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ABSTRACT

Do higher-order network structures aid graph semi-supervised
learning? Given a graph and a few labeled vertices, labeling the
remaining vertices is a high-impact problem with applications in
several tasks, such as recommender systems, fraud detection and
protein identification. However, traditional methods rely on edges
for spreading labels, which is limited as all edges are not equal. Ver-
tices with stronger connections participate in higher-order struc-
tures in graphs, which calls for methods that can leverage these
structures in the semi-supervised learning tasks.

To this end, we propose Higher-Order Label Spreading (HOLS)
to spread labels using higher-order structures. HOLS has strong
theoretical guarantees and reduces to standard label spreading in
the base case. Via extensive experiments, we show that higher-order
label spreading using triangles in addition to edges is up to 4.7%
better than label spreading using edges alone. Compared to prior
traditional and state-of-the-art methods, the proposed method leads
to statistically significant accuracy gains in all-but-one cases, while
remaining fast and scalable to large graphs.
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1 INTRODUCTION

Given an undirected unweighted graph and a few labeled ver-
tices, the graph transductive learning or semi-supervised learning
(SSL) aims to infer the labels for the remaining unlabeled vertices
[1, 6, 17, 30, 36, 37, 39, 40]. Graph SSL finds applications in a number
of settings: in a social network, we can infer a particular character-
istic (e.g. political leaning) of a user based on the information of
her friends to produce tailored recommendations; in a user-product
bipartite rating network, based on a few manually identified fraud-
ulent user accounts, SSL is useful to spot other fraudulent accounts
[4, 10, 18, 19]; SSL can identify protein functions from networks of
their physical interaction using just a few labels [32].

Traditional graph SSL algorithms leverage a key property of real-
world networks: the homophily of vertices [5, 21], i.e., the nearby
vertices in a graph are likely to have the same label. However, these
methods tend to be limited by the fact that all the neighbors of a
vertex are not equal. Consider your own friendship network where
you have many acquaintances, but only a few close friends. In fact,
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Figure 1: Graph SSL approaches which take only edges into

account incorrectly classify the unlabeled central vertex ‘Al-

ice’ as blue. By leveraging higher-order network structures,

the proposed HOLS correctly labels Alice as red.

prior research has shown that vertices with a strong connection
participate in several higher-order structures, such as dense sub-
graphs and cliques [12–14, 27]. Thus, leveraging the higher-order
structure between vertices is crucial to accurately label the vertices.

Let us elaborate this using a small friendship network example,
shown in Figure 1. The central vertex, Alice, participates in a closely-
knit community with three friends B, C, and D, all of whom know
each other. In addition, she has four acquaintances P, Q, R, and S
from different walks of her life. Let the vertices be labeled by their
ideological beliefs—vertices B, C, and D have the same blue label;
and the rest of the vertices have the red label. Even though Alice has
more red connections than blue, the connection between Alice, B,
C, and D is stronger as Alice participates in three 3-cliques and one
4-clique with them. In contrast, Alice has no 3- and 4- cliques with
P, Q, R, and S. Owing to the stronger connection with the red nodes,
Alice should be labeled red as well. However, traditional graph SSL
techniques that rely on edges alone label Alice as blue [39, 40]. This
calls for graph SSL methods that look beyond edges to leverage the
signal present in higher-order structures to label vertices.

Our present work focuses on three key research questions:
• RQ1. How do the data reveal that higher-order network struc-
tures are homogeneous in labels?
• RQ2. How can we leverage higher-order network structures for
graph SSL in a principled manner?
• RQ3. Do higher-order structures help improve graph SSL?

Accordingly, our contributions can be summarized as follows:
(i) Analysis: Through an empirical analysis of four diverse real-
world networks, we demonstrate the phenomenon of higher-order
label homogeneity, i.e., the tendency of vertices participating in a
higher-order structure (e.g. triangle) to share the same label.
(ii) Algorithm:We develop Higher-Order Label Spreading (HOLS)
to leverage higher-order structures during graph semi-supervised
learning. HOLS works for any user-inputted higher-order structure
and in the base case, is equivalent to edge-based label spreading [39].
(iii) Effectiveness:We show that label spreading via higher-order
structures strictly outperforms label spreading via edges by up to
4.7% statistically significant margin. Notably, HOLS is competitive
with recent deep learning based methods, while running 15× faster.
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Table 1: Qualitative comparison of HOLS-3 (using edges and

triangles) with traditional and recent graph SSL approaches
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Higher-order structures ? ? ? ✓

Theoretical guarantees ✓ ✓ ? ✓

Fast algorithm ✓ ✓ ✓ ✓

For reproducibility, all the code and datasets are available at
https://github.com/dhivyaeswaran/hols.

2 RELATEDWORK

Traditional graph SSL approaches: By far, the most widely used
graph SSL techniques are label propagation [40] and label spread-
ing [39]. Label propagation (LP) clamps labeled vertices to their
provided values and uses a graph Laplacian regularization, while
label spreading (LS) uses a squared Euclidean penalty as super-
vised loss and normalized graph Laplacian regularization which is
known to be better-behaved and more robust to noise [33]. Both
these techniques permit closed-form solution and are extremely
fast in practice, scaling well to billion-scale graphs. Consequently,
a number of techniques build on top of these approaches, for ex-
ample, to allow inductive generalization [6, 34] and to incorporate
certainty [30]. When the graph is viewed as pairwise Markov ran-
dom field, belief propagation (BP) [37] may be used to recover the
exact marginals on the vertices. BP can handle network effects
beyond just homophily; however, it has well-known convergence
problems from a practitioner’s point of view [26]. While traditional
techniques, in general, show many desirable theoretical properties
such as closed-form solution, convergence guarantees, connections
to spectral graph theory [40] and statistical physics [37], as such,
they do not account for higher-order network structures.

Recent graph SSL approaches differ from traditional SSLmeth-
ods in training embeddings of vertices to jointly predict labels as
well as the neighborhood context in the graph. Specifically, Plane-
toid [36] uses skipgrams, while GCN [17] uses approximate spectral
convolutions to incorporate neighborhood information. MixHop [1]
can learn a general class of neighborhood mixing functions for
graph SSL. As such, these do not incorporate specific higher-order
structures provided by the user. Further, their performance in prac-
tice tends to be limited by the availability of ‘good’ vertex features
for initializing the optimization procedure.

Hybrid approaches for graph SSL: Another way to tackle
the graph SSL problem is a hybrid approach to first extract vertex
embeddings using an unsupervised approach such as node2vec [11],
DeepWalk [23] or LINE [31] and then use the available labels to
learn a transductive classifier such as an SVM [16]. Such methods,
however, neither have well-understood theoretical properties nor
do they optimize for a single objective in an end-to-end manner.

Comparison:We compare the best performingHOLS algorithm
(HOLS-3 which uses triangles in addition to edges) qualitatively to

Table 2: Statistics of datasets used

Dataset Domain |V| |E | C

EuEmail [20] Email communication 1005 16.0K 42
PolBlogs [3] Blog hyperlinks 1224 16.7K 2
Cora [28] Article citations 23.1K 89.1K 10
Pokec [29] Friendship 1.6M 22.3M 10

prominent SSL approaches in Table 1 and quantitatively via experi-
ments to representative methods from the above categories: LP and
LS (traditional), GCN (recent) and node2vec + TSVM (hybrid).

3 HIGHER-ORDER LABEL HOMOGENEITY

Recent work has shown that graphs from diverse domains have
many striking higher-order network structures [8] which can be
leveraged to improve tasks such as clustering [38], link prediction
[2, 7] and ranking [24]. In this section, we motivate the need to
consider such structures for semi-supervised learning through em-
pirical analysis of four diverse large real-world networks. We define
and quantify higher-order label homogeneity–i.e., the tendency of
vertices participating in higher-order structures to share the same
label. We will show that the higher-order label homogeneity is
remarkably more common than expected in real-world graphs.

3.1 Dataset Description

We use four network datasets for our empirical analysis and exper-
iments. Table 2 summarizes some important dataset statistics.
• EuEmail [20] is an e-mail communication network from a large
European research institution. Vertices indicate members of the
institution and an edge between a pair of members indicates
that they exchanged at least one email. Vertex labels indicate
membership to one of the 42 departments.
• PolBlogs [3] is a network of hyperlinks between blogs about
US politics during the period preceding the 2004 presidential
election. Blogs are labeled as right-leaning or left-leaning.
• Cora [28] is a citation network among papers published at
computer science conferences. Vertex labels indicate one of 10
areas (e.g. Artificial Intelligence, Databases, Networking) that the
paper belongs to based on its venue of publication.
• Pokec [29] is the most popular online social network in Slo-
vakia. Vertices indicate users and edges indicate friendships. From
the furnished user profile information, we extract the locality or
‘kraj’ that users belong to and use them as labels.
These datasets exhibit homophily [5, 21]: people typically e-mail

others within the same department; blogs tend to link to others
having the same political leaning; papers mostly cite those from the
same area; people belonging to the same locality are more likely to
meet and become friends. In all cases, we omit self-loops and take
the edges as undirected and unweighted.

3.2 Empirical Evidence

We now examine the label homogeneity of higher-order k-cliques,
as they form the essential building blocks of many networks [12–
14, 27] and moreover, can be counted and enumerated efficiently
[9, 15]. We will stick to k ∈ {2, 3, 4, 5} for computational reasons.

https://github.com/dhivyaeswaran/hols
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Figure 2: Prevalence of various label configurations in real-world graphs (orange) relative to a random baseline (green) which
shuffles vertex labels fixing the graph structure: We note that more homogeneous label configurations (towards left) are strik-

ingly more prevalent than expected, while less homogeneous label configurations (towards right) are unusually rare.

Methodology.We quantify label homogeneity of a given higher-
order structure by measuring the distribution over what we term
as its label configurations. Simply put, label configuration captures
the extent to which participating vertices share the same label and
is a function of vertex-label assignments that is invariant under
the permutation of vertices and labels. A 2-clique has two label
configurations: ‘2’ where both incident vertices have the same label
and ‘1-1’ where they have different labels. A 3-clique has three label
configurations: ‘3’ where all three vertices have the same label, ‘2-1’
where two of them share the same label and third vertex has a
different label and ‘1-1-1’ where each vertex has a different label.
Similarly, a 4-clique has 5 label configurations (4, 3-1, 2-2, 2-1-1,
1-1-1-1) and a 5-clique has 7 label configurations (5, 4-1, 3-2, 3-1-
1, 2-2-1, 2-1-1-1, 1-1-1-1-1). Note that not all label configurations
may be possible (e.g., 1-1-1 is impossible for a triangle in a 2-class
problem) and still fewer may actually occur in practice.

We will now compare the observed distribution over label config-
urations to its commensurate distribution under a random baseline
or null model, which shuffles vertex labels fixing the graph struc-
ture and that marginal distribution of labels. A priori, there is no
reason to expect the observed distribution to be any different from
random. But suppose that the observed probability mass for homo-
geneous label configurations (e.g. ‘k’ for k-cliques) exceeds that of
random and vice versa for non-homogeneous label configurations

(e.g. ‘1-. . .-1’); this would suggest higher-order label homogeneity.
Similarly, if the opposite occurs, we may conclude that vertices mix
disassortatively [22] to form higher-order structures.

Observations. Figure 2 plots the observed distribution over k-
clique label configurations (orange), comparing it to random (green).
Under the baseline, most of the probability mass is concentrated
on less homogeneous label configurations displayed towards the
right, which is expected since vertex labels are assigned at random.

In sharp contrast, the observed distribution is heavily concen-
trated towards the label configurations on the left. Notably, the most
homogeneous label configuration (i.e. ‘k’ for k-clique, where all
participating vertices have the same label), is 1.8-5.9×, 3.7-60×, 7.5-
464×, and 15-3416×more common than expected for k ∈ {2, 3, 4, 5}
respectively. On the other hand, the least homogeneous label con-
figuration (‘1-. . .-1’, where each participating vertex has a different
label) is 1.4-5.3×, 1.8-15× and 22.2-90× rarer than expected when
possible for k ∈ {2, 3, 4} respectively. For Cora dataset in particular,
the ‘1-1-1-1-1’ label configuration is expected about once in eight
or nine 5-clique occurrences (11.6%), but does not occur even once
among its over twenty-two thousand 5-cliques.

Overall, our observations establish concrete evidence for the
phenomenon of higher-order label homogeneity: vertices participat-
ing in real-world k-cliques indeed share the same label to a greater
extent than can be explained by random chance.
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4 HIGHER-ORDER LABEL SPREADING

We now derive our higher-order label spreading (HOLS) algorithm
and show its theoretical properties including the connection to label
spreading [39], closed-form solution and convergence guarantee.

4.1 Notation

Let G = (V, E) be a graph with vertex setV and edge set E. Edges
are undirected with wi j representing the edge weight between
vertices i, j ∈ V . Each vertex has a unique label ℓ(i) ∈ {1, 2, . . . ,C}.

Let K be the set of network structures or motifs (e.g., edges,
triangles) which we want to leverage for graph semi-supervised
learning. For a given motif κ ∈ K , let |κ | denote its size which
is its number of participating vertices. For example, when κ is a
triangle, |κ | = 3. Further, suppose Qκ is the set of occurrences of a
motif κ in graph G and each such occurrence q ∈ Qκ has a weight
wq (e.g. computed as the product of incident edge weights). Use
1 [·] to denote the indicator function, which evaluates to 1 when
the enclosed expression is true. For example, 1 [i ∈ q] is one if the
vertex i is part of the subgraph q.

4.2 Generalized Loss Function

Let yi ∈ {0, 1}C be the one-hot vector of provided label for a
labeled vertex i such that yic = 1 if vertex i has a label c and is zero
otherwise. We propose to infer the final labels xi ∈ [0, 1]C (where∑
c xic = 1 ∀ i ∈ V) by minimizing the following loss function:

L = (1 − η)Ls + ηLд = (1 − η)Ls + η
∑
κ ∈K

ακLд,κ (1)

where Ls = 1
2
∑
i | |xi − yi | |2 is the supervised loss, which penalizes

the deviation of inferred labels from their provided values, while
Lд,κ is the graph loss with respect to motif κ, which enforces the
inferred labels to be ‘smooth’ over all occurrences of κ as:

Lд,κ =
1
2

∑
q∈Qκ

wq
∑
i , j ∈q

| |xi − xj | |2 (2)

A parameter η ∈ (0, 1) trades off supervised and graph losses, while
ακ ∈ (0, 1) captures the importance weight of κ in semi-supervised
learning. Note

∑
κ ∈K ακ = 1. Now, define κ-participation matrix

as W(κ) = [w(κ)i j ] where each entryw(κ)i j denotes the total weight
of κ-motifs that vertices i and j participate in. We have:

w
(κ)
i j =

∑
q∈Qκ

wq · 1 [i ∈ q ∧ j ∈ q] (3)

Observe that each pairwise loss term | |xi − xj | |2 in Equation (1)
appears with a total weightw ′i j given byw

′
i j =

∑
κ ∈K ακw

(κ)
i j using

which we may simplify the graph loss as:

Lд =
η

2

∑
i , j

w ′i j | |xi − xj | |
2 (4)

Thus, Equation (4) establishes that the graph loss from Equation (1)
is equivalent to that of label propagation [40] on a modified graph
with adjacency matrix W′ =

∑
κ ∈K ακW(κ) where each edge of

the original graph has been re-weighted according to the total
weight of κ-motifs it participates in, scaled by its importance ακ ,
and finally summed over all motifs κ ∈ K of interest. We will use
this connection to derive a closed-form solution to HOLS.

Algorithm 1 Higher-Order Label Spreading (HOLS)

Input: graph G = (V, E), number of classes C , set of labeled
verticesVl ⊂ V and their labels ℓ : Vl → {1, . . . ,C} (at least
one labeled vertex per class)
Parameters: motif set K , motif weights ακ ∈ (0, 1) such that∑
κ ∈K ακ = 1, weight η ∈ (0, 1) for supervised loss

Output: final label assignments ℓ∗(i) for all vertices i ∈ V
1: procedure HigherOrderLabelSpreading(G,Vl , ℓ,K,α,η)

▷ Construct higher-order normalized graph Laplacian for regularization

2: for κ ∈ K do

3: Construct κ-participation matrixW(κ) = [w(κ)i j ]

▷ w (κ )i j : total weight of κ-motifs where i and j appear together

4: W′ ←
∑
κ ∈K ακW(κ)

5: D′ ← diag(d ′ii ) where d
′
ii =

∑
j w
′
i j

6: L̃′ ← D′−1/2W′D′−1/2

▷ Construct label matrices Y = [yic ] (prior) and X = [xic ] (inferred)
7: Y← 0 |V |×C
8: yiℓ(i) ← 1 ∀ i ∈ Vl
9: X← Y

▷ Label inference using HOLS

10: while not converged do

11: X← η(I − L̃′)X + (1 − η)Y ▷ Equation (8)

12: ℓ∗(i) ← argmaxc xic ∀ i ∈ V
13: return ℓ∗

4.3 Closed-Form and Iterative Solutions

Let Y = [y1 . . . yN ]T and X = [x1 . . . xN ]T be the N ×C matrices
of prior and inferred labels where |V| = N is the total number
of vertices. Let D′ = [d ′i j ] be the diagonal degree matrix for the
modified graph adjacency W′ = [w ′i j ]. Thus, d

′
ii =

∑
j w
′
i j and

d ′i j = 0 if i , j. Let L′ = D′ −W′ be the Laplacian matrix for the
modified graph. Equation (4) can be re-written in matrix format as:

L =
1 − η
2
| |X − Y| |2F +

η

2
XT L′X (5)

We also consider a version of the loss function which uses the
normalized Laplacian L̃′ = D′−1/2L′D′−1/2 for regularization:

L̃ =
1 − η
2
| |X − Y| |2F +

η

2
XT L̃′X (6)

Using L̃′ in place of L′ performs as well if not better in practice;
and moreover provides certain theoretical guarantees (see Propo-
sition 4.2, and also [33]). Therefore, we will use Equation (6) as
the loss function for our higher-order label spreading and refer
to it as LHOLS. A closed-form solution can now be obtained by
differentiating LHOLS with respect to X and setting it to zero. Thus:

X = (1 − η)
(
I − η(I − L̃′)

)−1
Y (7)

Thus, using Equation (7), we are able to compute the optimal solu-
tion to HOLS, as long as the inverse of I − η(I − L̃′) exists. Due to
the use of normalized Laplacian regularization, the following holds:

Proposition 4.1 (Generalized Label Spreading). The proposed
HOLS algorithm reduces to traditional label spreading [39] for the

base case of using only edge motifs, i.e., K = {K2}.
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This generalization grants HOLS its name. In practice, matrix
inversion is computationally intensive and tends to be numeri-
cally unstable. Hence, we resort to an iterative approach to solve
Equation (7) by first initializing X to an arbitrary value and then
repeatedly applying the following update:

X← η(I − L̃′)X + (1 − η)Y (8)

Proposition 4.2 describes the theoretical properties of this approach.

Proposition 4.2 (Convergence Guarantee for HOLS). The
iterative update in Equation (8) always converges to the unique fixed
point given in Equation (7) for any choice of initial X.

This can be proved using the theory of sparse linear systems [25].
The overall algorithm of HOLS is summarized in Algorithm (1).

First, for each motif κ ∈ K , construct its κ-participation matrix
by enumerating all its occurrences. Note that the enumerated oc-
currences are processed one by one on the fly to update the par-
ticipation matrix and discarded (no need for storage). Moreover,
the enumeration for different motifs can be done in parallel. The
participation matrices are combined into a single modified graph
adjacency W′; applying the iterative updates from Equation (8)
finally results in labels for the unlabeled vertices. In practice, the
iterative updates are applied until entries in X do not change up to
a precision ϵ or until a maximum number of iterationsT is reached.

4.4 Complexity Analysis

When only cliques are used as motifs K for semi-supervised learn-
ing, the following space and time complexity bounds hold:

Proposition 4.3 (Space Complexity of HOLS). The space com-

plexity of HOLS for a graph with N vertices,M edges and C classes

is O (M + NC) independent of motif size and number of motifs used,

provided all motifs are cliques.

Proposition 4.4 (Time Complexity of HOLS). The time com-

plexity of HOLS over a graph with M edges, C classes and a degen-

eracy (core number) of kmax using K = {K2, . . . ,Kn } is given by

O

(
M

∑n
k=2 k

(
kmax
2

)k−2)
for the construction of Kk -participation

matrices plus O (MC) per iterative update using Equation (8).

The proofs rely on the sparsity structure of the modified adja-
cency W′ and also Theorem 5.7 of [9]. Despite the exponential
complexity in k , we are able to enumerate cliques quickly using the
sequential kClist algorithm [9]. For example, our largest Pokec
dataset has 21M edges, 32M triangles, 43M 4-cliques and 53M 5-
cliques; and the enumeration of each took at most 20 seconds on a
stock laptop. Thus, HOLS remains fast and scalable when reason-
ably small cliques are used. Further, as we show in experiments,
using triangles (K3) in addition to edges typically suffices to achieve
the best classification performance across a wide range of datasets.

5 EXPERIMENTS

We empirically evaluate the proposed algorithm on the four real-
world network datasets described in Section 3.1.

5.1 Experimental Setup

We implement HOLS in MATLAB and run the experiments on Ma-
cOS with 2.7 GHz Intel Core i5 processor and 16 GB main memory.

Baselines. We compare HOLS to the following baselines: (1)
Label Propagation (LP) [40] which uses Laplacian regularization. (2)
Label Spreading (LS) [39] which uses normalized Laplacian regular-
ization. (3) node2vec+TSVM which generates unsupervised vertex
embeddings using node2vec [11] and learns decision boundaries in
the embedding space using one-vs-rest transductive SVMs [16]. (4)
Graph Convolutional Network (GCN) [17] which is an end-to-end
semi-supervised learner using neural networks. We implement LP
and LS in MATLAB, and use open-sourced code for the rest.

Parameters. By default, we use a weight of η = 0.5 for super-
vised loss and K = {K2,K3} motifs (edges and triangles) for HOLS.
The importanceweight for trianglesαK3 is tuned in {0.1, 0.2, . . . , 0.9}
for each dataset and results are reported on the best performing
value. We use η = 0.5 for LS as well. LP, LS and HOLS are run
until labels converge to a precision of ϵ or until T iterations are
completed, whichever occurs sooner. We set ϵ = 10−6 and T = 500.
We use the default hyperparameters for GCN, node2vec and TSVM.
We supply 100, 20, 100 and 1000 labels for EuEmail, PolBlogs,
Cora and Pokec datasets, where the vertices to label are chosen
by stratified sampling based on class. These correspond to label
fractions of 5%, 1.6%, 0.4% and 0.06% and on an average, 1, 10, 10
and 100 labeled vertices per class respectively.

Evaluationmetrics.Wequantify the success of semi-supervised
learning using accuracy, which is the fraction of unlabeled vertices
which are correctly classified. We also note down the end-to-end
running time for all computation including any pre-processing such
as clique enumeration, but excluding I/O operations.

5.2 Results

We present our experimental results. All reported values are aver-
aged over five runs, each run differing in the set of labeled vertices.

Accuracy. Accuracies of all methods are summarized in Table 3
(left). The values for node2vec+TSVM on Pokec dataset are missing
as the method did not terminate within 24 hours (‘T.L.E.’).

First, we observe in Table 3 (left) that HOLS consistently leads
to statistically significant improvements over LS, showing that
using higher-order structures for label spreading helps. In addition,
HOLS outperforms all baselines in three out of four datasets. The
improvements over the best baseline are statistically significant
(p < 0.05) according to a two-sided micro-sign test [35] in at least
three out of five runs. Importantly, for the smaller datasets (EuEmail
and PolBlogs), while GCN outperforms LS, GCN loses to HOLS
when triangles are used. node2vec+TSVM performs slightly better
than HOLS on PolBlogs, however, the increase over HOLS is not
statistically significant. For the larger datasets with < 0.5% labeled
vertices, HOLS performs the best and LS follows closely.

Running Time. The running time of HOLS and all the baselines
is summarized in Table 3 (right). Notably, we see that HOLS runs
in less than 2 minutes for graphs with over 21 million edges (the
Pokec graph), demonstrating its real-world practical scalability.

We observe that LS is the fastest of all methods and HOLS comes
a close second for three out of four datasets. The small difference in
running time predominantly stems from the construction of triangle
participation matrix. Furthermore, HOLS is over 15× faster than
the recent GCN and node2vec+TSVM baselines, for comparable

and often better values of accuracy.
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Table 3: Accuracy and Running Time (averaged over five runs): In each column, the best value is bold and underlined, and the

second best is underlined. Asterisk (
∗
) denotes statistically significant differences (p < 0.05) compared to the second best.

Method

Metric Accuracy Running time (seconds)

EuEmail PolBlogs Cora Pokec EuEmail PolBlogs Cora Pokec

Label Propagation (LP) [40] 0.2905 0.5814 0.2765 0.1994 0.11 0.070 2.1 1320
Label Spreading (LS) [39] 0.5228 0.9361 0.4921 0.5514 0.040

∗
0.036

∗
0.21

∗
93
∗

node2vec+TSVM [11, 16] 0.4563 0.9481 0.4233 T.L.E. 46 29 3060 >1 day
Graph Convolution Networks (GCN) [17] 0.5251 0.9470 0.4673 0.5290 1.8 1.3 6.4 2880

HOLS (proposed) 0.5473
∗ 0.9476 0.4953

∗
0.5593

∗ 0.089 0.083 0.41 117
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Figure 3: Variation of accuracy with maximum clique size k
(left), and importance weight αK3 to triangles (right).
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Figure 4: Case studies from PolBlogs dataset showing ex-

tended ego-networks of vertices v702 (left) and v1153 (right)

which are both incorrectly classified by LS but correctly clas-

sified when triangles are taken into account using HOLS.

Accuracy vs. Maximum Clique Size. Fixing the motif set as
K = {K2,K3, . . . ,Kk }, we vary k = 2, 3, 4, 5 to study the marginal
benefit of including higher-order cliques in graph SSL. The motif
weights are tuned in αKj ∈ {0, 0.1, . . . , 0.9}, ensuring that edges
are given a weight αK2 ≥ 0.1 for a connected graph, and further, all
motif weights sum to 1. The best performing motif weights were
used to generate Figure 3(a), which plots the relative improvement
in accuracy over LS that uses edges only. We note that label spread-
ing via higher-order structures strictly outperforms label spreading
via edges. The gain is the most when using 3-cliques (triangles).
Subsequent higher-order cliques did not lead to additional perfor-
mance gain in most cases, presumably because their occurrences
tend to be concentrated around a few high-degree vertices.

Accuracy vs. Importance Weight To Triangles. Fixing the
motif set to K = {K2,K3}, we vary the importance weight αK3 to
triangles in {0, 0.1, . . . , 0.9} to understand its effect on accuracy.

Figure 3(b) shows that the accuracy gain of HOLS over LS increases
with an increase in triangle weight for most graphs. The only ex-
ception is Cora, where the accuracy gain grows until αK3 = 0.4
before decreasing and eventually turning negative. Overall, trian-
gles consistently help over a large range of motif weights.

Case Studies. In Figure 4, we look at real examples from the
PolBlogs dataset to dig deeper into when HOLS improves over
LS. Question mark denotes the central vertices v702 and v1153 of
interest with ground truth labels ‘blue’ and ‘red’ respectively. The
direct neighbors of the both vertices are unlabeled and a few second
hop neighbors are labeled with one of two labels: ‘blue’ or ‘red’.

In both cases, both LS and HOLS classify the unlabeled 1-hop
neighbors correctly. However, LS, relying only on the edge-level
information (roughly the ratio of blue to red labeled 2-hop neighbors
in this case), incorrectly labels both v702 and v1153. The proposed
HOLS, on the other hand, accurately recognizes that v702 (v1153) is
more tightly connected with its blue (red) neighbors via the higher-
order triangle structures and thus leads to the correct classification.

6 CONCLUSION

In this paper, we demonstrated that label homogeneity–the ten-
dency of vertices participating in a higher-order structure to share
the same label–is a prevalent characteristic in real-world graphs.
We created an algorithm to exploit the signal present in higher-
order structures for more accurate semi-supervised learning over
graphs. Experiments on real-world data showed that using triangles
along with edges for label spreading leads to statistically significant
accuracy gains compared to the use of edges alone.

This work opens the avenue for several exciting future research
directions. First, we need principled measures quantifying label
homogeneity to aid comparison across diverse graphs and higher-
order structures. Next, having seen the improvements in real-world
graphs, it becomes fundamental to understand the benefits in ran-
dom graph models. Finally, it is crucial to develop algorithms ex-
ploiting higher-order structures which can cater to the increasingly
heterogeneous and dynamic nature of real-world graphs at scale.
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