivalent, if they repre-
sent two different permutations of the same integers. For example, the ratio {2:1:1} is
equivalent to the ratio {1:1:2} and {1:2:1}. A ratio is reducible to another ratio, if one of
them can be obtained from the other by factoring out an integer. One ratio is excluded
from the test data set, if it is reducible to another, or it is not within the domain of our
assumption 3 ≤ N ≤ 12). For example, the ratio {8:4:4} is reducible to the ratio {2:1:1}
and hence the ratio {8:4:4} is excluded from the data set |R16|. Similarly, the ratio
{2:2:2:2} is reducible to the ratio {1:1:1:1} and hence the ratio {2:2:2:2} is excluded
from the data set |R8|. A ratio {7:1} is excluded from the data set |R8|, as the number
of reactant fluids is 2 (not within the domain of 3 ≤ N ≤ 12). Similarly, another ratio
{1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1} is excluded from the data set |R16|, as the number of
reactant fluids is 16 (not within the domain of 3 ≤ N ≤ 12). A portion of the data set
for a large number of synthetic ratios is depicted in Figure 25, which shows how some
ratios are excluded because of the equivalence of two ratios and the reducibility of one
ratio to another.
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