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Abstract—Online social networks like Slashdot bring valuable
information to millions of users - but their accuracy is based on
the integrity of their user base. Unfortunately, there are many
“trolls” on Slashdot who post misinformation and compromise
system integrity. In this paper, we develop a general algorithm
called TIA (short for Troll Identification Algorithm) to classify
users of an online “signed” social network as malicious (e.g.
trolls on Slashdot) or benign (i.e. normal honest users). Though
applicable to many signed social networks, TIA has been tested on
troll detection on Slashdot Zoo under a wide variety of parameter
settings. Its running time is faster than many past algorithms and
it is significantly more accurate than existing methods.

I. INTRODUCTION

A signed social network (SSN) is one in which a user u
can have a positive or negative relationship with another user
v. There are many signed social networks in the real world.
Even in small human populations (e.g. faculty in a computer
science department), there will be individuals who like some
individuals but dislike others. In some online networks like
Slashdot, users may explicitly mark some users as friends and
others as foes. On Wikipedia, an individual may “roll back”
or “reverse” essential changes made by one person, while
supporting and augmenting changes by another. An implicit
negative opinion is conveyed in the first case and a positive
opinion in the latter case. On Twitter, a user © may frequently
support what a user v; says while opposing or contradicting
what another user vy says.

In this paper, we start with a “Signed Social Network
(SSN)” G = (V, E, W) where V is a set of users, E C V xV
is a set of edges, and W : E — [—1, +1] assigns a real valued
weight from -1 to +1 indicating how positive or negative one
user is to another. When W (u,v) = 1, u considers v to be
a 100% friend, when W (u,v) = —1, he considers v to be a
100% foe. While SSNs are explicitly present in Wikipedia and
Slashdot Zoo, they can also be extracted via NLP techniques
from Twitter. We restrict this paper to network analysis and
assume a signed network is given as input. Clearly, methods
to extract signed networks from networks like Twitter is an
important task - but is not addressed here.

A malicious user in an SSN G = (V, E, W) is a specially
designated individual. On Slashdot, trolls are malicious users
who post or spread misleading, offensive or nonsensical infor-
mation on the network. Likewise Wikipedia describes a vandal
as “an editor who intentionally makes unconstructive edits to
Wikipedia’s pages.” Vandals may insert irrelevant information,

nonsense, obscenity or crude humor to pages or entirely blank
or delete pages. A benign user is one who is not malicious.

The goal of this paper is to present a single framework
within which to identify malicious users. A major challenge
in effectively identifying trolls is the fact that malicious users
take a number of carefully designed steps that enable them to
evade detection. We propose 5 graph decluttering operations
that help simplify a large, complicated SSN G into a smaller
and simpler SSN G’. Intuitively, the idea is to remove some
“hay” from the “haystack” we are searching in order to present
our TIA algorithm with a simpler signed graph, stripped of
irrelevant edges, that enables TIA to operate more effectively.
We tested all subsets of these 5 decluttering operations and
found the combination that yields the best results.

Most CS work on signed networks have involved study
of Slashdot, Epinions and Wikipedia administrator election
networks. We focus only on Slashdot, as there is no ground
truth present for malicious vs benign users on Epinions, and
because NLP is needed to analyze Wikipedia.

The paper is organized as follows. Section II briefly defines
Signed Social Networks (SSNs). Section III briefly looks at
how centrality measures on SSNs have been used in the
past in order to identify trolls on Slashdot Zoo and explains
both these centrality measures as well as other centrality
measures. Section IV presents our 5 decluttering operations
to simplify a complex SSN into a smaller and simpler SSN
- Section V presents the TIA algorithm that uses a subset of
these decluttering operations to simplify an SSN. We present
the Slashdot Zoo data set we used in Section VI. Section VII
reports on the results of experiments to assess how well
TIA works. We examine how the combination of decluttering
and a Signed Eigenvector Centrality (SEC) measure together
generate the best accuracy results on the Slashdot data set.
We show that under appropriate settings, TIA has: (i) over 3
times the precision of the best existing algorithm to find trolls
in Slashdot [1], (ii) retrieves over twice the number of trolls
that [1] does, and (iii) does all this while running 25-50 times
faster.

II. SIGNED SOCIAL NETWORKS

A Signed Social Network (SSN) is a directed, weighted
graph G = (V, E, W) where V is a set of users, E C V' xV is
a set of edges, and W : E — [—1,+1] is a mapping. W (u,v)
can be thought of as assigning a “likes” or a “friendship” score
describing how much user u likes a user v.
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Fig. 1: (Left) Example of signed social network. Filled nodes are trolls, non-
filled nodes are benign users. Solid (resp. dashed) edges mean positive (resp.
negative) endorsements. Edges labels are the attack models used by trolls.
(Right) resulting SSN after decluttering operations (a) and (d) using SEC.

Slashdot: On Slashdot, a user u can explicitly mark a user v as
a foe (i.e. W(u,v) = —1) or as a friend (i.e. W(u,v) = +1).
Wikipedia: On Wikipedia, we can define W (u, v) using NLP
in many ways. One way is to set

supp(u,v) — rev(u, v)

Wi (u, = .
(u,v) edits(v)

where edits(v) is the set of all edits made by v during
some fixed time window, supp(u,v) is the number of edited
documents in edits(v) that were subsequently edited but not
substantively reverted by v, and rev(u,v) is the number of
edits in edits(v) that were subsequently reversed by u. A more
sophisticated way to define W (u,v) is given in [2].

YouTube: One way to derive an SSN from YouTube is to set:

Wyt (u, v) = thumbs_up(u,v) — thumbs_down(u, v)

lposts(v)|

where posts(v) is the set of all videos posted (during
some fixed time frame) by v that were marked positively or
negatively by w, thumbs_up(u,v) is the number of videos in
posts(v) marked with a “thumbs up” and “thumbs_down” is
the number of videos in posts(v) marked with a thumbs down.

Twitter/Facebook: Given an edge (u,v) denoting that u

follows v on Twitter (or friends v on FB), we set:
Wtw(u, U) = pos(u, ’L)) — neg(% ’U)

[tweets(v)|

where tweets(v) is the set of tweets posted by v during
a given time frame, pos(u,v) is the subset of those tweets
that are either retweeted by u or essentially rephrased by u
afterwards, and neg(u,v) is the subset of tweets(v) that are
the sets of tweets in pos(u,v) whose content is contradicted
by a subsequent post by v. Note that NLP techniques that use
sentiment analysis [3], [4] can be used to estimate the sets
pos(u,v) and neg(u,v).

Stack Overflow: Users of Stack Overflow can mark comments
provided by other users as good (+1) or not good (—1).

A SSN can be represented as an adjacency matrix A with
values Ay, = W(u,v) € [-1,+1]. We use H to denote the
transition matrix obtained from A by dividing each non-zero
element A, by > |Auwl-

Example 1: Figure 1 (left) shows a small toy social net-
work which has two trolls — nodes 2 and 3 in it. t

III. RELATED WORK

Signed networks have been studied both in social science
([5]) and computer science ([6], [7]). Much work on reputation
systems propagates trustworthiness of users on social networks
— but this work has been done on unsigned social networks
([8], [9D). [10] studied the propagation of trust and distrust in
social network for the purpose of edge sign prediction. In this
section, we will look at the existing centrality measures, the
axioms for good centrality measures and attack models.

A. Centrality Measures for SSNs

Given a SSN G = (V, E, W), a node centrality measure
is a function R : V — R that assigns a score to each user
— the higher the score, the more important the user. Various
authors have used different centrality measures to identify
malicious users (e.g. [1] uses Negative Rank to identify trolls
in Slashdot). We now review some of these measures.

Freaks The freak score of u is the number of incoming neg-
ative edges [1]. For weighted networks, the Freak Centrality
of u is the sum of the weights of incoming negative edges.

freaks(u) = Z

veEV|W (v,u)<0

W (v, u)

According to this definition, node 3 in Figure 1 has freak
centrality 3 because it has 3 incoming negative edges, while
nodes 4 and 6 have freak centrality O because they have no
incoming negative edges.

Fans Minus Freaks (FMF) The centrality of u is the number
of positive incoming edges (fans) minus the number of negative
incoming edges (freaks) [1]. For weighted networks, we define
FMF centrality as the total positive incoming weight minus the
the total negative incoming weight.

FMF(u) = > (W (v,u)| - >

veV|W (v,u)>0 veVIW (v,u)<0

W (v, )|

Node 3 in Figure 1 has FMF centrality -1 because it has 3
incoming negative edges and 2 incoming positive edge. Node 5
has an FMF centrality of -2. A similar measure, called Prestige,
has been proposed in [11] and is obtained by dividing the FMF
centrality by the sum of the absolute values of the incoming
weights for each node.

PageRank (PR) PageRank ([12]) is defined for directed graphs
with non-negative edge weights. It was originally developed
for indexing web pages, and represents the likelihood that a
person following links will arrive at a particular page. The
PageRank of a node w is defined as
1-96

vt 5>

vepred(u)

PR(v)

PR(u) [suce(v)|

Here, 6 is a “damping factor” (usually 0.85) which captures
the probability that a user arrives at a web page by following
links (as opposed to landing on the page via some other pro-
cess). pred(u) is the set of all vertices v such that (v,u) € E
and succ(v) is the set of all vertices v’ such that (v,v’) € E.
Node 3 in Figure 1 has a PageRank of 0.29, while node 5
has a PageRank of 0.18. A Modified PageRank (M-PR) has
been proposed in [13] to take into account both positive and
negative links. In particular, they apply PageRank separately
on A (sub-network with positive links) obtaining PR™, and



on A~ (sub-network with negative links) obtaining PR~. The
final rank vector M-PR is computed as M-PR = PRt — PR~.
Nodes 3 and 5 in Figure 1 have M-PR scores of —0.09 and
—0.41, respectively.

Signed Spectral Ranking (SSR) Signed Spectral Ranking
(SSR) [1] improves upon PageRank by taking edge signs into
account. It is computed by taking the dominant left eigenvector
of the signed matrix

(1-9)
Gs :6‘HA+W'J\V\X\V\

Positive edges correspond to endorsements, while negative
edges to criticisms. Node 3 in Figure 1 has an SSR of 0.74,
while node 5 has an SSR of —0.50.

Negative Ranking (NR) An empirical evaluation of SSR and
PR using Slashdot data was done in [1] who show that SSR
and PR values were almost equivalent for benign users, but PR
value for trolls was much more than their SSR value. They
suggest a Negative Rank measure computed by subtracting
PR from SSR, i.e. NR(u) = SSR(u) — 3 - PR(u), where 3
is a parameter determining the influence of PageRank on the
ranking. As [1] obtained their best results when 8 = 1, we
use 8 = 1. Node 3 in Figure 1 has a NR of 0.45, while node
5 has a NR of —0.68.

Signed Eigenvector Centrality (SEC) Eigenvector centrality
(EC) was proposed by Bonacich [14] for networks with non-
negative edge weights given by the dominant eigenvector of
the adjacency matrix. As eigenvectors can be computed for any
matrix, [5] suggests that this measure can also be computed
for (weighted) signed networks. Thus, the signed eigenvector
centrality of a vertex v can be computed from the vector x
that satisfies the equation Az = Ax, where A is the greatest
eigenvalue. According to this definition, node 3 in Figure 1
has SEC of 0.68, while node 5 has an SEC of —0.55.

Modified HITS (M-HITS) The HITS link analysis algorithm
to rate Web pages [15] has been adapted for SSNs in [13] by
iteratively computing the hub and authority scores separately
on AT and A~, using the equations:

ht(u) = EUESUCC‘*‘(“) at(v); at(u) = Zvep'r‘ed"'(u) h*(v)
h_(u) = Z’uEsucc_ (u) a‘_(v); a- (u) = ZUEpred_ (u) h~ (U)

and by assigning, after convergence, the score a(u) = a™ (u)—
a~ (u) to each node u. pred*(u) (resp. pred~(u)) denotes the
set of nodes v in pred(u) s.t. W(v,u) > 0 (resp. W(v,u) <
0). Similarly for succ™(u) and succ™ (u). For M-HITS, node
3 in Figure 1 has score of -0.92 and node 5 has score -9x10~°.

Bias and Deserve (BAD) In [16], a node u’s bias (BIAS)
reflects the expected weight of an outgoing connection, while
its deserve (DES) reflects the expected weight of an incoming
connection from an unbiased node. Similarly to HITS, BIAS
and DES are iteratively computed as:

DESt+l(u) = WM Z’qurec(u) [W(U’u)(l - Xt(v,u))]
BIAS*1(u) = L [W (u,v) — DES*(v)]

2|succ(u)| vEsucc(u)

where X*(v,u) = max(0, BIAS*(v)W (v,u)). Finally, the scores
of the nodes in the SSN are taken as the vector DES. In Figure
1, nodes 3 and 5 have BAD scores -0.16 and -1.0 respectively.

Example 2: Consider the SSN in Figure 1 (left) — nodes
2 and 3 are trolls. The following table (left part) shows how
nodes are ranked according to the centrality measures. Here,
the row “Freaks” should be read as: In the original network, the
Freak centrality of node 3 is lowest, followed by 5, followed
by 1 and 2 (with same freaks centrality) and 4,6 (with same
freaks centrality). The rest of this row can be read similarly
for the decluttered network (discussed later).

Measure Original network Decluttering with {a,b,d}
Lowest Highest Lowest Highest
Freaks 35 12 T 46 35 12 | 46
FMF 5 3 1,2,4,6 5 3 2,4,6 [ 1
Prestige 513 1,2 4,6 51312 1,4,6
M-PR 5 3| 4 6 1 2 5 31416 1 2
SSR 51416 1 213 3|2 |6 1 4 |5
NR 51 4 1 6 2|3 3|2 |6 1 4 |15
SEC 51416 1 213 3|2 |6 1 4 |15
M-HITS 3 5 4 6 1 2 3|5 416 1,2
BAD 5 3 2 1 4,6 5 3|2 1 4,6

If we take the two lowest (as there are two trolls) scored
nodes to be trolls, then Freaks, FMF, M-PR, Prestige and BAD
identify one troll (node 3) correctly and incorrectly identify
node 5, among the lowest two nodes. 0

It is easy to construct cases where Freak Centrality cannot
identify a node as a troll. For instance, consider a network
with 1000 nodes including a node A which has 995 positive
incoming edges and 4 negative edges. All other nodes have 5
incoming positive edges and either O or 1 incoming negative
edges. Clearly, A would be designated as having the highest
freaks centrality — but it is not likely to be a troll because
the 995 positive incoming edges far outweigh the 4 negative
incoming edges.

B. Requirements of a good scoring measure

[5] proposes a set of axioms for SSNs that a good measure
of centrality in SSNs must satisfy under the assumption that a
set of nodes is benign (and the others are malicious).!

Axiom 1: A positive edge from a benign node to a node v
should increase v’s centrality. Intuitively, a positive edge from
a benign node to another node means that the benign node also
thinks the other node is benign — otherwise there is no reason
for the benign node to implicitly endorse the other node.

Axiom 2: A negative edge from a benign node to a node
v should decrease v’s centrality. As in the previous axiom,
benign nodes have an incentive to identify malicious nodes
in order to preserve the integrity of the social network as a
whole. As a consequence, when a benign node says a node is
malicious, there is some chance that it actually is malicious.

Axiom 3: A positive edge from a malicious node to a node v
should decrease v’s centrality. The rationale behind this axiom
is that malicious nodes have a strong incentive to endorse other
malicious nodes so that an “army” of malicious nodes can
collectively perform some task(s).

Axiom 4: A negative edge from a malicious node to a node
v should increase v’s centrality. As in the previous case,
malicious nodes have an incentive to downgrade the centrality

'Our TIA algorithm will make such assignments initially and then iteratively
modify these assignments in each iteration of a loop.



Ranking Axiom 1 Axiom 2 Axiom 3 Axiom 4
Freaks No Yes No No
FMF Yes Yes No No
Prestige Yes Yes No No
PR Yes No No Yes
M-PR Yes Yes No No
SSR Cond-Yes Cond-Yes Cond-Yes Cond-Yes
NR Can’t Say Cond-Yes Cond-Yes Can’t Say
SEC Cond-Yes Cond-Yes Cond-Yes Cond-Yes
M-HITS Yes Yes No No
BAD Yes Yes No No

TABLE I: Table showing which axioms are satisfied by the centrality
measures. Yes, No and Cond-yes mean that the axioms are satisfied, not
satisfied and conditionally satisfied, respectively. Can’t say means that nothing
can be said in particular.

of benign nodes so that, in comparison, other malicious nodes
get a high score. As a consequence, when a node is disliked by
a malicious node, it probably means that the malicious node
is trying to “bad mouth” a benign node.

Table I shows which centrality measures satisfy these
axioms (in one iteration of computing the measure). A Cond-
Yes means that under some reasonable conditions, the centrality
measure satisfies the axiom in question. For instance, Freaks
and FMF centrality measures do not distinguish between the
origin of an edge and hence they do not satisfy some axioms
— in both cases, each negative incoming edge decreases
the centrality of a vertex irrespective of the origin of the
edge (same thing happens with Prestige, M-PR, M-HITS and
BAD). PageRank does not take the sign of an edge into
account and so a negative incoming edge may increase a
user’s centrality. Signed Spectral Rank and Signed Eigenvector
Centrality both satisfy all the four axioms as long as they
assign positive and negative centrality scores to benign and
malicious users, respectively. If this condition is not satisfied,
then these measures violate the axioms. These two centrality
measures take into consideration the centrality value of the
edge generator and the sign of the edge. As Negative Rank
depends on the relative increase in the values of PR and
SSR, there can be some indecisive cases. Consider Axiom 1
— if the conditions stated above hold, then both Page Rank
and Signed Spectral Rank would increase. The decision for
Negative Rank depends on the relative increase in the centrality
values and therefore, nothing can be said in general. Similarly
for Axiom 4.

C. Attack Models

In the real world, benign users can be tricked into endorsing
malicious users (via positive outgoing edges). For example,
benign users may endorse someone because they were en-
dorsed by that user, not necessarily because they like that
user. Malicious users may endorse a benign user (i.e. have
positive edges to benign users) in the hope that the benign
user reciprocates, which would increase their centrality. In
such cases, past methods to identify malicious nodes in SSNs
can lead to error as shown in Example 2 and the following
discussion. Specific attacks described in [17] include:

(A) Individual malicious peers. Malicious users always present
bad behavior, and hence receive negative links from good
users. These are relatively stupid malicious users who should
not be difficult to detect, say by using Freaks centrality.

Measures A B C D E
Freaks Yes No No No No
FMF Yes No No No No
Prestige Yes No No No No
PR No No No No Yes
M-PR Yes No No No No
SSR Cond-Yes Cond-Yes Cond-No Cond-No Cond-Yes
NR Cond-Yes Cond-Yes Cond-No Cond-No Can’t say
SEC Cond-Yes Cond-Yes Cond-No Cond-No Cond-Yes
M-HITS Yes No No No No
BAD Yes No No No No

TABLE II: Table showing which centrality measure successfully prevents
malicious users from using the attack models A-E. Yes and Cond-Yes means
the attack is always and conditionally prevented, respectively, while No and
Cond-No mean the opposite. Can’t say means nothing can be said in general.

(B) Malicious collectives. Malicious users endorse other mali-
cious users. In this case, a malicious user’s score may increase
due to the presence of a bunch of positive incoming links.

(C) Camouflage behind good transactions. Malicious users can
cheat some benign users to vote positively for them. This
happens, for instance, when malicious users endorse a benign
user who, out of courtesy, endorses them back.

(D) Malicious spies. There are two kinds of malicious users:
some of them act as in threat models B and C, while the others
(called spies) make benign users to vote positively for them,
and assign positive value only to bad nodes.

(E) Camouflage behind judgements. The strategy in this case
is to assign negative value to good users. Then, this can cause
the decrease of rank for good peers, and, consequently, the
increase of malicious user’s rank.

A good scoring measure should robustly counter all these
5 attack models. Countering an attack model means preventing
increase in a malicious user’s centrality and decrease in a
benign user’s centrality. This way malicious nodes following
these attack models would not be able to “game the system”
and their scores would still be low. Figure 1 (left) shows how
trolls in our toy example use the attack models (edge labels
show the attack model used).

Table II depicts which centrality measures are resilient to
which attacks. A Yes means the measure is able to counter
the attack model. Since Freaks and FMF do not take the
score of the origin of an edge into account, they both only
disable attack model A (so is the case with Prestige, M-
PR, M-HITS and BAD). PageRank ignores the sign of the
edge, so it only counters attack model E as the centrality of
a benign user would increase even when there are incoming
negative edges. Signed Spectral Rank and Signed Eigenvector
Centrality conditionally deflect (“Cond-Yes”) attack models
A, B, and E. The condition is that the centrality measure
should assign a positive centrality score to benign users and
a negative centrality score to malicious users. If the condition
is satisfied, then the attack model is countered, otherwise it
could be successful. For instance, if the centrality measure
assigns a negative score to a malicious user, then malicious
users using attack model B would fail as it would increase
the centrality of a positive edge recipient. “Cond-No” means
a conditional No. If the above condition is satisfied, then the
attack model is successful, otherwise the attack model may
fail. For instance, if the condition is satisfied and the centrality



measure assigns a positive score to a benign user, then the
centrality of malicious users following attack model C would
increase and the attack would succeed. Negative Rank deflects
an the attack model only if the edge increases the PageRank
of the user and decreases her Signed Spectral Rank. If both
increase or decrease, then nothing can be said in general.

As no centrality measure successfully handles all the attack
models described above, there is a critical need for a mech-
anism to prevent malicious users from increasing either their
centrality or another malicious user’s centrality and prevent the
decrease of benign users’ centrality.

IV. DECLUTTERING OPERATIONS

In order to handle the five attack models described above,
we present 5 graph decluttering operations that help reduce
the impact of such attacks. Our TIA algorithm (presented after
the five operations) iteratively uses the score provided by a
centrality measure to identify both benign and malicious users,
and removes some edges between benign users, so that, at the
end of the process, user scores enable us to better recognize
malicious users. Given a centrality measure C and a threshold
value 7, benign users are those nodes v in V s.t. C(v) > 7
— everyone else is considered to be malicious. TIA takes as
input, any centrality measure for SSNs, a corresponding 7, as
well as any set of decluttering operations.

Let V be a set of nodes. We use G to denote the set of
all possible SSNs G = (V,E,W) over V. A decluttering
operation is defined as follows.

Definition 1 (Decluttering Operation): A decluttering op-
eration is an associative function p : G — G that transforms
graphs into graphs such that for all G = (V,E,W), if
p(G) = G = (V,E',IW), then V = V', E' C E, and
forall e’ € E/, W'(e') = W(e').

Two decluttering operations p1, p2 can be composed. paop1 (G)
is defined as p2(p1(G)). We consider the following declutter-
ing operations (see also Figure 2).

DOP(a): Remove all positive pairs of edges between benign
nodes. Suppose u, v are both benign and endorse each other. In
this case, we do not know whether they are really endorsing
each other or whether one is blindly reciprocating endorse-
ments. For instance, if « added v as a friend in Slashdot,
v might reciprocate even if he has never read v’s posts.
Moreover, removing positive pairs of edges between benign
nodes helps to potentially alleviate the effects of attacks B,C,
and D as it also removes positive loops between pairs of
malicious nodes that may have initially been misclassified
as being benign, thus reducing the scores of these malicious
nodes. Consider a pair of malicious users who are mistakingly
classified as benign nodes and both follow attack model B. On
Slashdot, this means both add each other as friends. Removing
the positive edge pair between them would prevent further
increase in their centrality scores. Now, consider a single
malicious user following attack model C. On Slashdot, one
way to trick a non-malicious user into adding a troll as a friend
is to add her as a friend first, which would prompt her to add
the troll as a friend too. This would create a positive edge pair
between them. By removing these edges, attack model C is
countered. Since attack model D is a combination of models

J__ DO O
) OO O
3 DO O
Q”\Q J O
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Fig. 2: Decluttering operations in TIA. All nodes are marked benign. Bold
(dashed) edges denote a positive (negative) relationship.

B and C, and both are countered by this operation, so is model
D.

DOP(b): Remove all negative pairs of edges between benign
nodes. The removal of a negative pair of edges between two
benign nodes is motivated by the fact that it might not actually
mean that a user hates the other user’s content. In Slashdot, a
user u might add v as a foe just because v adds u as a foe.
Removing negative edge pairs also counters attack models A
and E. If a malicious user is mistakenly scored as a benign
and she follows attack models A and E (a negative edge pair
between her and the actual benign node), then removing this
edge pair prevents a decrease in centrality of the benign user,
and hence prevents increase of the malicious user’s score.

DOP(c): Remove all pairs of edges between benign nodes
where one edge is positive and the other is negative. The
modifications related to positive-negative edge pair counters
attack models C and E. Consider a malicious user, who is
misidentified as a benign user, and having a negative edge to
a benign user (model E) and the benign user has a positive edge
to the malicious user (model C). Removing the positive edge
counters attack model C, removing the negative edge counters
attack model E and removing both the edges counters both the
attack models in this case.

DOP(d): In a positive/negative pair between two benign nodes,
remove the negative edge. Similar to the previous case.

DOP(e): In a positive/negative pair between two benign nodes,
remove the positive edge. Similar rationale as for (c) above.

Example 3: Consider the SSN in Figure 1 (left) with SEC
as centrality measure and 7 = 0. The SEC scores are as
follows:

Node 1 2 3 4 5 6
SEC | 0.16 | 0.33 | 0.68 | -0.30 | -0.55 | 0.09

Nodes 1, 2, 3, and 6 can be marked “benign” according to SEC,
as they have a score greater than 7. If we consider decluttering
operations (a) and (d), we can remove the pair of positive edges
between nodes 1-3 and 2-3, and the negative edge from 6 to 1.
The resulting simplified network is shown in Figure 1 (right).
Observe that the negative edge pair between nodes 3-5 is not
removed because node 5 has score less than 7. 0



1: Algorithm TIA

2: Input: SSN G = (V,E,W), centrality measure C, a set S =
{p1,...,pm} of decluttering operations, a threshold

3: Output: A score for nodes in V'

4: do

5 G =G

6: C < compute C centrality of nodes in V' in graph G

7: Benign = {v € V| centrality(C,v) > 7};

8: Malicious =V — Benign

9: G = pm o0 p1(G’) %declutter graph

10: while(G # G')

11: Return C

Fig. 3: Troll Identification Algorithm (TIA).

In most online social networks, the number of malicious
users is a small percentage of the total number of users.
Hence, the number of interactions involving malicious users
is much smaller than the number of interactions involving
benign users. The removal of edges proposed in DOPs (a)-
(e) reduces the effect benign users have on the network and
magnify the actions of malicious users by removing the clutter
of benign-benign user interactions. Our decluttering operations
also counter attack models (A)-(E). For instance, consider the
situation in Example 3: due to the decluttering operations we
counter attack the attack model B used by node 2 and attack
models B and C (resulting in the attack model D) followed by
node 3.

V. TIA ALGORITHM

In this section, we present the TIA algorithm (see pseudo-
code in Figure 3). The algorithm takes as input, a signed
social network G = (V, E, W), together with any centrality
measure C that applies to SSNs, as well as a centrality
threshold 7, and a set of decluttering operations selected from
our 5 decluttering operations presented above. TIA operates
iteratively and proceeds as follows.

o In the first iteration, it uses the original network to compute
the centrality of all nodes in V using the given centrality
measure. Any node whose centrality is above the threshold 7 is
considered benign — all other nodes are considered malicious.
It uses this initial labeling of nodes (which could be wrong) to
declutter the graph using the selected decluttering operations.
These operations transform the graph into a simpler graph.

e In the next iteration, we recompute the set of benign and ma-
lignant nodes using the decluttered graph and 7. The updated
set of benign and malignant nodes are used in conjunction with
the decluttering operations to generate an even more simplified
graph. This graph is the input to the next iteration.

e All iterations follow the same pattern as above — the
iterations terminate when the decluttering in Step 9 of the
algorithm leads to no change.

Example 4: Consider the toy SSN of Figure 1 (left).
Suppose we run the TIA algorithm with NR, decluttering
operations S = {a,b,d}, and a threshold 7 = 0. In the first
iteration, shown in Figure 4(a), NR is computed on the original
network, and nodes 2 and 3 are identified as benign users. So,
the positive edge pair between these two nodes is removed
resulting in the network shown in Figure 4(b). At this point,
NR is computed again over this network and it identifies nodes

1, 3, and 6 as benign users. So, it removes the positive edge
pair between nodes 1 and 3 and the negative edge from 6 to
1. This gives the network shown in Figure 4(c). Nodes 1,4, 5
and 6 are now marked as benign users by NR. Since no more
decluttering operations can be further applied, the algorithm
stops. At the end nodes 2 and 3 are correctly identified as trolls.
In this process the same attack models that were counteracted
in Example 3 are counteracted as well.

The table in Example 2 (right) shows the node rankings
obtained by using TIA algorithm with the centrality measures
considered in this paper and the set of decluttering operations
S = {a,b,d}. Because the graph has been decluttered, SEC,
SSR and NR are able to correctly identify both nodes 2 and 3
as trolls — something they could not do before (compare with
the table in Example 2 left). g

We note that TIA terminates in at most |E| iterations.

VI. SLASHDOT Z0O DATASET DESCRIPTION

We tested our algorithm on a Slashdot Zoo data set.> This
dataset is maintained by the authors of [1] and contains about
71.5K nodes and 490K edges — about 24% of the edges are
negative. 96 nodes are marked as trolls by “No More Trolls”
(an administrative Slashdot account). We treat these 96 trolls
as the ground truth. This is the same setting followed by [1].

We evaluated TIA’s performance in conjunction with var-
ious centrality measures and with various sets of decluttering
operations. For each experimental setting, we also created
various subsets of the entire Slashdot Zoo network. The subsets
were created by randomly removing 5%, 10%, 15%, 20%
and 25% of the nodes and their corresponding edges from
the entire network. For each setting, we randomly generated
50 subgraphs of the Slashdot Zoo dataset by removing the
appropriate percentage of edges from the network.

VII. EXPERIMENTS

We implemented TIA algorithm as well as all centrality
measures and decluttering operations in this paper in about
1000 lines of Java code and ran them on a Intel Xeon @ 2.3
GHz, 24GB RAM Linux machine. We computed the score
given by each centrality measure without any decluttering op-
erations and with all possible subsets of decluttering operations
(note that DOPs d and e together make DOP c, so there are 15
subsets). We use average precision and mean average precision
for comparison [18] from IR (where they are used to measure
goodness of document search algorithms). For systems that
return a ranked sequence of documents, the measure considers
the order in which the retrieved documents are presented. We
use the same measure to compare the user scoring methods.
Since our aim is to find malicious users, malicious and benign
users are the analog of relevant and non-relevant documents,
respectively.The average precision is defined as:

> k=1 (P(k) x Mal(k))

Number Of Trolls
Here, P(k) is the precision at cut-off k (i.e. users ranked in
the top k for being malicious) and Mal(k) is 1 if the k" user
is malicious, and O otherwise. n is the total number of users.

AveP

2http: //konect.uni-koblenz.de/networks/slashdot-zoo. Note
that this is not the same Slashdot network used in [1], as that is not available.



Fig. 4: TIA algorithm iterations by using Negative Rank.

For the experiments on the subset networks, we find the mean
of the AveP values of the 50 individual sub-networks and this
is reported as the Mean Average Precision (MAP).

In freaks centrality, we took the mean of the maximum and
minimum value of the centrality in each round as the threshold
7 for computing the sets Malicioius and Benign in Steps 7
and 8 of the TIA algorithm. For others, zero is the threshold.
We don’t include PageRank as it is not intended to identify
malicious users.

Tables III and IV show the average precision and the
running time (in seconds), respectively, of the TIA algorithm
using various subsets of decluttering operations and different
SSN centrality measures applied to the Slashdot Zoo data set.
In these tables, the None column shows results when only
the centrality measure is used with no decluttering. For some
sets of decluttering operations, Signed Spectral Rank does not
converge in over 100,000 iterations - due to this, Negative
Rank is also not found. Cells with - depict this.

Table V shows the number of trolls found among the lowest
ranked 96 users by the TIA algorithm using various subsets of
decluttering operations and different SSN centrality measures.
Table VI shows the Mean Average Precision and the running
time of the nine centrality measures and TIA algorithm using
SEC with the top 2 settings that gave the best result on the
original network, averaged over the 50 versions each for 95%,
90%, 85%, 80% and 75% randomly selected nodes from the
Slashdot network.

Best Settings. The best results are obtained when TIA algo-
rithm uses the Signed Eigenvector Centrality with decluttering
operations a and e. In this setting, we retrieve more than twice
as many trolls as Negative Rank does in the bottom 96 ranked
users. The running time of this algorithm is less than 2 minutes,
which is quite reasonable — and more than 27 times faster
on the original network and 35-50 times faster on the sub-
networks as compared to using the best centrality measure
(Negative Rank) in [1].

VIII. CONCLUSION

The problem of detecting trolls in online environments
like Slashdot and other signed social networks is increasingly
important as open source, collaboratively edited information
becomes used more widely. Ensuring the integrity of this
information is important for users while posing a technical

challenge as many entities have strong incentives to compro-
mise the accuracy of such information.

In this paper, we have shown that we can significantly
improve on past works in the detection of trolls on Slashdot
Zoo using a suite of decluttering operations that simplify a
signed social network by removing confusing or irrelevant
edges from the network. We proposed the TIA algorithm
that takes any centrality measure and any set of decluttering
operations as input parameters, and uses them to iteratively
identify the trolls in the social network. Using the standard
Average Precision measure to capture accuracy of our TIA
algorithm, we show that TIA using Signed Eigenvector Cen-
trality and decluttering operations a and e gives us the best
result of 51.04%, significantly exceeding the 15.07% when no
decluttering operations are performed. Compared to the best
existing results on troll detection in Slashdot [3], our algorithm
runs 27 times faster on the original network and 35-50 times
faster on the sub-networks. Moreover it is able to retrieve about
twice as many trolls with a Mean Average Precision which is
more than three times as good as [1]. The final message is
simple: decluttering SSNs helps expose a clearer picture to
our TIA algorithm which enables it to achieve much higher
precision as well as identify far more trolls — all while running
faster.

There is much future work to be done. In this paper, we
have not combined the power of natural language processing
methods and network analysis methods to find trolls. Clearly,
looking at the content of posts on Twitter or Facebook would
help find troll like individuals in Facebook or Twitter —
on Wikipedia, finding vandals involves NLP as we need to
understand the relationship between changes made by a user
and the previous content in order to check whether the edits
reverted or contradicted what had previously been said.
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