
Predicting the Visual Focus of Attention in Multi-Person Discussion Videos
Chongyang Bai1∗ , Srijan Kumar2,3 , Jure Leskovec2 , Miriam Metzger4 ,

Jay F. Nunamaker5 and V.S. Subrahmanian1

1Dartmouth College
2Stanford University

3Georgia Institute of Technology
4University of California Santa Barbara

5University of Arizona
cy@cs.dartmouth.edu, {srijan,jure}@cs.stanford.edu,

metzger@ucsb.edu, jnunamaker@cmi.arizona.edu, vs@dartmouth.edu

Abstract
Visual focus of attention in multi-person discus-
sions is a crucial nonverbal indicator in tasks such
as inter-personal relation inference, speech tran-
scription, and deception detection. However, pre-
dicting the focus of attention remains a challenge
because the focus changes rapidly, the discussions
are highly dynamic, and the people’s behaviors are
inter-dependent. Here we propose ICAF (Iterative
Collective Attention Focus), a collective classifi-
cation model to jointly learn the visual focus of
attention of all people. Every person is modeled
using a separate classifier. ICAF models the peo-
ple collectively—the predictions of all other peo-
ple’s classifiers are used as inputs to each per-
son’s classifier. This explicitly incorporates inter-
dependencies between all people’s behaviors. We
evaluate ICAF on a novel dataset of 5 videos (35
people, 109 minutes, 7604 labels in all) of the pop-
ular Resistance game and a widely-studied meeting
dataset with supervised prediction. ICAF outper-
forms the strongest baseline by 1%–5% accuracy
in predicting the people’s visual focus of attention.
Further, we propose a lightly supervised technique
to train models in the absence of training labels. We
show that light-supervised ICAF performs similar
to the supervised ICAF, thus showing its effective-
ness and generality to previously unseen videos.

1 Introduction
Given a group G of people, a person P ∈ G, and a short video
clip v (1/3rd sec), the Visual Focus of Attention (VFOA)
problem is to automatically predict who person P is look-
ing at among all people in G in the video clip v. Solving the
VFOA problem can provide profound insights into a num-
ber of factors, e.g., who is the dominant person in the group
[Hall et al., 2005], who supports/opposes who in the group,
who trusts/distrusts who in the group [Knapp et al., 2013].
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Figure 1(a) illustrates some of the challenges involved.
First, even within a very short 1 second clip, a person may
look at many people. The four frames shown in Figure 1(a)
show the pictured subject looking at three people. Second,
multi-person discussions are highly dynamic because many
people may speak at the same time and the speakers change
rapidly (Figure 1) — and as people often look at a speaker,
solving VFOA requires the ability to rapidly estimate the
VFOA. Third, non-verbal behaviors (e.g. eye rolling, head
shaking) of people may influence another person’s VFOA.
Returning to Figure 1(a), one would expect people to look at
the lady shown when she is speaking — however, their gaze
may turn elsewhere if some unseen person makes a gesture.
Alternatively, predicting the VFOA of person P might depend
on predicting the VFOA of person P1 as both of them might
be looking at the same person P2 who is speaking or ges-
turing. In short, solving VFOA requires reasoning at the sub-
second level and making rapid changes that take into account
not only video of the person P whose gaze we are trying to
predict, but also that of others.

We address these challenges via a novel algorithm called
ICAF (stands for Iterative Collective Attention Focus) which:
(i) reasons at the 1/3 second level that prior research has es-
tablished as the normal duration humans need to visually fo-
cus their attention [Rayner, 2009], (ii) incorporates collec-
tive classification [Sen et al., 2008; Kong et al., 2012] intu-
itions to capture the fact that where person P is looking might
depend on where others are looking, and simultaneously as-
sign VFOAs to all people rather than doing so independently,
and (iii) ICAF iteratively builds a multi-layer network that
captures the evolution of the collective classification. This
captures the idea that predictions of who P is looking at de-
pends on predictions of who others in the group are looking
at. (iv) ICAF specifically captures the temporal dependency
of VFOA, e.g. the conditional probability that P is looking at
Q, given that she was looking at Q in the previous 1/3 sec. To
the best of our knowledge, no prior work on gaze estimation
has considered using where others are currently looking and
using this to arrive at a joint prediction as we do.

We introduce a novel dataset (109 mins of video from 5
episodes of the Resistance game in 3 different countries with



Figure 1: (a) An example of a person’s (Person 3) Visual Focus of Attention (VFOA) in 4 frames out of a contiguous 4/3 second (40 frames)
during a discussion. person 3’s VFOA changes rapidly within this short time period, from looking at persons 6, 1, 1, 7, in frames 25, 35, 45,
and 55, respectively. Note that even though the head pose in frames 25 and 55 are similar, the VFOA is different (6 vs 7) (b) Person 3’s ground
truth VFOA and predicted VFOA made by the proposed method, ICAF, of a 5-second discussion clip in which frames 20–60 correspond to
Figure 1 (a). We observe that ICAF is able to efficiently predict the rapid change in VFOA.

35 people). The data was annotated with ground truth VFOA
at the 1/3 second level (a huge task by itself leading to over
19,000 annotated 1/3 second clips). Resistance is an im-
mensely popular, dynamic, animated (and sometimes very
noisy) party game involving 5-8 people per game.

We experimentally show that ICAF outperforms several
strong baselines in predicting people’s next VFOA by over
1.3%, i.e. given a training video up to second t, we predict
where each person looks at second t+ 1/3. Moreover, ICAF
outperforms the best baseline between 1%–5% when predict-
ing next k VFOAs. For example Figure 1(b) shows that even
though Person 3 rapidly changes her VFOA during a 5 second
multi-person discussion, ICAF predicts her VFOA correctly
in 11 out of 14 points (78.6% accuracy). Finally, we experi-
mentally show that both temporal dependency and collective
classification boost ICAF’s performance.

Since getting ground truth labels is a tedious task, we create
a lightly supervised version of ICAF that uses the speaker la-
bel to make predictions. We experimentally show that lightly
supervised ICAF has similar performance to ICAF, showing
the potential of using ICAF for previously unseen videos.

The demo, code, and predicted VFOA networks are avail-
able at: https://cs.dartmouth.edu/dsail/demos/icaf.

2 Related Work
As tracking eye gaze in video is difficult (video resolu-
tion, eye visibility, etc.), many estimate head pose as VFOA
[Stiefelhagen et al., 1999; Voit and Stiefelhagen, 2008; Zhang
et al., 2008; Stiefelhagen and Zhu, 2002]. In real cases, head
pose and VFOA may differ. Figure 1(a) shows an example in
our dataset—while the person’s head pose is similar in frames
25 and 55, her VFOA is different. [Asteriadis et al., 2014]
fused head pose and eye gaze to reduce prediction error. Our
ICAF additionally adds speaking probabilities as features.

[Ba and Odobez, 2009] used head pose to model VFOA
by GMM and HMM with person-based Maximum A Poste-
rior parameters. [Sheikhi and Odobez, 2012] added temporal
gaze change in HMM. Their methods predict VFOA individu-
ally. Instead, our collective classification model enables joint
predictions of all people based on head pose and eye gaze.

In group settings, people’s VFOA are influenced by each
other. [Stiefelhagen et al., 2002] introduced speaking pri-
ors to capture VFOA. [Ba and Odobez, 2008] further used
meeting context (e.g slides updating) prior. [Ba and Odobez,
2011] additionally created a Dynamic Bayesian Network cap-
turing the shared VFOA, but the sharing prior is constant and
same for all people. In contrast, our ICAF adds inter-person
dependency, enabling the classifiers to learn the weights for
other inputs, allowing changes over time as behaviors shift
during a video. [Massé et al., 2017] proposed a temporal
graphical model to jointly track people’s gaze and VFOA.
Unlike us, they assumed conditional independence of peo-
ple’s VFOAs given their observed head poses. [Duffner and
Garcia, 2013; Duffner and Garcia, 2016] clustered VFOA via
Histogram of Gradient features. Unlike them, we use a speak
prior for light supervision and show its efficacy by comparing
with fully supervised results.

Collective classification. Collective classification methods
are widely used in graph mining tasks such as node labeling
[Sen et al., 2008; Kong et al., 2012], link prediction [Taskar
et al., 2004] and a combination of both [Bilgic et al., 2007].
These methods are able to correlate node/edge attributes to
train a mutually dependent classifier ensemble. However,
none of these models directly predicting VFOA from videos.
To the best of our knowledge, ICAF is the first method to
use collective classification to predict the VFOA of all people
simultaneously in a multi-person video.

3 Dataset and Problem Setup
We collected a dataset involving the Resistance game1 con-
taining five games from five different locations—three from
U.S.A., one from Israel, and one from Singapore. In each
game, up to eight people are seated in an octagon lay-
out (Figure 2). It has a total of 35 people whose goal is
to identify deceptive people for additional financial reward.
Each person has a tablet in front of them which records
their activity. At the start of every game, all people intro-
duce themselves, followed by several rounds of discussion

1https://en.wikipedia.org/wiki/The Resistance (game)

https://cs.dartmouth.edu/dsail/demos/icaf
https://en.wikipedia.org/wiki/The_Resistance_(game)


Figure 2: Data collec-
tion setup

Video Number of 10-frame Number of
id seconds segments labels
1 1062 3186 1086
2 896 2688 1541
3 1435 4305 1516
4 1984 5952 2060
5 1134 3402 1401

Total 6511 19533 7604

Table 1: Resistance dataset

where 2-3 people are deceptive and do not want to be identi-
fied by the other people whose goal is to unmask them. The
people may not leave their seats. The discussions are emer-
gent as there is no pre-determined presenter or leader.

We generated ground-truth labels for people’s VFOA for
every 10 frames (1/3 seconds in 30 frames per second videos),
the time taken to register one’s attention [Rayner, 2009]. Fig-
ure1(a) is an example. An expert manually assigned one label
for every 10 frame segment of each person. For each person,
there are eight possible points of focus—one of the other 7
people and the tablet. A label is assigned if the person looks at
the object (person or tablet) for the majority of the 10 frames,
otherwise, an ‘unknown’ label is assigned. This results in a
total of 7604 valid labeled segments. The ‘unknown’-labeled
segments are not used for training or testing.

We extract 3 clips from each game—the entire introduction
round (where at most one person is speaking at a time), and
two 5-second discussions (where multiple people are simul-
taneously speaking). This gives 6511 seconds of data in total
for the 5 games. Table 1 shows the data distribution by game.

AMI corpus. We also used the widely-studied AMI meet-
ing corpus [McCowan et al., 2005], which is highly struc-
tured. In this dataset, we used closeup videos of 12 meetings
with available VFOA annotation. Each meeting has 4 peo-
ple and lasts 25 minutes on average. The VOFA targets are 4
people, table, whiteboard and slide screen.

3.1 Feature Extraction
We extract two sets of features from the clips: face-based fea-
tures and speaking probability features. As with face-based
features, we extract the person’s head pose angles and eye
gaze vectors using OpenFace [Baltrusaitis et al., 2018] since
the tablet cameras can capture close-up video of each person.

Speaking prediction. We use visual information to pre-
dict if a person is speaking at an instance. First, we get
2-dimensional lip contour points X(t) = {(x(t)

i , y
(t)
i ), i =

1, . . . , n} at frame t from OpenFace and normalize X(t) by
its bounding box to avoid the influence of head movement.
Second, we compute the gradient of point positions over
time to capture mouth movement, which is ~g

(t)
i = (x

(t)
i −

x
(t−1)
i , y

(t)
i − y

(t−1)
i ), i = 1, . . . , n, and aggregate them as a

frame feature vector ~g(t). Third, we get feature G(t) by con-
catenating (~g(t−s+1), ~g(t−s+2), . . . , ~g(t), . . . , ~g(t+s)) around
time t, in a window of size 2s. This forms a sliding win-
dow over time. We use G(t) as a feature, and the introduction
part of a game from this dataset to train a general speaking
detection model SP. Finally, the speaking probability of a

Figure 3: Architecture of the iterative collective classification
model, ICAF. Each classifier Ci takes three inputs: output of its
previous layer (person dependency), previous time (temporal depen-
dency), and other people’s output (inter-person dependency). Figure
is best viewed in color.

person at time t is given by s = SP(G(t)).
We do not create a new model for head pose angles or eye

gaze vector extraction. Instead, we use these as inputs to our
model to improve the predictions by using them collectively,
instead of independently. ICAF takes the head-based features
and speaking probability features as inputs.

4 ICAF: Iterative Collective Classification
Here we describe ICAF, the collective classification meth-
ods that incorporates inter-person dependencies and temporal
consistency to jointly predict the VFOA of all people.

Let fi,t denote the raw input feature vector of person Pi ∈
{P1, . . . Pk} at time t. The raw input features for Pi include
the head pose angles vector, the eye gaze vector and speaking
probabilities vector ~s = (s1, . . . , si−1, 0, si+1, . . . , sk). Note
that we don’t use Pi’s speaking probability si in ~s , as Pi’s
speaking activity doesn’t directly influence her VFOA. Let
Ci denote the VFOA prediction model for Pi. ICAF builds
separate models Ci for each person Pi. Ci outputs a vector
vi,t, the probability distribution of person Pi’s visual focus of
attention at time t. This output vector specifies the probability
that Pi’s VFOA is person Pj (or the tablet) for each j. The
ground truth label for person Pi at time t is denoted by yi,t.

Figure 3 illustrates ICAF for k people and an L-layer net-
work. Each person Pi has one classifier C(l)

i for each layer
l. Raw features fi,t are used as input for Pi at time t. The
model has multiple layers 1, . . . , L to add inter-person de-
pendencies by using the output of other people’s classifiers as
input (shown in dotted lines). Each classifier also takes the
previous timestep’s output as input (shown in dashed lines
only for C1 for simplicity). The final output vectors are v(L)

i,t .

ICAF has three major inputs for each classifier C(l)
i at ev-

ery time t and layer l as follows: (i) raw features fi,t as-
sociated with Pi, (ii) inter-person dependencies v

(l−1)
j,t (j =

1, . . . , k, j 6= i) incorporating the influence of the behav-
ior of other people, and (iii) temporal consistency v

(l−1)
i,t−1 en-



Algorithm 1: ICAF MODEL

Input : Raw features fi,t ∀i ∈ [1, . . . k], t ∈ [1, . . . T ],
Number of layers L.

Output: Predictions v(L)
i,t of all people i at all times t

1 v
(l)
i,0 = ( 1

k+1 ,
1

k+1 , ..,
1

k+1 )

2 v
(0)
i,t = C

(0)
i (fi,t)

3 for t ∈ [1, . . . T ] do
/* Operate on every time step t */

4 for l ∈ [1, . . . L] do
/* Process every layer l */

5 for i ∈ [1, . . . k] do
/* Update person Pi */

6 S(V ) =
∑

j∈{1,...k}−{i} v
(l−1)
j,t

7 v
(l)
i,t = C

(l)
i (fi,t,v

(l−1)
i,t ,v

(l−1)
i,t−1 , S(V ))

8 end
/* Make prediction and save C

(l)
i

*/
9 end

10 end
11 return v

(L)
i,t ∀i ∈ [1, . . . k], t ∈ [1, . . . T ]

abling the model to make temporally consistent predictions.
Together, this results in a collective classification model that
makes predictions for all people. The overall algorithm of
ICAF is shown in Algorithm 1.

4.1 Inter-person Dependencies
In a multi-person discussion, the behavior of one person can
influence the VFOA of others. Moreover, the behavior of peo-
ple is highly correlated—when a person is speaking, other
people are likely looking at him [Ba and Odobez, 2011]. This
mutual influence can be used to make accurate predictions.

We incorporate the person-to-person influence by adding
explicit connections between their classifiers (lines 4–8 in Al-
gorithm 1). In particular, for every person Pi’s model Ci,
we use the predictions of all other people’s models Cj ,∀j ∈
{1, . . . , k} − {i} as input. The resulting model is mutually-
recursive. To solve this recursion, we unfold the model for
multiple layers so that the output of layer l is fed as input to
layer l + 1. This is shown as layers 1, . . . L in Figure 3.

Thus, the input to person Pi’s model C(l)
i at layer l is its

output from layer l − 1 and an aggregation of the set V of
outputs from other people’s models from layer l − 1. The
aggregation is a summation represented as S(V ), which is
used as an input to the model (lines 6–7 in Algorithm 1).

To initialize for layer 1, let v(0)
i,t = C

(0)
i (fi,t), where C

(0)
i

is the classifier trained by only raw features of Pi, separately.

4.2 Temporal Consistency
The VFOA of a person at time t is linked to her VFOA at time
t − 1. The temporal consistency component of ICAF explic-
itly incorporates this dependency by using the output of the
predictions made during the last timestep for the person as an

v
(l)
i,t = C

(l)
i ( fi,t︸︷︷︸

Raw input

, v
(l−1)
i,t︸ ︷︷ ︸

Person input

, v
(l−1)
i,t−1︸ ︷︷ ︸

Temporal input

,
∑

j∈{1,...k}−{i}

v
(l−1)
j,t︸ ︷︷ ︸

Inter-person input

)

Figure 4: Final formulation of ICAF to output v(l)
i,t of person i at

time t on layer l.

input. Specifically, the output v(l−1)
i,t−1 is an input to C

(l)
i . This

is shown using the dashed lines in Figure 3 and in line 7 in
Algorithm 1. For each layer l, we initialize v

(l)
i,0 as a uniform

probability distribution for VFOA targets.
The final formulation with all the components is shown in

Figure 4. Overall, ICAF uses the real time inputs along with
temporal and inter-person dependencies to jointly predict the
visual focus of attention of all people.

5 Experiments
We conduct several experiments on Resistance and AMI
datasets to show:
• ICAF outperforms all strong baselines by 1.3% in pre-

dicting VFOA in the next time step (i.e., 10 frames) with
p = 0.046 by two-sample t-test.
• ICAF significantly outperforms the highest baseline by

up to 5% when making predictions upto k time steps in
the future (p < 0.05).
• Collective classification and temporal dependencies

boost the performance of ICAF significantly.
Baselines. We compare with three sets of baselines that
use head pose vector (H), eye gaze vector (E), and speak-
ing probability vector(S) for predictions. The first set of
baselines are [Ba and Odobez, 2009; Ba and Odobez, 2011;
Massé et al., 2017], with comparable numbers of VFOA tar-
gets in similar settings. Specifically, GMM(H), GMM(H,E)
use Gaussian Mixture Model with parameters from each in-
dividual [Ba and Odobez, 2009]. HMM(H), HMM(H,E) uses
Hidden Markov Model [Ba and Odobez, 2009]. DBN(H,S),
DBN(H,E,S) uses Dynamic Bayesian Network (DBN) incor-
porating conversational dynamics and a shared constant fo-
cus prior [Ba and Odobez, 2011]. Note that the screen activ-
ity feature is removed to adapt to our dataset. G-DBN uses
DBN to track VFOAs and eye gaze simultaneously with peo-
ple’s global head poses as inputs [Massé et al., 2017]. In our
dataset, people sit uniformly in a circle, so we convert their
local head poses to global ones given poses of their cameras.
Further, we created two more sets of baselines using three sets
of features H, (H,E) and (H,E,S). The second set of baselines
trains one general classifier GC for all people by including the
person index as input feature vector [Ba and Odobez, 2011].
The last set of baselines trains a person-specific classifier PC
for each person [Asteriadis et al., 2014]. As in the case of GC,
we create three baselines PC(H), PC(H,E), and PC(H,E,S).
Experimental setting. To get speaking probability fea-
tures, we set the sliding window size as 30 frames (1 sec)
and train a Random Forest speaking detection model SP. The
training data uses people’s introductions as speaking samples,



GMM(H,E) 0.716
HMM(H,E) 0.770
DBN(H,E,S) 0.800

G-DBN 0.782
GC(H,E,S) 0.756
PC(H,E,S) 0.818

ICAF 0.831

Table 2: Experiment 1: Next VFOA Prediction: Table reports ac-
curacy of ICAF and baselines using all features. Note that the best
results of GC, PC, and ICAF are achieved by RF. All improvements
of ICAF are statistically significant (p < 0.05).

and other people’s introductions as non-speaking samples.
The introductions were not drawn from our 5 video samples.
We evaluate ICAF and baselines by respecting the temporal
order of data. Instead of doing a k-fold cross-validation, we
train the model for the first T data points and test on the
T + 1th data point (each data point consists of 10 frames).
T is varied from 96.3% to 99.9%, and the results are aver-
aged. Recall that the data for each game is divided into three
parts: an introduction round and two discussion rounds. The
introduction round clips are only used for training, and the
temporal evaluation is done with the two discussion rounds.
Both training and testing are at the frame level. Frame VFOA
probabilities are further averaged over 10 frames as proba-
bilities at each 10-frame segments. Given the generality of
our model, we experiment with 4 classifiers: Random Forest
(RF), Logistic Regression (LR), Linear SVM (LINSVM) and
Gaussian Naive Bayes (NB). In all cases, ICAF has 3 layers.
All models are compared using the accuracy metric.
Experiment 1: Next VFOA prediction. We compare
ICAF with all baselines using all features. All models are
trained on the first T data points and then used to predict
the T + 1th data point. Note that this means that we are
predicting the visual focus of attention for each person 1/3
second into the future. The features given to ICAF for every
frame are the head pose vector (H), eye gaze vectors (E),
and speaking probability vectors (S). Table 2 shows the re-
sults. For fairness, we add eye gaze features (E) to baselines
GMM, HMM and DBN. (i) Person-specific baseline models
perform better than the corresponding general-classifier base-
lines using the same set of features. Specifically, PC(H,E,S)
performs at least 6.2% better than GC(H,E,S). (ii) More im-
portantly, ICAF performs between 1.3%–11.2% better than
all baseline models. (iii) Indeed, it is 3% higher than state-of-
the-art method DBN(H,E,S).
Experiment 2: Longer-future predictions. We next eval-
uate the robustness of ICAF by predicting the T + kth data
point while training only till the T th data point. We vary k
from 1 to 10, meaning that we predict who a person will look
at between 0.3 and 3.3 seconds into the future. Figure 5 shows
the result. ICAF outperforms the best baseline by up to 5%.
In fact, it is better than DBN(H,E,S) by 1.5%–5.7%. More-
over, ICAF is relatively stable as k increases, while some
baselines drop rapidly. Specifically, ICAF’s prediction accu-
racy varies only 7.5% over k, so it gives robust estimation of
VFOA in the longer-term future.
Experiment 3: Contribution of collective classification.
Figure 6 compares the results of ICAF with and without the
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Figure 5: Experiment 2: Longer-Future Prediction: Accuracy of
predicting k steps to the future. ICAF is the highest over all time
steps, and outperforms the best baseline by up to 5% (p < 0.05).
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Figure 6: Experiment 3: Contribution of collective classification:
The performance drops when either the collective or the temporal
components is removed and drastically when both are removed.

temporal and collective classification components. Note that
ICAF without both components is equivalent to the baseline
PC(H,E,S). We observe that each of them boost the perfor-
mance of ICAF from 0.2% to 5.3% w.r.t. all base classifiers.
The combination of both components is important in ICAF:
the performance of PC(H,E,S) is lower than ICAF without ei-
ther of the components. Additionally, adding collective clas-
sification improves performance more than the temporal com-
ponent alone. Therefore, both temporal and collective classi-
fication components of ICAF are essential, and the collective
component results is more critical for good predictions.
Experiment 4: Comparison with different features. We
next explore the effects of different features on ICAF and
baselines. Note that RF is used as the (base) classifier to ob-
tain best results for GC, PC, and ICAF . Table 3 shows the
results for next VFOA prediction. First, for all models, eye
gaze features E boost the predictions. It especially boosts [Ba
and Odobez, 2011; Ba and Odobez, 2009] by at least 13.5%.
Second, speaking features S boost all models except for GC.
These demonstrate that both E and S contribute to prediction
of VFOA. Third, using features including E or S, ICAF out-
performs all baselines.
Experiment 5: Comparison between different base classi-
fiers. Here we explore performance of ICAF with different
kinds of base classifiers: RF, LR, NB and LINSVM. In Fig-
ure 7 we compare ICAF with GC and PC in the cases of both
next VFOA prediction (k = 1) and longer-future VFOA pre-
diction (k > 1). We only show 2 out of 4 plots due to space
limit, but the results are similar. The colored texts show the



Model H H,E H,S H,E,S
GMM 0.525 0.716 - -
HMM 0.623 0.770 - -
DBN - - 0.665 0.800
GC 0.719 0.799 0.731 0.756
PC 0.716 0.805 0.771 0.818

ICAF 0.718 0.811 0.784 0.831

Table 3: Experiment 4: Comparison between different features:
Both E and S boost the accuracy of all models except GC, and ICAF
performs the best in 3 out of 4 cases. (p < 0.05)

Figure 7: Experiment 5: Comparison between different (base) clas-
sifiers. In each subfigure, each of 3 colored numbers indicates the
prediction accuracy of k = 1 in the same colored line.

results for k = 1, where ICAF outperforms the correspond-
ing best baseline by 1.3%-11%. For k > 1, it outperforms the
best baseline by up to 5% with RF, 12% with LR, 3% with
LINSVM, and 4% with NB. Thus, we observe the generality
of ICAF.
AMI corpus experiments. We also conducted experiments
on the AMI meeting corpus [McCowan et al., 2005]. 8 meet-
ings are dynamic, where people sit around a table and upto 1
person moves to the whiteboard/screen to present. 4 meetings
are static, where all people remain seated. We use people’s
closeup videos to extract head pose, eye gaze, and speaking
probability. We followed the leave-one-out protocol as in [Ba
and Odobez, 2011] and compare frame-based accuracy. Since
the 4 seats over all meetings are fixed, we train seat-specific
classifiers in ICAF. Table 4 shows that ICAF outperforms [Ba
and Odobez, 2011] in both kinds of meetings.

6 Lightly Supervised VFOA Prediction
A major challenge in VFOA prediction is the lack of labeled
data for new videos. Annotating VFOA at a second or sub-
second granularity is highly time-consuming and often not
clean. We now propose to generate accurate VFOA predic-
tions without ground truth labels. The proposed technique is
general and can be used to train both the baselines and ICAF.

The intuition is that people are highly likely to look at the
person who is speaking if there is a single speaker [Stiefel-
hagen et al., 2002]. Building on this intuition, we identify
continuous clip segments where one person is speaking. This
is done using the speaking prediction model SP described in
Section 3.1. To reduce false positives, we further average over
10 frames’ prediction probability around the current frame
and use it as the final label to select single-speaker segments.
For a segment where Pi is speaking, we assign i as the train-
ing label for all other people and the model is trained with it.
To evaluate the effectiveness of this training method, we train

Model Static meetings Dynamic meetings
[Ba and Odobez, 2011] 0.556 0.520

ICAF 0.568 0.538

Table 4: AMI corpus experiments. Accuracy of the proposed model
on static and dynamic meetings.
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Figure 8: Lightly supervised predictions (in blue) and supervised
predictions (in red): ‘Random’ denotes random prediction accuracy,
and ICAF\S denotes ICAF without speaking feature.

all models using the introduction (by generating its speaker
labels) and use the two discussion clips with the ground truth
VFOA labels as test.

Figure 8 shows the results for all baselines and ICAF using
RF as base classifier. Since the training labels are speaking la-
bels, we remove speaking probability features from ICAF as
well as baselines. Compared to random prediction of 14.4%,
the lightly supervised training technique generates 41.2%-
54.7% results. We also observe that ICAF performs bet-
ter than the baselines. For comparison, Figure 8 shows the
equivalent result with supervised training, where we train the
models using the ground truth focus labels in the introduction
round as well. We note that the lightly supervised prediction
is comparable to supervised prediction, showing the effec-
tiveness of the proposed training technique.

7 Conclusion
We showed that by explicitly incorporating inter-person de-
pendencies and temporal consistency are crucial to accurately
predict VFOA both in short-term future and long-term fu-
ture. The ICAF model is, therefore, able to overcome the
challenges of rapidly changing VFOA, high dynamics of the
discussion, and person-person inter-dependencies. Moreover,
the lightly supervised ICAF is crucial in making the model
general to unseen videos. This opens doors to new research in
efficient extraction of interaction networks from videos with-
out any training labels.
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