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ABSTRACT

Prediction models can exhibit sensitivity with respect to training
data: small changes in the training data can produce models that
assign conflicting predictions to individual data points during test
time. In this work, we study this sensitivity in recommender sys-
tems, where users’ recommendations are drastically altered by
minor perturbations in other unrelated users’ interactions. We in-
troduce ameasure of stability for recommender systems, called Rank
List Sensitivity (RLS), which measures how rank lists generated by
a given recommender system at test time change as a result of a
perturbation in the training data. We develop a method, CASPER,
which uses cascading effect to identify the minimal and system-
atical perturbation to induce higher instability in a recommender
system. Experiments on four datasets show that recommender mod-
els are overly sensitive to minor perturbations introduced randomly
or via CASPER — even perturbing one random interaction of one
user drastically changes the recommendation lists of all users. Im-
portantly, with CASPER perturbation, the models generate more
unstable recommendations for low-accuracy users (i.e., those who
receive low-quality recommendations) than high-accuracy ones.
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Figure 1: Small changes (e.g., leave-one-out perturbation) in the train-

ing data can produce recommender systems that output drastically

different recommendations for all individual users.

1 INTRODUCTION

Small changes in training data can produce large changes in outputs
of machine learning models [7, 40, 47, 57, 59, 75]. Marx et al. [45]
showed how classification tasks can often admit competing models
that perform almost equally well in terms of an aggregate perfor-
mance metric (e.g., error rate, AUC) but that assign conflicting
predictions to individual data points. Likewise, Black and Fredrik-
son [6] showed how removing a point from a training dataset can
produce models that assign drastically different predictions, and
highlighted how this lack of stability disproportionately affects
points with low confidence predictions.

The sensitivity with respect to minor data perturbations is espe-
cially meaningful and concerning in modern recommender systems
– where data points pertain to user interactions. In this setting, sen-
sitivity would imply that the recommendations for a user change
due to small arbitrary changes in the training data from another un-
related user. This effect can be disruptive or even dangerous when
recommendation systems are used for applications in healthcare,
finance, education, and housing [62, 64, 79, 85]. Consider a system
that recommends a specific treatment to a patient based on data
from their electronic health record [64, 70]. In this setting, sensitiv-
ity would imply that the treatment recommendations for a patient
by a given system could change due to noisy training data for an-
other patient – e.g., due to errors introduced when digitizing hand-
written notes or transcribing voicememos [13, 33, 61]. More broadly,
this sensitivity could be introduced due to intentional manipula-
tions – as a malicious adversary could inject noise into the training
data to degrade the overall recommendation quality by producing
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(a) Random LOO perturbation

(b) Stability across user groups

Figure 2: (a) Four recommendation models are shown to be unstable

against minor perturbations — random leave-one-out perturbation

in training data changes output rank lists of all users drastically. (b)

Our proposed perturbation method, CASPER, lowers the stability,

measured via Jaccard@10, of users with low accuracy the most.

low-quality recommendations for all users or even disproportionate
damage on specific user or item groups [16, 18, 19, 58, 81].

These effects broadly underscore the need to measure the sensi-
tivity in the development of recommender systems – so that model
developers and end users can decide whether to use a specific rec-
ommendation, or whether to use recommender systems at all.

In this work, we study the sensitivity of recommender systems,
so that practitioners can measure the stability of their models and
make informed decisions in model development and deployment.
Our problem statement is: Can an arbitrary change in a single

data point in the training data change the recommendations

for other data points? If so, what is the maximum change in

recommendations possible with that change?

We propose a novel framework to measure the stability by com-
paring two recommendation lists for each test interaction – the
recommendation list from a recommender model trained on the
original training data, and the recommendation list from a model
trained on the perturbed training data. Then, the two recommenda-
tion lists are compared for each test interaction as shown in Figure
1. If the two lists are the same, then we say that the model is stable
to the perturbation; otherwise, the model is unstable.

Our approach requires a metric to differentiate the order of
items between two lists. Standard next-item prediction metrics
such as MRR, Recall, NDCG, and AUC are applicable to one list
(by measuring the rank of the ground-truth next item in the list).
Extensions of these metrics, e.g., the difference in MRR, are not
appropriate since those metrics can remain unchanged even if the
rank list is drastically different, but the ground-truth item’s rank
remains similar. This happens in practice (see Figure 3(b)). Thus, we
introduce a formal metric to quantify the stability of recommender
systems, namely Rank List Sensitivity (RLS), which measures the
similarity in the rank lists generated in the presence versus absence
of perturbations. We employ two metrics to measure RLS, namely
Rank-Biased Overlap (RBO) [69] and Jaccard Similarity [30]. RBO
measures similarity in the order of items in two lists, while the
Jaccard score highlights the overlap in the top-K items without
considering their order. Higher scores in both metrics are better.

We introduce two training data perturbationmethods to measure
the stability of recommender systems: random perturbations and
CASPER perturbations. Random perturbations select one interac-
tion out of all training data interactions randomly for perturbations.

Table 1: Comparison of our proposed method (CASPER) against

existing methods to measure perturbation and model stability.
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Deep Sequential Recommendation ✓ ✓ ✓ ✓ ✓
Training Data Perturbation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gray- or Black-box Perturbation ✓ ✓ ✓ ✓
Interaction-level Perturbation ✓
Investigating Model Stability ✓ ✓

Using random perturbations, we can measure the model sensitiv-
ity caused due to arbitrary errors and noise. On the other hand,
CASPER is designed to identify an interaction whose perturbation
can introduce higher instability in recommendations than random
perturbations. Such interaction reveals model vulnerabilities that
can potentially be exploited by adversaries to manipulate the rec-
ommender system. To find the deliberate perturbation, we hypoth-
esize a cascading effect by creating an interaction-to-interaction
dependency graph. Then, CASPER perturbs an interaction with
the largest number of descendants in the graph, which leads to
significant changes in the generated recommendations. CASPER
is fast and scalable to the dataset size and does not require model
parameters or gradients to identify the perturbation.

Experimentally, we first investigate the sensitivity of models to
random perturbations. We show that the recommender models are
sensitive to random interaction perturbations. Even one random
interaction perturbation drastically changes the entire rank lists of
items for all users. This is shown as low RBO scores (lower than
1.0 score means the rank list has changed) of four recommendation
models on Foursquare (Figure 2(a)) and all four datasets (shown
later in Figure 3), and as low top-10 Jaccard scores (Figure 7). We
underline that the instability of the models occurs due to the data
change, not the training randomness (e.g., different random seed,
initialization, etc.), since we remove all the randomness during the
training to focus solely on the effect of training data perturbation.

Next, we compare CASPER with five training data perturbation
algorithms. We show that CASPER identifies a perturbation to be
made that reveals higher sensitivity in recommendation models
compared to existing methods across datasets. Importantly, we find
that CASPER identifies an interaction whose perturbation results
in low-accuracy user groups being more impacted as per model
sensitivity — the top-10 Jaccard scores are lower for low-MRR
users than for high-MRR users (see Figure 2(b)). Since the item
ranking in the recommendation list has a significant impact on user
satisfaction [53], if the recommendation is low-quality and unstable,
the user satisfaction and engagement can be dramatically reduced,
and it may result in user dropout. We provide the repository of our
dataset and code used in the paper for reproducibility1.

2 RELATEDWORK

Data Perturbation in Recommender Systems. Our work is
broadly related to a stream of research on perturbations in deep
recommender systems [4, 10, 11, 16, 18, 19, 43, 44, 58, 72, 73, 80, 82,
83]. Much of this work has generated perturbations that alter the
1https://github.com/srijankr/casper

https://github.com/srijankr/casper
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rank of target item(s) (see Table 1). These methods highlight the
vulnerability of specific recommendations. However, they provide
incomplete stability since they focus on specific target items, rather
than the entire or top-K rank lists for all users.2 Furthermore, they
are not appropriate as baselines because they are not applicable
for interaction-level perturbations or work only on multimodal
recommenders [4, 11, 44] andmatrix factorization-basedmodels [18,
72, 73]. SomeCF-based [40] and RL-based [7] recommender systems,
provide untargeted perturbations for recommender systems that
reduce the model’s prediction accuracy considerably. However,
those methods do not work on our perturbation setting since they
provide user- or item-level perturbations instead of interaction-
level or focus on degrading the model’s prediction accuracy without
altering the rank lists of all users.
Data Perturbation in Other Domains. Many input perturba-
tion methods [20, 21, 47, 48, 57, 60, 84] have been developed for
image classification. These methods cannot be directly applied to
recommender systems due to complexities of sequential data (e.g.,
discrete input data and temporal dependency between interactions).
Many data perturbation algorithms [8, 24, 37, 49, 66] for natural
language processing (NLP) have been proposed. We cannot employ
them directly for our setting since they either are targeted pertur-
bations, have different perturbation levels (e.g., word or embedding
modifications), or cannot model long sequential dependencies.
Stability & Multiplicity in Machine Learning. Our work is also
related to a stream of work on stability and multiplicity in machine
learning [3, 6, 12, 15, 27, 38, 45, 52, 56, 68]. Recent work in this
area has shown that datasets can admit multiple nearly-optimal
solutions that exhibit considerable differences in other desirable
characteristics (e.g., predictions on specific data points, behavior
to model shifts, counterfactual explanations). For instance, Black
and Fredrikson [6] study data multiplicity caused by inserting or
removing a single user (“leave-one-out”) on several ML models.
Marx et al. [45] demonstrate the potential fairness issue in recidi-
vism prediction problems. While the majority of papers focus on
the model multiplicity in classification models, they do not study
the stability in recommender systems caused by data perturbations.

3 PRELIMINARIES

We consider a sequential recommendation task, where a recom-
mender modelM : 𝑋 → 𝑅𝑋M is trained to learn users’ behavioral
patterns from a sequence of their actions. A trained modelM gen-
erates a rank list of all items 𝑅𝑋𝑘

M that a user may interact with
given a test interaction 𝑋𝑘 ∈ 𝑋test . Items are ordered in terms of
the likelihood of user interaction, and the system shows the top-K
items from the rank list 𝑅𝑋𝑘

M [1 : 𝐾] to each user. We denote the set
of users and items as𝑈 and 𝐼 , respectively. We study the sensitivity
of four methods to train a sequential recommendation model:
• LSTM [26]: given a sequence of items, it predicts the next item
via Long Short-Term Memory (LSTM).
• TiSASRec [41]: a recent self-attention based model that predicts
the next item using the relative time intervals and absolute posi-
tions among previous items.
• JODIE [36]: a coupled RNN-based recommendation model which
predicts the next item via RNNs to learn user and item embeddings.
2Setting all (top-K) items as targets can be inaccurate and computationally expensive.

Table 2: Recommendation datasets used in Sections 5, 6, 7.

Name Users Items Interactions Descriptions

LastFM 980 1,000 1,293,103 Music playing history
Foursquare 2,106 5,597 192,602 Point-of-Interest check-in
Wikipedia 1,914 1,000 142,143 Wikipedia page edit history
Reddit 4,675 953 134,489 Subreddit posting history

• LatentCross [5]: a gated recurrent unit (GRU) [9] based model
which uses contextual features, like time difference between inter-
actions. This model is used in YouTube [5].

3.1 Datasets

We use four recommendation datasets from diverse domains sum-
marized in Table 2. In each dataset, we filter out users with fewer
than 10 interactions.
• LastFM [22, 25, 31, 39, 55] includes the music playing history of
users represented as (user, music, timestamp).
• Foursquare [74, 76–78] is a point-of-interest dataset represented
as (user, location, timestamp).
•Wikipedia [2, 14, 35, 36, 42, 50, 51] contains the edit records of
Wikipedia pages represented as (user, page, timestamp).
• Reddit [1, 14, 34, 36, 42, 51] includes the posting history of users
on subreddits represented as (user, subreddit, timestamp).

3.2 Next-Item Prediction Metrics

The dataset-level performance of a sequential recommendation
model is evaluated in a next-item prediction task by calculating the
rank of the ground-truth item among all items, averaged over all test
interactions. Two metrics are widely used: (i) Mean Reciprocal Rank
(MRR) [65]; (ii) Recall@K (typically K=10) [23, 36]. Both metrics lie
between 0 and 1, and higher values are better. We refer to these
two metrics as next-item metrics as they provide average statistics
of the ranks of ground-truth next items.

4 MEASURING RANK LIST SENSITIVITY

We create a framework to measure the stability of recommendation
systems against perturbations.

Procedure. First, we train a recommendation modelM with the
original data without perturbations, and it generates one ranked
recommendation list 𝑅𝑋𝑘

M for each test interaction 𝑋𝑘 in test data
𝑋test , where 𝑘 indicates an index of an interaction. Second, we train
another recommendation modelM ′ perturbed training data, and
it generates ranked recommendation lists 𝑅𝑋𝑘

M′ , ∀𝑋𝑘 ∈ 𝑋test .
We measure the similarity of recommendations for each test

example 𝑋𝑘 by comparing the two recommendation lists 𝑅𝑋𝑘

M and
𝑅
𝑋𝑘

M′ . We devise Rank List Sensitivity (RLS) metrics to measure the
similarity (described in the next paragraph). Then, we average the
individual RLS score across all 𝑋𝑘 ∈ 𝑋test . If the model is perfectly
stable, then 𝑅𝑋𝑘

M and 𝑅𝑋𝑘

M′ should be identical ∀𝑋𝑘 ∈ 𝑋test , and the
average RLS value should be maximized.

We repeat the above process multiple times with different ran-
dom seeds (to average the impact of individual experiments), and
report average values of RLS metrics across different runs. The
average RLS value quantifies the model stability.

Rank List Sensitivity Metrics. To measure the stability of a
recommendation modelM, we need metrics that can compare the
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similarity between recommendation lists generated with versus
without perturbations, i.e., 𝑅𝑋𝑘

M′ versus 𝑅
𝑋𝑘

M . Standard next-item pre-
diction metrics (described in Section 3.2) only measure the rank of
the ground-truth next item in one recommendation list. Extensions
of these metrics, e.g., the difference in MRR or Recall, to measure
similarity are not appropriate since these metrics can remain un-
changed if the ground-truth item’s rank is the same in 𝑅𝑋𝑘

M and 𝑅𝑋𝑘

M′ ,
even though the positions of the other items in the two rank lists
are drastically different. This happens in practice – see Figure 3(b),
where the difference between MRR and Recall values of recommen-
dation modelsM andM ′ are almost identical. To compute the list
similarity accurately, we need to measure how a perturbation im-
pacts the order of all items across two recommendation lists. Thus,
we need metrics that are sensitive to differences in the positions of
all items, not only the ground-truth item.

We introduce a formal metric called Rank List Sensitivity (RLS)

to quantify the stability of recommender systems by comparing
the items and their ranking in two lists (or two top-K lists). Math-
ematically, RLS metrics of a modelM against input perturbation
are defined by the following:

𝑅𝐿𝑆 =
1
|𝑋test |

∑︁
∀𝑋𝑘 ∈𝑋test

sim(𝑅𝑋𝑘

M , 𝑅
𝑋𝑘

M′)

where sim(𝐴, 𝐵) is a similarity function between two rank lists 𝐴
and 𝐵. We use the following two similarity functions in this paper.
(1)RBO (Rank-biased Overlap): RBO [69] measures the similarity
of orderings between two rank lists 𝑅𝑋𝑘

M′ and 𝑅
𝑋𝑘

M . RBO lies between
0 and 1. Higher RBO means the ordering of items in the two lists is
similar. For reference, the RBO between two randomly-shuffled rank
lists is approximately 0.5. RBO is more responsive to similarities
in the top part of two rank lists, meaning that it imposes higher
weights on the top-K items. This property distinguishes RBO from
other measures like Kendall’s Tau [32]. RBO of two rank lists𝐴 and
𝐵 with |𝐼 | items is defined as follows.

𝑅𝐵𝑂 (𝐴, 𝐵) = (1 − 𝑝)
|𝐼 |∑︁
𝑑=1

𝑝𝑑−1
|𝐴[1 : 𝑑] ∩ 𝐵 [1 : 𝑑] |

𝑑

where 𝑝 is a tunable parameter (recommended value: 0.9).
(2) Top-K Jaccard similarity: The Jaccard similarity [30]

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 ||𝐴 ∪ 𝐵 |

is a normalized measure of similarity of the contents of two sets
𝐴 and 𝐵. We use it to measure the similarity of items in the top-K
recommendation lists generated with and without perturbations,
i.e., 𝑅𝑋𝑘

M′ [1 : 𝐾] and 𝑅𝑋𝑘

M [1 : 𝐾]. The Jaccard score ranges from 0
to 1, and is agnostic to the ordering of items. A model is stable if
its Jaccard score is close to 1. In all experiments, we set K = 10 to
compare the top-10 recommendations [23, 36].

Top-K Jaccard metric can be useful for the industry due to its
fast computation compared to RBO; RBO can be used for detailed
analyses of the model stability since it focuses on full ranked lists.

(a) Random leave-one-out (LOO) perturbation

(b) Next-item metrics of models against random LOO perturbation

Figure 3: (a) Stability of four recommendation models against random

LOO perturbation. Existingmodels exhibit unstable predictions since

RBO scores after the perturbation are low. (b) Impact of random LOO

perturbation on next-item predictions of recommendationmodels.The

differences in metrics with and without perturbations are marginal.

5 STABILITY AGAINST RANDOM

PERTURBATIONS

In this section, we investigate the stability of recommendation
models against random perturbations.

Interaction-level Perturbations. We measure the stability of a
model with respect to arbitrary errors and noise through minimal

random perturbations. These perturbations change one randomly-
chosen sample in the training data – i.e., an interaction of a single
user rather than all interactions of a user or an item. In particular,
an interaction is either deleted (leave-one-out), inserted, or the
interaction’s item is replaced with another random item.

Experimental Setup. Our goal is to test the stability of diverse
recommendation models against a random interaction perturbation.
We use the first 90% of interactions of each user for training the
recommendation model, and the rest are used for testing, which is
a common setting used in several papers [17, 28, 46, 67]. For each
model, we use the hyperparameters mentioned in their original
publications. Other hyperparameters are set as follows: the maxi-
mum training epoch is set to 50, a learning rate is set to 0.001, and
the size of the embedding dimension is set to 128. For LSTM and
TiSASRec, the maximum sequence length per user is set to 50.

Procedure to Measure Stability.We follow the procedure de-
scribed in Section 4 and use the two RLS Metrics to measure the
stability of recommendation models against random perturbations.

Findings.We present the RBO scores of four recommendation
models on Foursquare against random leave-one-out perturbation
in Figure 3(a). We observe that all four recommendation models
exhibit low RBO scores on all datasets, ranging from 0.75 to 0.95
in most cases, while sometimes dropping below 0.6. Recall that
since the RBO score between two randomly-shuffled rank lists
is approximately 0.5, it shows that the drop of RBO caused by
perturbations is meaningful, but the rank list does not change
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randomly, which is expected. Similar drops are observed for top-
10 Jaccard similarity and in the case of insertion and replacement
perturbations. Insertion and replacement perturbation results are
excluded due to space limitation. Thus, we observe the instability of
existing models against even minor random perturbation. Notably,
perturbation of a user’s interaction leads to drastic changes in the
recommendations of unrelated users.

Comparing the four models, LatentCross has the highest RBO
in most cases against random perturbations. This indicates that La-
tentCross is the most stable model against random perturbations.

Controlling for Training Randomness while Measuring

Model Stability. Other research has found that randomness during
the training (e.g., random initialization, mini-batch shuffling, etc.)
can generate different models and predictions in machine learn-
ing [3, 45]. Thus, in all our experiments (including the ones above),
we specifically test the effect of the input data perturbation on
model stability by controlling all other randomness (e.g., fixing the
random seed and initialization). During a single run, we train two
recommendation modelsM andM ′ (before and after perturba-
tions) using the exact same settings without any training randomness.
In other words, if there is no perturbation, the trained modelsM
andM ′ and their outputs will be identical in every way.

Impact of Perturbations on Next-Item Prediction Metrics:

We find that the trained recommender models with and without
perturbations have similar dataset-level performance metrics (both
have almost identical MRR and Recall scores), as shown in Table 3(b).
However, the generated recommendation lists are drastically differ-
ent, as indicated by the low RBO and Jaccard scores. This shows
that multiple equivalent models can be trained that have similar
dataset-level metrics, but provide conflicting recommendations.
Similar findings have been made in other prediction settings [45].

One may wonder that if the dataset-level metrics are the same,
is there any concern if the rank lists vary? We argue that this is
indeed a matter of concern due to the following three reasons:
(a) Since several equivalent models generate different predictions,
the specific recommendations, e.g., which drug to administer or
which treatment procedure to follow, can vary depending on which
model is used. It is important for the algorithm designer and the
end-user to know that if the recommendation for a certain user can
be easily changed by unrelated minor perturbations, then perhaps
none of the recommendations should be followed for that user.
(b) Since multiple recommender models exist with equivalent next-
item prediction performance, then how can the algorithm designer
decide which model to deploy? We argue that given comparable
models, stabler recommender models should be used.
(c) Our work highlights the importance of “beyond-accuracy” met-
rics (e.g., RLS metrics) given that different recommender models
vary in their stability with respect to the RLS metrics.

Why are models unstable against minimal random per-

turbations? Only one interaction over one million interactions
(size of the datasets used) is perturbed. Yet, it changes the rank lists
and top-10 recommendation lists of all users. Why is there such a
profound effect? This is due to two reasons.
(1) The slight change in training data leads to changes in the param-
eters of a trained recommendation modelM. Say an interaction in
a mini-batch𝑚 was perturbed. When processing𝑚, model parame-
ters Θ(M) will be updated differently during training (compared

to when there is no perturbation). The changes in Θ(M) will affect
the updates in later mini-batches. The differences will further cas-
cade and multiply over multiple epochs. Thus, with perturbations,
the final Θ(M) will be different from the ones obtained without
perturbations, which can result in different rank lists.
(2) The modelM is trained to accurately predict only the ground-
truth next item as high in the rank list as possible (ideally, rank 1).
However,M is not trained to optimize the positions of the other
items in the rank list. Thus, the ordering of all except the ground-
truth next item is highly likely to change due to input perturbation.

6 STABILITY AGAINST CASPER

PERTURBATION

While random perturbations show the model instability introduced
due to arbitrary errors and noise, it is essential to find perturbations
that can lead to even higher instability, which helps understand the
lowest stability exhibited by a model. Adversaries can potentially
exploit such perturbations to conduct untargeted attacks and make
the recommendations unstable for all users. Thus, in this section,
we ask: which interaction should be perturbed to yield maxi-

mum instability in a recommendation model? We aim to find
perturbations that maximally change the rank lists 𝑅𝑋𝑘

M compared
to 𝑅𝑋𝑘

M′ ∀𝑋𝑘 ∈ 𝑋test . As before, we will considerminimal interaction-

level perturbations, allowing one interaction to be perturbed. Three
types of perturbations can be made: leave-one-out (LOO), inser-
tion, and replacement.Due to space constraints, we will highlight
LOO perturbation results as other perturbations yield similar model
instability. Finally, we will consider gray-box perturbations — we
assume access to training data and some model information such
as the maximum sequence length of past user actions that the rec-
ommendation model uses to make predictions. Note that we do
not require any details of the recommendation model such as the
model’s architecture, parameters, or gradients [19, 29, 80].

6.1 Perturbing Interactions from Different

Timestamps

A brute-force technique that tests the impact of every interaction
perturbation on model stability is computationally prohibitive due
to the need to retrain the model after each perturbation. To find an
effective perturbation in a scalable manner, we first investigate the
impact of perturbations in different positions in the training data.

We take inspiration from an idea from temporal recommendation
models [5, 26, 36], where mini-batches B = {𝐵1, . . . , 𝐵𝑇 }, 𝐵1 ∪ · · · ∪
𝐵𝑇 = 𝑋train are created in temporal order (i.e., first 𝑃 interactions
in the first batch 𝐵1, and so on). In such models, earlier batches
contain training interactions with early timestamps, and perturbing
an interaction in the earlier batches is equivalent to perturbing an
interaction with early timestamps. Since we saw in the case of
random perturbations that the impact of perturbations on model
parameters can cascade, we ask:howdoes perturbing interactions

from different timestamps impact model stability?

We devise and compare three following heuristic perturbations:
an Earliest-Random perturbation, where the first interaction of a
randomly selected user is perturbed, a Latest-Random perturbation,
where the last interaction of a randomly selected user is perturbed,
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Algorithm 1: CASPER: interaction-level perturbation based on cascading effect
Input :Training interaction data 𝑋train, users and items𝑈 and 𝐼 , training interaction sequences 𝑋𝑢 and 𝑋 𝑖 (sorted by timestamp) for

each user 𝑢 and item 𝑖

Output :Perturbed training data 𝑋
perturbed

1 Initialize an interaction-to-interaction directed acyclic graph (IDAG) 𝐺 with all training interactions 𝑋𝑘 ∈ 𝑋train as nodes
2 for each user 𝑢 ∈ 𝑈 do ⊲ Creating edges in the IDAG 𝐺

3 for 𝑘 ∈ [1, 2, . . . , |𝑋𝑢 | − 1] do ⊲ Adding edges between consecutive interactions of 𝑢

4 Create an edge from 𝑋𝑢
𝑘
to 𝑋𝑢

𝑘+1 in 𝐺

5 for each item 𝑖 ∈ 𝐼 do ⊲ Creating edges in the IDAG 𝐺

6 for 𝑘 ∈ [1, 2, . . . , |𝑋 𝑖 | − 1] do ⊲ Adding edges between consecutive interactions of 𝑖

7 Create an edge from 𝑋 𝑖
𝑘
to 𝑋 𝑖

𝑘+1 in 𝐺

8 for each interaction 𝑋𝑘 = (𝑢, 𝑖, 𝑡) ∈ 𝑋train do ⊲ Compute cascading scores 𝑠𝑐𝑜𝑟𝑒 (𝑋𝑘 ), ∀𝑋𝑘 ∈ 𝑋train
9 if 𝐼𝑛𝑑𝑒𝑔𝑟𝑒𝑒 (𝑋𝑘 ) == 0 then
10 Perform breadth-first search (BFS) starting from 𝑋𝑘 to find all the descendants of 𝑋𝑘 in 𝐺
11 𝑠𝑐𝑜𝑟𝑒 (𝑋𝑘 ) ←− total number of descendants of 𝑋𝑘 in 𝐺

⊲ Perturb the interaction with the highest cascading score

12 To obtain new perturbed training data 𝑋
perturbed

, perturb the interaction 𝑋opt = arg max
∀𝑋𝑘 ∈𝑋train

(𝑠𝑐𝑜𝑟𝑒 (𝑋𝑘 ))

(a) Impact of perturbing interactions from different timestamps.

(b) An IDAG corresponding to Figure 1.

Figure 4: (a) Average RBO scores of perturbing interactions from dif-

ferent positions in the training data. Earliest-Random perturbation

produces lower RBO than Random and Latest-Random perturba-

tions. (b) An IDAG corresponding to the interaction data in Figure 1.

Blue and red edges indicate user- and item-sharing adjacent inter-

actions, respectively. Green-colored nodes (interactions) show all

descendants (including itself) of an interaction 𝑋3. The cascading

score of 𝑋3 = 8, which is its number of descendants.

and a Random perturbation, where a random training interaction
is perturbed. We test this cascading effect on LatentCross model
since it was the most stable against random perturbation.

We use the RBO metric to measure RLS caused by these pertur-
bations on the LatentCross model and Foursquare dataset (the
hardest-to-predict dataset as per next-item metrics). We perform
each perturbation 10 times (randomly perturbing one interaction

only each time). The resulting RBO score distributions are compared
using the Wilcoxon signed-rank test [71].

The RBO scores are shown in Table 4(a). Earliest-Random pertur-
bation leads to the lowest RBO score in all three types of perturba-
tions, i.e., LOO, replacement, and insertion (all p-values <0.05). We
also observe that between Random and Latest-Random, the former
has lower RBOs. These findings show that perturbing earlier times-
tamp interactions leads to higher instability in recommendations.
Since this happens due to the cascading impact of model parameter
changes over mini-batch updates, we call this a “cascading effect”.

6.2 CASPER: Interaction-level Perturbation

based on Cascading Effect

Now, we leverage the cascading effect to propose a new perturba-
tion, named CASPER (Cascade-based Perturbation).

To approximate the impact of perturbing an interaction 𝑋𝑘 , we
define a cascading score of 𝑋𝑘 as the number of training interac-
tions that will be affected if 𝑋𝑘 is perturbed. Inspired by temporal
recommendation models [5, 26, 36], we create an interaction-to-
interaction dependency graph, which encodes the influence of one
interaction on another. Then, we approximate the cascading score
of interaction 𝑋𝑘 as the number of descendants of 𝑋𝑘 in this graph.
CASPER aims to identify the training interaction which has the
highest cascading score, since its perturbation would maximize the
cascading effect. Algorithm 1 shows the key steps of the method.
Creating the interaction-to-interaction dependency DAG: We
create a graph-based technique to approximate an interaction’s
cascading score without retraining the recommendation model. We
first construct an interaction-to-interaction dependency directed
acyclic graph (IDAG; lines 1-7 in Algorithm 1), where nodes are
training interactions and directed edges represent which interaction
influences another. The edge encodes the dependency that if the
𝑘𝑡ℎ interaction of user𝑢 (or item 𝑖) is perturbed, it will influence the
𝑘 + 1𝑡ℎ interaction of user 𝑢 (or item 𝑖). The IDAG corresponding to
the training interactions from Figure 1 is presented in Figure 4(b).
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Two nodes in the IDAG are connected by a directed edge if they
are either consecutive interactions of the same user (e.g., 𝑋1 and
𝑋4) or of the same item (e.g., 𝑋3 and 𝑋5). A directed edge must
follow the temporal order from early to later timestamp. No edges
are present between nodes with the same timestamp. Thus, each
node has at most two outgoing edges (first to the next interaction
of the user and second to the next interaction of the item). If the
recommendation model has a maximum sequence length (𝐿), the
IDAG is constructed only with the latest 𝐿 interactions of each user.
Calculating the cascading score in IDAG: The cascading score of
a node𝑋𝑘 is approximated as the total number of descendants of𝑋𝑘
in the IDAG. Descendants of a node𝑋𝑘 in the IDAG are defined as all
the nodes reachable from𝑋𝑘 by following the outgoing edges in the
IDAG. For example, in Figure 4(b), 𝑋3 has 8 descendants (including
itself), the highest among all nodes. By definition, a node’s parent
will have a higher cascading score than the node itself. Hence, we
accelerate the computation by calculating the cascading scores
of zero in-degree nodes only (lines 8-11 in Algorithm 1). Finally,
CASPER perturbs the node with the highest cascading score since
it would maximize the cascading effect (line 12 in Algorithm 1).

We have theoretically and experimentally shown that CASPER
scales near-linearly to the dataset size (Section 6.3 and Figure 8(b)).

6.3 Complexity Analyses of CASPER

We analyze the time and space complexities of CASPER. We assume
the maximum sequence length of a model is 𝐿.
Time complexity. CASPER first trains and tests a given recom-
mendation modelΘwith original input data, which takes O(T (Θ)),
where T (Θ) is the time complexity of Θ. After that, CASPER con-
structs the IDAG which takes O(|𝑈 |𝐿) where |𝑈 | is the number
of users. Computing cascading scores of zero in-degree nodes in
the IDAG, which takes O(𝑍 |𝑈 |𝐿) where 𝑍 is the number of zero
in-degree nodes in the IDAG. Perturbing an interaction with the
highest cascading scores takes O(𝑍 ). Finally, CASPER retrains the
model Θ with perturbed data and computes RLS metrics, which
takes O(T (Θ) + 𝑁test |𝐼 |) since RBO should be calculated with all
items |𝐼 |, where 𝑁test is the number of test interactions. The final
time complexity of CASPER is O(T (Θ) + 𝑁test |𝐼 | + 𝑍 |𝑈 |𝐿).
Space complexity. The first step of CASPER is training and testing
a deep sequential recommendation model Θ with original input
data, which takes O(S(Θ) + 𝑁test |𝐼 |) space since we need to store
original rank lists for all test interactions, where S(Θ) is the space
complexity of Θ. After that, CASPER constructs the IDAG which
takes O(|𝑈 |𝐿) space. The next step is computing cascading scores
of zero in-degree nodes in the IDAG, which takes O(|𝑈 |𝐿) space.
Finally, CASPER retrains the model Θ with perturbed data and
computes RLS metrics, which takes O(S(Θ) + 𝑁test |𝐼 |) space. The
final space complexity of CASPER is O(S(Θ) + 𝑁test |𝐼 | + |𝑈 |𝐿).

7 EXPERIMENTAL EVALUATION OF CASPER

In this section, we evaluate CASPER by the following aspects.
(1) Stability of Recommendation Models against Diverse Per-

turbations (Section 7.2). How stable are existing recommender
systems against CASPER and baseline perturbations?

(2) Impact of Perturbations on Different Users (Section 7.3).

Are there any user groups that are more susceptible and sensitive
to input data perturbations?
(3) Impact of the Number of Perturbations (Section 7.4). Is the
performance of CASPER proportional to the number of perturba-
tions allowed on the dataset?
(4) Running Time Analysis (Section 7.5). Does the running time
of CASPER scale with the dataset size?

7.1 Experimental Settings

7.1.1 Datasets. We use the four standard datasets introduced in
Section 5. LastFM is a widely used recommendation benchmark
dataset [22, 31, 39, 55], Foursquare is broadly utilized for point-of-
interest recommendations [74, 76–78], and Wikipedia and Reddit
are popular for social network recommendations [14, 36, 42, 51].
We select these datasets for experiments because (a) they come
from diverse domains, thus ensuring generalizability, and (b) the
timestamps of interactions reflect when the corresponding activities
happened (as opposed to Amazon review datasets where a review
is posted much after a product is purchased, or MovieLens review
dataset where a review is posted much after a movie is watched).

7.1.2 Baseline Methods. To the best of our knowledge, there are
no interaction-level perturbation methods for existing recommen-
dation models. Therefore, we create strong baselines and two state-
of-the-art methods based on the broader literature as follows:
• Random perturbation: It randomly chooses an interaction for
perturbation among all training interactions.
• Earliest-Random perturbation: It randomly chooses an inter-
action for perturbation among the first interactions of all users in
the training data.
• Latest-Random perturbation: It randomly chooses an interac-
tion for perturbation among the last interactions of all users in the
training data.
• TracIn [54] perturbation: It chooses the most important train-
ing interaction for perturbation, defined in terms of reducing the
model’s loss during training.We use an influence estimator TracIn [54]
that utilizes loss gradients from the model saved at every 𝑇 epoch
to compute interaction importance.
• Rev.Adv. [63] perturbation: It inserts a fake user with interac-
tions crafted via a bi-level optimization problem for perturbations.
To adapt it for our leave-one-out (LOO) and replacement pertur-
bation settings, we first find the most similar user in the training
data to the fake user, and perform LOO or item replacement of the
earliest or random interaction of that user, respectively. Therefore,
we create two versions of Rev.Adv. – Rev.Adv. [63] (random) and
Rev.Adv. [63] (earliest), which indicates the method chooses a ran-
dom or earliest interaction of a user for perturbation, respectively.

Note that we do not include baselines that work only on mul-
timodal recommenders [4, 11, 44] and matrix factorization-based
models [18, 72, 73] as these are not applicable to our setting. We
have also not included baselines that have shown similar or worse
performance [58, 80, 81] compared to the above baselines, partic-
ularly compared to Rev.Adv. [63]. In replacement and insertion
perturbations, the new item can be selected using three different
strategies: selecting an item randomly, selecting the most popular
item, or selecting the least popular (i.e., unpopular) item.
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Table 3: Effectiveness of perturbations on Foursquare dataset.We find instability of existing recommendation models measured by the RBO

metric against LOO (left) and item replacement perturbations (right). All RBO scores are lower than 1.0. The best perturbation in each column

is colored blue, and the second best is light blue, in terms of achieving the lowest RBO score.

a LOO perturbation comparison using RBO

Model /

Perturbations
LSTM TiSASRec JODIE LatentCross

Random 0.7799 0.9117 0.8316 0.9335
Earliest-

Random
0.7876 0.8776 0.8211 0.8563

Latest-

Random
0.7763 0.8515 0.8420 0.9608

TracIn [54] 0.7733 0.8545 0.8713 0.9625
Rev.Adv. [63] (random) 0.7798 0.8955 0.8491 0.9317
Rev.Adv. [63] (earliest) 0.7787 0.8911 0.7185 0.7403

Proposed method

CASPER 0.7709 0.8450 0.7896 0.6662

b Item replacement perturbation comparison using RBO

Model /

Perturbations
LSTM TiSASRec JODIE LatentCross

Random 0.7795 0.9143 0.9414 0.9493
Earliest-Random 0.7743 0.8886 0.8871 0.8421
Latest-Random 0.7814 0.8553 0.8989 0.9850
TracIn [54] 0.7934 0.8520 0.9280 0.9696

Rev.Adv. [63] (random) 0.7856 0.8782 0.9159 0.9538
Rev.Adv. [63] (earliest) 0.7747 0.9375 0.8257 0.7449

Proposed method

CASPER (random) 0.7665 0.8482 0.6691 0.6065
CASPER (popular) 0.7557 0.8477 0.6114 0.5435

CASPER (unpopular) 0.7615 0.8471 0.5228 0.5193

(a) RBO (LOO) (b) RBO (item replacement)

Figure 5: Comparing perturbations on LatentCross model across all

datasets. CASPER shows the best perturbation performance.

7.1.3 RecommendationModels. Weuse popular recommendermod-
els: LSTM [26], TiSASRec [41], JODIE [36], and LatentCross [5]
described earlier to test the effectiveness of CASPER and baselines.

7.1.4 Experimental Setup. We follow the same experimental setup,
as described previously in Section 5. Additionally, we use the follow-
ing settings. We repeat all experiments multiple times and report
average values of RLS metrics. To construct the IDAG for CASPER,
we use all the interactions in JODIE and LatentCross. For LSTM
and TiSASRec, we use the latest 50 interactions per user, as defined
by the maximum sequence length in the original papers. To com-
pute the influence of interactions in the TracIn perturbation, we
take training loss gradients with respect to the last hidden layer.
We save the loss gradients every 10 epochs and fix step sizes to the
default learning rate of 0.001.

7.2 Stability of Recommendation Models

against Diverse Perturbations

Perturbations of all models on Foursquare dataset. Table 3 compares
the performance of all perturbation methods on all four recom-
mendation models and Foursquare dataset (the hardest-to-predict
in terms of next-item metrics), averaged over 3 repetitions. Each
column highlights the best and second-best perturbation model,
in terms of the lowest RBO score.

We observe the instability of all recommendation models against
LOO and replacement perturbations. The RBO scores of all the rec-
ommendation models drop significantly below 1.0, indicating their
low stability. CASPER achieves the best performance across all but
one setting, where it performs the second best. It leads to the most

(a) Jaccard@10 on Foursquare (b) Jaccard@10 on LastFM

Figure 6:Comparing impact of perturbations across user groups.Users

with low accuracy receive more unstable predictions when CASPER

perturbation is applied, which can cause a user fairness issue. This

plot is for LOO perturbation results on LatentCrossmodel.

reduction of RBO in most cases. CASPER shows lower variances of
RLS values than those of baselines across different runs. We observe
that CASPER is more effective on JODIE and LatentCross models,
since the other two models (LSTM and TiSASRec) use maximum
sequence lengths, which limit their interactions’ cascading effects.
In some cases, e.g., JODIE and LatentCross in item replacement,
their resulting RBO drops close to 0.5, which is similar to the case
of random shuffling of ranked lists. Similar observations hold with
top-K Jaccard score and for insertion perturbations. It is also worth
mentioning that Rev.Adv. (earliest) outperforms Rev.Adv. (random)
in most cases, which also substantiates the cascading effect.

In item replacement perturbation (Table 3(b)), CASPER outper-
forms other methods in all cases. For CASPER, replacing the item
with the least popular item is the most effective strategy among all
the others. One possible reason is that the change in user embed-
dings and model parameters by using an unpopular item will be
the highest. Injection of the unpopular item diversifies the user’s
interactions and embedding the most, and model parameters can
be updated most differently. This major update will cascade to later
interactions and change all users’ recommendations drastically.

Perturbations on LatentCross model on all datasets. We further
evaluate the effectiveness of CASPER versus baselines on the La-
tentCross model (the most stable model against random pertur-
bations) across four datasets. The results are shown in Figures 5(a)
and 5(b). We confirm unstable predictions of LatentCross against
CASPER LOO and item replacement perturbations as per RBO.
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Figure 7:Comparing different perturbationmethods’ impact across user groups. We see LOO perturbation on LatentCrossmodel and Foursquare

dataset as per top-K Jaccard similarity (K=10), averaged over users with high-MRR (left), mid-MRR (middle), and low-MRR (right), respectively.

Users with low accuracy suffer more from training data perturbations with any perturbation method. CASPER leads to the highest reduction

of top-10 Jaccard similarity and outperforms all baselines across all user groups.

Top-K Jaccard metric and insertion perturbations also show simi-
lar results. Notably, CASPER outperforms all baselines across all
datasets on the LatentCross model.

Across all datasets, Latest-Random baseline performs worse than
the Random, which performs worse than the Earliest-Random, due
to cascading effect. Similarly, all random perturbations have worse
performance than advanced perturbations like CASPER.

7.3 Impact of Perturbations on Different Users

To investigate the differential impact of training data perturbations
on different users, we divide users into three groups: (1) High-MRR
users, containing users who lie in the top 20% according to aver-
age MRR, (2) Low-MRR users, containing users with the lowest
20% average MRR, and (3) Mid-MRR users, which contains the re-
maining set of users. We contrast the average RLS of users across
the three groups. Figures 6(a) and 6(b) compare the top-10 Jaccard
scores across the three user groups on LatentCross model and
two datasets (Foursquare and LastFM) against CASPER LOO pertur-
bation. We discover that the trend of stability follows the accuracy
trend – users with high accuracy receive relatively more stable
predictions than the low-accuracy user group. This phenomenon
highlights the relatively higher instability faced by users for which
the model is already unable to make accurate predictions. This
raises an aspect of unfairness across user groups. This highlights
the need that practitioners should evaluate model stability across
user groups before deploying models in practice.

Furthermore, we observe the same trend across different pertur-
bationmethods, as shown in Figure 7. Regardless of the perturbation
method, low-MRR users experience lower stability compared to the
other two groups. Notably, CASPER is able to generate the lowest
stability across all user groups. Addressing the differential impact
across user groups will be important to study in future work.

7.4 Impact of the Number of Perturbations

Intuitively, more perturbations in training data will cause higher
instability of a model. To test the effect of the number of perturba-
tions on CASPER, we increase the number of perturbations from 1
to 8 and check its LOO perturbation performance on LatentCross
model and Foursquare dataset. CASPER selects 𝑘 interactions with
the highest cascading score when the number of perturbations is
𝑘 . As shown in Figure 8(a), the performance of CASPER scales
near-linearly with the number of perturbations. Replacement and
insertion perturbations show similar trends.

Figure 8: (a) Perturbation scalability and (b) runtime of CASPER.

7.5 Running Time Analysis

We vary the number of interactions in a dataset to test whether the
runtime of CASPER is scalable to the input data size. Specifically,
we measure the running time of LOO perturbation of CASPER on
LatentCrossmodel and LastFM dataset (the largest), while varying
the number of interactions in the dataset from 10,000 to 1,000,000.
Figure 8(b) shows CASPER scales near-linearly with the dataset
size. This empirically validates the time complexity of CASPER (see
Section 6.3), which is linear as per the total number of interactions.

8 CONCLUDING REMARKS

Our work highlights that recommendation models can exhibit insta-
bility to minor changes in their training data. These effects under-
score the need to measure this instability, and to develop methods
that are robust to such changes. The measures and methods devel-
oped in this paper are an initial step in this direction. In particular,
CASPER depends on cascading effect which is inspired by temporal
recommendation models, meaning that it may return solutions that
are sub-optimal for methods that are not trained with temporally-
ordered mini-batches.

Future work topics include: expanding CASPER to handle more
complex perturbations, or to find more effective perturbations (e.g.,
interaction reordering) for other training regimes; and improving
scalability of CASPER to handle very large interaction graphs (e.g.,
by creating approximations of cascading scores using a randomly-
sampled interaction graphs, rather than the entire graph); devel-
oping methods that induce stability to data perturbations (e.g., via
multi-objective learning aiming to accurately predict next items and
preserve rank lists of a recommendation model simultaneously).
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