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Abstract—Identifying misinformation is a critical task on web
and social media platforms. Recent efforts have focused on
leveraging the community of ordinary users to detect, counter,
and curb misinformation. Twitter has recently launched a
community-driven misinformation detection service called Bird-
watch. On Birdwatch, users can provide notes to label tweets as
misleading or not, and they can rate other users’ notes as being
‘helpful’ or not. However, malicious users can inject fake notes
and helpfulness ratings to manipulate the system for their gains.
In this work, we investigate the robustness of Birdwatch against
adversaries. Using the entire datasets of Birdwatch, we show that
the current Birdwatch system is vulnerable to adversarial attacks
— using only a few fake accounts, an adversary can promote any
random note as one of the top ranking notes. To overcome this
vulnerability, we develop HawkEye. We propose four metrics
to determine the intrinsic quality of users, notes, and tweets.
We propose eight axioms that these quality scores should follow.
We propose a cold-start-aware graph-based recursive algorithm,
which satisfies the axioms, to measure all the quality scores. We
show that HawkEye is more robust against adversarial manip-
ulation. We also show that HawkEye outperforms Birdwatch in
identifying accurate and misleading tweets. Code and data are
available at https://github.com/srijankr/hawkeye. 1

I. INTRODUCTION

Misinformation is rampant on web and social media plat-
forms as users can create and spread fake news and misleading
content [1]–[4]. Such content can cause severe harm to the
democracy and society [3], disrupt belief in public institu-
tions [5], cause mass panic [6], and threaten public health [6],
[7]. In some cases, they lead to real-world violence [8]. As
misinformation spreads wide and fast [2], it becomes crucial
to curb and prevent its spread.

Several machine learning techniques have been created
to detect misinformation and disinformation [1], [9], [10].
These methods use the text of the misinformation content,
propagation patterns, temporal information, and other features.
However, misinformation can be written to escape detection
from these automated techniques [10], [11].

1The current paper is an extended version of the ASONAM 2021 paper
with the same title.

On the other hand, humans can identify misinformation
when they see it, even if a machine learning algorithm can
not [12]–[14]. Several recent studies have shown how users
can help to identify potential misinformation [12], [14], [15].
Users can act as ‘eyes on the ground’ and can help counter-
misinformation efforts in a variety of different ways — they
can flag or report it, they can reply to the misinformation
message with corrective information, or they can engage with
the users exposed to the misinformation to provide them true
information. This power of the community of ordinary users
can be harnessed to identify, remove, and limit the spread of
misleading content on social media.

Along these lines, Twitter has launched a new community-
driven service to address misinformation called Birdwatch 2.
Twitter users can enroll on Birdwatch to rate tweets according
to their accuracy. Users can identify the tweets they believe
are misleading (or not misleading), write notes that provide
context for their categorization, and even rate the helpfulness
of other users’ notes. Notes are ranked according to their
quality, as determined by the helpfulness ratings given by
other users. Tweets can be labeled as misinformative if there
are enough number of high-helpfulness notes that say so.
However, with any system that depends on user inputs, the
Birdwatch system can be vulnerable to malicious actors—such
actors can add fake ratings to notes to increase or decrease its
perceived quality, and consequently the classification of the
tweet. It is thus essential to understand the vulnerabilities of
the Birdwatch system against adversaries.

Present work. Here we study the vulnerability of the
community-based misinformation detection platform, Bird-
watch (by Twitter). We formulate the community feedback
ecosystem as a multipartite graph, containing user nodes, note
nodes, tweet nodes, and rating edges. We propose intrinsic
quality metrics for different entities in the graph, namely
accuracy of tweets, credibility of notes that are written for
tweets, and the trustworthiness of the users who write or rate
notes. We propose a set of eight axioms that these quality
metrics should satisfy and propose a formulation that satisfies
these axioms. We propose HawkEye, a graph-based recursive
algorithm that leverages the global graph structure to quantify
all the quality metrics. Since many users will only write and
rate a few notes and many tweets will only have a few notes,
we introduce a Laplacian smoothing technique to overcome

2https://birdwatch.twitter.com/
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this cold-start problem. We posit that HawkEye will be more
robust to adversaries.

We answer three research questions:
• Research Question 1: Is Birdwatch vulnerable to adversarial
attacks that manipulate note rankings?
• Research Question 2: Is the proposed HawkEye algorithm
more robust to attacks?
• Research Question 3: How accurate are the HawkEye and
Birdwatch algorithms in identifying misleading tweets?

We compare the Birdwatch and HawkEye models’ ro-
bustness against an attacker whose goal is to manipulate
the ranking of notes. We use Birdwatch’s entire dataset to
conduct experiments. Through extensive evaluation, we show
that the existing reputation algorithm that Birdwatch uses is
susceptible to attacks. An attacker can promote any random
note’s ranking by injecting a few fake ratings. Next, we show
that our proposed HawkEye algorithm is more robust against
this attack. Furthermore, we show that the HawkEye algorithm
performs better than the Birdwatch system in identifying
accurate and misleading tweets in both unsupervised and
supervised settings.

The code and data are available at https://github.
com/srijankr/hawkeye.

II. RELATED WORK

In this section, we introduce the relevant related works.
Community-based misinformation detection. A commu-
nity’s role in combating misinformation online as large-scale
fact-checkers has been studied recently [16]–[18]. Others
describe how crowd-sourced expertise can act as weak super-
vision for automated misinformation detection systems [19],
[20] or in augmenting machine learning driven fact-checking
[21], [22].

Other works [14], [23] provide insight into how mis-
information can organically be countered by the crowd by
amplifying the voices of professional fact-checkers, who often
have limited reach.
Graph-based reputation systems. Graphs have been used
to build reputation systems to detect malicious users and
unwanted behavior, such as fake reviewers [24]–[26], spam-
mers [27], auction fraud [28], and retweet fraud [29]. While
fraudulent behavior has been studied in crowdsourcing sys-
tems [30], [31], few of them use graphs to build reputation
systems for crowdsourced systems. Additionally, no graph-
based reputation system exists for the Birdwatch system by
Twitter.

III. BIRDWATCH DESCRIPTION AND DATASET

We describe how Birdwatch works and then its data.3

The Birdwatch system relies on users contributing in two
ways: notes and ratings. A note is a label given by a user to
a tweet, and a rating is a label given by a user to a note. A
Birdwatch user writes notes for tweets in their timeline, either

3As Birdwatch is an evolving system, some of its aspects may change over
time. The description we provide below is the state of the Birdwatch system
as of June 10, 2021.

Fig. 1: We model the Birdwatch network as a directed multi-
partite graph.

to label a tweet spreading misinformation as ‘misleading’ or
a tweet not spreading any misinformation as ‘not misleading’.
Notes can be associated with information where participants
can optionally explain why they believe a tweet is misleading,
and provide links to relevant sources. We observed that very
few users provide such additional information. For the purpose
of our experiments, we focus only on the note’s binary verdict
(misleading or not-misleading) provided to the tweet.

Since users can give wrong notes (i.e. write notes marking a
misleading tweet as not-misleading and vice-versa), Birdwatch
also allows users to rate the helpfulness of notes written by
other users. Users can rate a note as either ‘helpful’ or ‘not
helpful’. A user can not rate its own note. These ratings help
identify which notes are the most helpful, as judged by other
users, and allow Birdwatch to raise the visibility of those found
to be the most helpful by many users. A Note Helpfulness
Ratio is computed for each note as the proportion of ratings
that say the note is helpful. Birdwatch develops a reputation
system such that the notes which have at least 5 ratings and
a note helpfulness ratio of at least 0.84 are deemed to be
‘Currently Rated Helpful’ (CRH). Among these, the top 5
notes, ranked according to their helpfulness ratio, are deemed
to be the most credible and are most prominently displayed
on the Birdwatch site next to tweets.

Dataset. We downloaded all the notes and ratings data
made publicly available by Birdwatch. The data used for our
experiments ranges from January 23, 2021 (when this feature
was introduced) to April 13, 2021. This dataset contains a total
number of 6,271 Birdwatch notes, given by 1472 users, to
4,900 tweets. A total of 17,682 ratings were given to notes by
1,368 users. A total of 1,895 users are present in the dataset.
Each of the 4,900 tweets has at least one note written, and
3,445 notes have at least one rating.

Multipartite Graph. We model the Birdwatch data as a
directed multipartite graph between users, notes, and tweets
as shown in Figure 1. We define the Birdwatch graph
G = {U ,N ,R, T } as a directed multi-partite graph where
{U ,N ,R, T } represent the set of all users, notes, ratings and
tweets, respectively. A user u ∈ U writes note n ∈ N or rates
note n ∈ N . Every note n ∈ N is written for a tweet t ∈ T ,
and every rating r ∈ R is given for a note. There may be
notes with no ratings. All tweets in the dataset have at least
one note. A users can either write notes, rate notes, or do both.

https://github.com/srijankr/hawkeye
https://github.com/srijankr/hawkeye


We define helpfulness(u, n) ∈ {−1, 1}∀(u, n) ∈ R as the
helpfulness rating given by user u to note n: a score of 1
denotes the user rated the note as helpful, and -1 (not helpful)
otherwise. Let Outr(u) be the set of all the ratings given by
the user u and In(n) be the set of all the ratings received by
note n. Then, |Outr(u)| and |In(n)| represent their respective
counts. We further define In+(n) as all the ratings received
by note n which are ‘helpful’ and In−(n) as all the ratings
received by note n which are ‘not helpful’.

We further define verdict(n, t) ∈ {−1, 1} as the note n’s
classification of the ‘misleadingness’ of the tweet t. A score
of -1 (negative verdict) denotes that the user giving the note
believes the tweet is potentially misleading or spreading false
information. A score of 1 (positive verdict) denotes that the
tweet is not misleading.

Let In(t) refer to the set of all notes received by tweet
t and Outn(u) be the set of all notes written by user u .
Then, |In(t)| and |Outn(u)| represent their respective counts.
We further define In+(t) as all the ‘not misleading’ notes
received by tweet t and In−(t) as all the ‘misleading’ notes
received by tweet t.

Definition 1. [Identical Egonetworks for notes] : Two notes
n1 (given to tweet t1) and n2 (given to tweet t2) have
identical egonetworks if |In(n1)| = |In(n2)| and there
exists a one-to-one mapping h : In(n1) → In(n2) such
that helpfulness(u, n1) = helpfulness(h(u), n2)∀(u, n1) ∈
In(n1) and verdict(n1, t1) = verdict(n2, t2).

Definition 2. [Identical Egonetworks for tweets] : Two
tweets t1 and t2 have identical egonetworks if |In(t1)| =
|In(t2)| and there exists a one-to-one mapping h : In(t1)→
In(t2) such that verdict(n, t1) = verdict(h(n), t2)∀(n, t1) ∈
In(t1).

IV. HAWKEYE METRIC FORMULATION

We propose that users, notes, and tweets have (unknown)
intrinsic scores that quantify their quality: user trust, note
credibility, and tweet accuracy. In doing so, we take inspiration
from relevant prior works [24], [26]. These scores are unknown
apriori, but essential to formulate and quantify. We formally
define these quality metrics below.
• User Trustworthiness in Writing Notes: Users vary in
terms of how trustworthy they are when they are writing a
note. Trustworthy users should ideally write a ‘misleading’
note to a ground-truth misinformation tweet and a ‘non-
misleading’ note to a ground-truth accurate tweet. However,
untrustworthy users can aim to do the opposite, with the
goal of misguiding the audience — their note can lead to
an accurate tweet being flagged for deletion, while keeping an
inaccurate tweet in circulation. We define a metric called ‘User
Trustworthiness in Writing’ a note as TW (u) to quantify the
expected quality of notes written by a user u. This scalar score
lies between -1 and +1 (both inclusive) — a score of 1 denotes
a user who always writes credible notes, while -1 means the
opposite.
• User Trustworthiness in Rating Notes: A user who is
trustworthy in writing notes may not necessarily be trustworthy

when it comes to rating notes. For example, malicious users
may write credible notes but may manipulate the ratings of
note written by others — they may assign high helpfulness
ratings to low quality notes, so that others may believe that the
notes are high quality. Simultaneously, they may give ground-
truth high quality notes a low rating.

Hence, we need a separate trustworthiness score for users
in rating notes. We posit that users vary in terms of how
trustworthy they are when they rate the quality of notes written
by other users.

We define a metric called ‘Trustworthiness in Rating’
TR(u) to quantify a user u’s expected trust in giving accurate
ratings. This value lies between 0 and 1 (both inclusive), where
higher values indicate higher trustworthiness.
• Note Credibility: As mentioned previously, in order to
manipulate rankings, users can write low (high) scoring notes
for high (low) quality tweets. While a user’s writing trust-
worthiness measures the average quality of the user across all
the notes she has written, the purpose of the Note Credibility
score is to measure the quality of each individual note. The
need to tease apart user’s trustworthiness in writing from
note’s credibility arises from the fact that even a generally
trustworthy (untrustworthy) user may sometimes write low
(high) credibility note. Clearly, the same metric can not be
used to quantify the quality of both users and notes. Therefore,
the note credibility score NC(n) is a score that lies between
-1 and +1 (both inclusive).
• Tweet Accuracy : The Birdwatch system has been primarily
built to identify tweets which could be misleading. Naturally,
not all tweets are accurate. We define a metric called ‘accu-
racy’ to measure how correct its content is. The accuracy of
a tweet is a number lying between -1 and +1 (both inclusive),
where -1 denotes a tweet of the lowest accuracy and +1
denotes a note of the highest accuracy. Note that while the
ground-truth of a tweet is either -1 (false tweet) or +1 (true
tweet), our metric gives a score in the entire range of -1 to +1
to quantify the model’s confidence in its label.

Having established the intrinsic quality scores of all the
entities with ego networks, we can create qualitative definitions
of ego networks, inspired from relevant prior work [24].

Definition 3. [Identically Credible Egonetworks for tweets]:
We say that two tweets t1 and t2 have identically credible
egonetworks if |In(t1)| = |In(t2)| and there exists a one-
to-one mapping h : In(t1) → In(t2) such that NC(n1) =
NC(h(n1))∀(n1, t) ∈ In(t1).

Definition 4. [Identically Trustworthy Egonetworks for
notes]: We say that two notes n1 (written by u1) and n2
(written by u2) have identically trustworthy writing egonet-
works if TW (u1) = TW (u2). Similarly, two notes n1 and n2
have identically trustworthy rating egonetworks if |In(n1)| =
|In(n2)| and there exists a one-to-one mapping h : In(n1)→
In(n2) such that TR(u) = TR(h(u))∀(u, n1) ∈ In(n1).

Since users, notes, and tweets are interdependent on one an-
other, their quality scores are also recursively interdependent.
We propose the following axioms, inspired from relevant prior
work [24], that establish this inter-dependency and also lay



ground for the metrics that we would be formulating for each
of the quality scores. These axioms assume that all users are
benign.

Axiom 1 (More accurate tweets get positive verdict notes):
If two tweets have identically credible egonetworks and for
the first tweet, more notes have positive verdicts (‘not mis-
leading’) than the second tweet, then the first tweet is more
accurate. Formally, if two tweets have a one-to-one mapping
h : In(t1) → In(t2) such that NC(n) = NC(h(n)) and
verdict(n, t1) >= verdict(h(n), t2)∀(n, t1) ∈ In(t1) then
A(t1) >= A(t2).

The second axiom defines the relation between a tweet and
the credibility of the notes written for it.

Axiom 2 (More accurate tweets get higher credibility notes
with the verdict ‘not-misleading’): If two tweets have identical
egonetworks and for the first tweet, the positive verdict (‘not
misleading’) notes have higher credibility than the second
tweet and the negative verdict (‘misleading’) notes have lower
credibility than the second tweet, then the first tweet is
more accurate. Formally, if two tweets have a one-to-one
mapping h : In(t1) → In(t2) with |verdict(n, t1)| =
|verdict(h(n), t2)|, where |In(t1)| = In(t2)| such that
NC(n) >= NC(h(n))∀(n, t1) ∈ In+(t1) and NC(m) <=
NC(h(m))∀(m, t1) ∈ In−(t1), then A(t1) >= A(t2).

The next four axioms define the different factors that affect
the note’s credibility. The next axiom defines the relation
between note and the ratings it receives.

Axiom 3 (Notes with higher credibility get more ‘helpful’
ratings): Consider two notes n1 and n2 with identically trust-
worthy rating and writing egonetworks and with equal verdicts
to equally accurate tweets t1 and t2. If for the first note, more
‘helpful’ ratings have been given than the second note, then
the first note has higher credibility. Formally, if two notes
n1 and n2 are such TW (u1) = TW (u2), A(t1) = A(t2),
verdict(n1, t1) = verdict(n2, t2), and if there is a one-to-one
mapping h : In(n1)→ In(n2) with TR(u) = TR(h(u)) and
helpfulness(u, n1) >= helpfulness(h(u), n2)∀(u, n1) ∈
In(n1), then NC(n1) >= NC(n2).

The next axioms establishes the relationship between note’s
credibility and user trustworthiness.

Axiom 4 (Notes with higher credibility get ‘helpful’ ratings
from more trustworthy users): Consider two notes n1 and n2
with identical and identically trustworthy writing egonetworks
and give equal verdicts to equally accurate tweets t1 and
t2. If the first note has been rated ‘helpful’ by users who
are more trustworthy in rating notes and ‘not helpful’ by
users who are less trustworthy in rating notes, then the
first note has a higher credibility. Formally, if two notes
n1 and n2 are such TW (u1) = TW (u2), A(t1) = A(t2),
verdict(n1, t1) = verdict(n2, t2), |In(n1)| = |In(n2)| and
if there is a one-to-one mapping h : In(n1) → In(n2)
with helpfulness(u, n1) = helpfulness(h(u), n2) such that
TR(u) >= TR(h(u))∀(u, n1) ∈ In+(n1) and TR(u) <=
TR(h(u))∀(u, n1) ∈ In−(n1), then NC(n1) >= NC(n2).

The next axiom looks at who wrote the note and their impact
on note’s credibility.

Axiom 5 (Notes with higher credibility are written by users
more trustworthy in writing notes): Consider two notes n1 and
n2 with identical and identically trustworthy rating egonetwork
and with equal verdicts to equally accurate tweets t1 and t2.
The note written by a user with higher trustworthiness in
writing notes has higher credibility. Formally, if two notes
n1 and n2 are such TW (u1) >= TW (u2), A(t1) = A(t2),
verdict(n1, t1) = verdict(n2, t2), and if there is a one-to-one
mapping h : In(n1) → In(n2) with helpfulness(u, n1) =
helpfulness(h(u), n2) and TR(u) = TR(h(u))∀(u, n1) ∈
In(n1), then NC(n1) >= NC(n2).

The next axiom defines the relation between a tweet’s
accuracy and the note’s credibility.

Axiom 6 (Notes with higher credibility give verdicts closer
to tweet accuracy): Consider two notes n1 and n2 written
by users u1 and u2 respectively, with identically trustworthy
rating and writing egonetworks. The note with the verdict
closer to the tweet accuracy has higher credibility. Formally,
if two notes n1 and n2 are such TW (u1) = TW (u2), if
there is a one-to-one mapping h : In(n1) → In(n2) with
helpfulness(u, n1) = helpfulness(h(u), n2) and TR(u) =
TR(h(u))∀(u, n1) ∈ In(n1), if |verdict(n1, t1)−A(t1)| <=
|verdict(n2, t2)−A(t2)|, then NC(n1) >= NC(n2).

The next two axioms establish user’s trustworthiness. The
next axiom defines the relation between users and and the
notes written by them.

Axiom 7 (Users more trustworthy in writing notes write
notes with high credibility.): For two users who have written
an equal number of notes, if one’s notes have a higher
credibility than the credibility of the notes written by the
other user, then the former user has higher trustworthiness
in writing notes. Formally, if two users have a one-to-one
mapping h : Outn(u1) → Outn(u2) such that |Outn(u1)| =
|Outn(u2)| and NC(n) >= NC(h(n))∀n ∈ Outn(u1), then
TW (u1) >= TW (u2).

The next axiom defines the relation between users’ rating
trustworthiness and the ratings that they give.

Axiom 8 (Users more trustworthy in rating notes give
helpfulness ratings scores closer to credibility of notes.): For
two users who have rated an equal number of notes, the user
whose notes have ratings closer to their credibility scores
is more trustworthy in rating notes. Formally, if two users
have a one-to-one mapping h : Outr(u1) → Outr(u2) such
that |Outr(u1)| = |Outr(u2)| and |helpfulness(u1, n) −
NC(n)| <= |helpfulness(u2, h(n))−NC(h(n))|∀(u1, n) ∈
Outr(u1), then TR(u1) >= TR(u2).

A. HawkEye Formulation

Based on the above axioms, we define the formulation for all
quality scores such that they satisfy the axioms. Other ways to
define the quality scores which satisfy the axioms are feasible
as well, which we will explore in future work. The presently
proposed formulation is defined below.
• Trustworthiness of user in rating notes: Trustworthiness of a
user in rating notes is calculated as the average of the closeness



between the rating and credibility for all the notes rated by the
user. We formulate it as :

TR(u) =

∑
(u,n)∈Outr(u)

(
1− |helpfulness(u,n)−NC(n)|

2

)
|Outr(u)|

where, helpfulness(u, n) refers to the rating given by user
u to note n and Outr(u) refers to all the ratings given by the
user.
• Trustworthiness of user in writing notes: Trustworthiness
of a user in writing notes is calculated as the average of
the credibility for all the notes written by the user and is
formulated as :

TW (u) =

∑
n∈Outn(u)

NC(n)

|Outn(u)|
where, Outn(u) refers to all the notes written by user u and
Outt(u) refers to all the tweets written by user u
• Credibility of a note: Credibility of a note is calculated
as a function (aggregation) of three components. The first
component is the weighted average of the (helpfulness) ratings
received by a note, where the weight is the trustworthiness
of the user rating the notes. The second component is the
trustworthiness in writing notes of the user who wrote the note.
The third component is the closeness of the note’s verdict to
the accuracy of the tweet the note is written for. We formulate
it as :

NC(n) =
1

3

(
λ1

∑
(u,n)∈In(n)

TR(u) · helpfulness(u, n)

|In(n)|
+ λ2TW (u) + λ3 (1− |A(t)− verdict(n, t)|)

)
where In(n) refers to all the ratings received by note n and

verdict(t) refers to the note n’s classification for tweet t. We
define λ1, λ2, λ3 ∈ [0, 1] as constants which can be tuned as
hyperparameters.
• Accuracy of a tweet: The accuracy of a tweet is calculated
as the weighted average of the verdicts written for the tweet,
where the weights are the credibilities of the respective notes.

A(t) =

∑
(n,t)∈In(t)

NC(n) · verdict(n, t)

|In(t)|
where In(t) refers to all the notes received by tweet t.

It can be verified that the above formulation satisfies the
eight axioms presented in the previous subsection. The formal
proof is provided in the appendix A. Since the proofs are
written without loss of generality we can further claim that
that Birdwatch data also satisfies this formulation.

B. Addressing the cold start problem

The cold-start problem refers to when elements in a system
have had very little interactions with other items in the system,
making it very difficult to measure their true quality because
of insufficient information. For Birdwatch, we might face the
cold start problem to estimate the credibility of notes (when
there are very few ratings given to the note), the accuracy of
a tweet (in case it has fewer notes) and the trustworthiness

of users (who have rated or written very few notes) [32]. For
example, it would be wrong to classify an accurate tweet as
inaccurate if it only has a couple of notes (by malicious actors)
marking it as ‘misleading’. Similarly, a user with very few but
highly accurate ratings may be a malicious user camouflaging
itself or it may be a benign user [33], [34]. Cold start needs
to be addressed to distinguish these cases.

We address the cold start issue by adding Laplace smooth-
ing to each of the quality scores. We introduce smoothing
parameters α1, β1, γ1, δ1 which are pseudo counts whereas
µr, µw, µg, µt are the prior beliefs or default scores for trust-
worthiness of new users in rating, trustworthiness of new
users in writing, credibility of new notes and accuracy of
new tweets, respectively. The smoothing parameters tune the
relative importance of prior — the lower (higher) the value
of priors, the more (less) the quality scores depend on that
component. The resulting equations are:

TR(u) =

∑
(u,n)∈Outr(u)

(
1− |helpfulness(u,n)−NC(n)|

2

)
+ α1µr

|Outr(u)|+ α1

TW (u) =

∑
n∈Outn(u)

NC(n) + β1µw

|Outn(u)|+ β1

NC(n) =
1

3

(
λ1

∑
(u,n)∈In(n)

TR(u) · helpfulness(u, n) + γ1µg

|In(n)|+ γ1

+ λ2TW (u) + λ3 (1− |A(t)− verdict(n, t)|)
)

A(t) =

∑
(n,t)∈In(t)

NC(n) · verdict(n, t) + δ1µt

|In(t)|+ δ1

With the above formulation that incorporates cold start, if
a user has written very few notes, its trustworthiness will be
closer to the default beliefs, thus preventing the first few notes
from having much impact on its trustworthiness. As the user
writes more notes, its trustworthiness score moves towards the
average of credibility of notes. The same logic applies to the
other metrics as well, where we addressed cold start.

These equations satisfy the axioms as well. The Laplace
smoothing terms are constants, so have no impact while
proving that the formulation satisfies the axioms.

The HawkEye algorithm. Having formulated the intrinsic
metrics above, we now describe how the HawkEye algorithm
computes the quality scores.

We initialize the TR, TW,NC and A scores of all users,
notes and tweets to the highest possible value 1. The pseudo
counts α1, β1, γ1, δ1 are also initialized to 1 and the priors
µr, µw, µg, µt are set as the mean scores of TR, TW,NC
and A respectively. The algorithm updates each of the values
iteratively, so let TRt, TW t, NCt, At be vectors representing
the trustworthiness in rating of all users, trustworthiness in



writing, credibility of all notes and accuracy of all tweets at
the end of iteration t. We then iteratively update the scores
using the above equations. In each iteration, all the scores in
an iteration t are updated using the scores from the previous
iteration t − 1. For example, to calculate At, we use the
NC calculated in the previous iteration i.e. NC(t−1). The
iterations are done until convergence, i.e., when all scores
change minimally in two consecutive iterations, where ε (=
0.001) is the acceptable error bound.

Ranking notes with the HawkEye metric. Here we explain
how the HawkEye metrics can be used to rank notes in Bird-
watch. Recall that Birdwatch currently uses the helpfulness
ratio measure to rank notes (please refer to the Data Section
for details). Following that, in HawkEye, we define notes that
receive at least 5 ratings and have a minimum credibility
threshold τ as the set of ‘most credible notes’. These notes
are ranked according to their credibility.

We posit that this ranking system is more robust against
adversarial attacks compared to the current system being used
by Birdwatch.

V. ATTACKER’S GOALS AND CAPABILITIES

The primary goal of the attackers is to manipulate the set
of top-ranked notes for a target tweet.

Specifically, the attacker aims to promote a random note
(which is not already top-ranked) to be among the top-ranked
notes according to the ranking metric. This attack can involve
two scenarios. If the size of the set of top-ranked notes is less
than k, a the attacker would aim to insert the randomly chosen
target note in the top-ranked notes set. If the size of the set
of top-ranked notes is atleast k, the attacker would replace
one of the existing top-ranked notes with the target note. We
describe the two attacks as insertion and replacement attacks,
respectively. To study the most challenging attack setting, we
set k = 1, i.e., the attacker’s goal is to make the target note as
the topmost ranked note of the tweet. The task for the attacker
naturally becomes easier when the value of k is increased.

The attacker has the following capabilities:
• Account creation:The attacker can create (multiple) accounts
on the Birdwatch platform.
• Rating notes: The attacker can give ratings (helpful or not
helpful) to existing notes. One account can only rate a note
once. The attacker can not write new notes.
• White box attack: The attacker has access to the Birdwatch
data, which is already publicly available. We also assume that
the attacker knows the thresholds being used by the reputation
system, which is feasible as Birdwatch’s entire code is publicly
available.

We quantify a reputation system’s robustness as follows:
How many accounts does an attacker need to promote a non
top-ranked note to become the topmost ranked note? Higher
numbers mean that the reputation system is more robust.

The top ranked note for the HawkEye metric is the note
with the highest credibility score and at least 5 ratings. On
the other hand, the top ranked note for the existing Birdwatch
system would be the note with at least 5 ratings and has the

(a) Insertion Attack Distribution (b) Replacement Attack Distribution

Fig. 2: Adversarial attack comparison for Birdwatch and
HawkEye (τ = 0.02) systems.

highest helpfulness ratio among the notes marked as ‘currently
rated helpful’ (CRH).

VI. EXPERIMENTAL EVALUATION

In this section, we conduct the following experiments:
• Robustness against attack. We evaluate the robustness of
Birdwatch and HawkEye against the adversarial attack. Recall
that the goal of the attacker is to make a random note the top
ranked note.
• Sensitivity to hyperparameter. We evaluate how sensitive
HawkEye is to the minimum credibility threshold τ parameter.
•Misinformation tweet detection. We evaluate how accurate
Birdwatch and HawkEye are in classifying tweets as accurate
or misleading.

Experiment details. The weighing constants λ1, λ2 and λ3
are set to 0.1. In HawkEye, we set τ = 0.02 and ε = 0.001.

A. Experiment 1: Robustness against attack.

This experiment answers research questions 1 and 2.
We compare the HawkEye metric’s robustness against the
adversary to the Birdwatch metric’s robustness via simulations.

Given a reputation system R, for every tweet, we randomly
select a note n which is not already a top-ranked note
according to R. Then we iteratively add fake accounts, which
give fake ‘helpful’ ratings to note n and ‘not helpful’ ratings to
notes currently ranked at the top by R. We find the minimum
number of fake accounts needed for the note n to become the
top ranked note and meet all the criteria by R. This process
is repeated for all the tweets. We only allow a maximum of
10 fake accounts to be used by the attacker (for computational
reasons).

The above iterative process generates a distribution of the
number of fake accounts required by the tweets to boost
a random note to top-ranked in R’s reputation system. We
generate this distribution for both the HawkEye metric and the
Birdwatch metric. The resulting plot is shown in Figure 2. The
Y-axis denotes the number of tweets requiring the minimum
number of fake accounts (denoted by the X-axis) for a random
note to become the top ranked-note. We split the plot into two
cases. First is the insertion attack (Figure 2(a)), when prior
to the attack there was no note that satisfied the system R’s
criteria, in which case the target note is promoted to be the
highest ranked note. The second case is replacement attack
(Figure 2(b)), when prior to the attack there is already a note
that occupies the top rank position (and satisfies R’s criteria).



(a) Insertion Attack, τ = 0.01 (b) Replacement Attack, τ = 0.01

(c) Insertion Attack, τ = 0.03 (d) Replacement Attack, τ = 0.03

Fig. 3: Adversarial attack plots for HawkEye system with
different parameters.

Here the target note replaces the current top ranked note as
the new top ranked note after the attack.

First, we notice that there are more insertion attack cases
than replacement attack cases. Next, we see that for the
Birdwatch metric, the peak in the insertion attack plot is at 5
fake accounts, which, you may recall, is the minimum number
of ratings that are required for a note to quality as a CRH
note. Third, we find that number of fake accounts needed
in HawkEye is significantly higher than that in Birdwatch.
The curves for HawkEye have shifted more towards the right
compared to Birdwatch, which indicates higher robustness of
the HawkEye system.

To statistically compare the distributions, we run a paired-
t test to assess if the samples for the Birdwatch metric and
HawkEye the metric have identical expected values.

We find that in both the insertion and the replacement attack
case, the distributions are statistically different with p-values
< 0.05. The expected value of HawkEye system is higher than
the Birdwatch system. This proves that the proposed HawkEye
system has a higher robustness than the Birdwatch system.

τ Insertion p-value Replacement p-value
0.01 1.08e-17 0.97
0.02 0.0 7.27e-07
0.03 0.0 0.01

TABLE I: Paired t-test p-values comparison.
B. Experiment 2: Sensitivity to τ .

Next, we evaluate the sensitivity of the τ parameter in
HawkEye, i.e., the minimum credibility threshold. Naturally,
as τ increases, so does the difficulty of breaking the HawkEye
system. In addition to τ = 0.02, here we test for two more τ
values of 0.01 and 0.03. The plots for both the insertion and
replacement attacks are shown in Figure 3. As expected, the
curve shifts towards the right for the higher τ value. Similar
to the previous experiment, we also compare the curves with
the Birdwatch system via paired t-test and report the p-values

in Table I. We find that both the insertion attack curves have
a statistically significant p-value (< 0.05). On the other hand,
only the replacement attack plot of τ = 0.03 is significantly
higher than Birdwatch.

C. Experiment 3: Misinformation tweet detection perfor-
mance.

This experiment answers research question 3. Here we
compare the performance of Birdwatch’s and HawkEye’s rep-
utation system in classifying tweets as accurate or misleading.

As the tweets do not have ground-truth labels, we seek
the help of three non-author annotators to label the tweets
as misinformation or accurate. We select 500 tweets from
the entire set of tweets to be labeled. To help them make
a more informed decision, we also supply several attributes
around each tweet including the (1) tweet text and URL, (2)
the user handle, display name, bio, user follower count and
verification status, and (3) number of likes and retweets. The
annotators mark each tweet as either accurate or misleading.
A Fleiss Kappa score of 0.51 amongst the 3 annotators shows
a moderate inter-rater agreement. The ground-truth label for
each tweet is assigned as the majority of the three individual
annotations. 124 tweets were assigned the misinformation
label.

The predicted labels for the tweets for both the reputation
systems, Birdwatch and HawkEye, are determined as follows.
For the Birdwatch system, we count the number of helpful
notes as the notes that have a helpfulness ratio of at least 0.84
(this threshold is used by Birdwatch). For each tweet, if the
number of helpful notes that labeled the tweet as misleading
are more than or equal to the number of helpful notes
that labeled the tweet as not-misleading, we say Birdwatch
classifies the tweet as misleading. We use this technique as
Birdwatch does not define a standard way for tweet labeling.

Analogous to the above method, we employ a similar
unsupervised method, to detect misinformation tweets for the
HawkEye system. For each tweet, from the notes written for
the tweet, we select notes having a credibility of at least 0.02.
You may recall these credible notes by HawkEye. Among
these notes, if the number of notes that labeled the tweet as
misleading are more than or equal to the number of notes that
labeled the tweet as not misleading, HawkEye classifies the
tweet as misleading.

Furthermore, for the HawkEye system, we also employ a
supervised learning technique that trains a model to detect
misinformation tweets. We represent each tweet t as a feature
vector of its accuracy scores across multiple runs of HawkEye
for different combinations of values of the weighing constants
λ1, λ2, λ3 and of the smoothing parameters α1, β1, γ1, δ1 i.e.
A(t|α1, β1, γ1, δ1, λ1, λ2, λ3)∀(α1, β1, γ1, δ1, λ1, λ2, λ3) ∈ C
where C is the set of all parameter combinations. This is
done to overcome biases that may creep in due to a single
parameter setting. We choose the smoothing parameters values
from 0, 1, 2 and the weighing constants λi from 0, 0.5, 1 and
end up with 37 = 2187 combinations. For each tweet t
in the 500 labeled tweets, we get the A(t) values for all



Metric Birdwatch HawkEye
(unsupervised)

HawkEye
(supervised)

Precision 0.63 0.85 0.79
Recall 0.25 0.74 0.78

F1-score 0.11 0.76 0.78

TABLE II: Misinformation tweet detection performance com-
parison between Birdwatch and HawkEye.

the parameter combinations, which forms a 2187-dimension
vector for every tweet, representing our input training data.
The output training data includes the human annotations as
the ground-truth train labels. Using these vectors, we train a
random forest classifier and conduct 10-fold cross validation
on the 500 tweets. Average numbers across the ten folds are
calculated.

All the results are shown in Table II. We evaluate the class-
weighted average precision, recall and F1-scores.

The results in the table show that the HawkEye (unsuper-
vised) algorithm performs better than the Birdwatch technique
in identifying inaccurate tweets. This holds true across all
three performance metrics. Between HawkEye unsupervised
and HawkEye supervised, we see that the supervised version
performs slightly better than the unsupervised one in terms of
recall and F-1 score.

VII. DISCUSSION AND CONCLUSION

In this work, we showed that HawkEye is more robust
then Birdwatch’s current system against adversaries who try
to manipulate note rankings. The work has some limitations.
First, the proposed system does not use the text information
present in the notes. This is because the current note texts are
mostly sparse. Textual feature can be included in the future
when the text content is more useful. Second, we only study
one type of adversarial attack. Robustness to other attacks
remains to be an open challenge.
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APPENDIX A
In this section, we show that the proposed formulation

satisfies the axioms.
• Accuracy of a tweet:

Consider two tweets t1 and t2.
According to the formulation the accuracy of tweets t1 and

t2 is respectively given by

A(t1) =

∑
(n,t1)∈In(t1)

NC(n) · verdict(n, t1)

|In(t1)|
and

A(t2) =

∑
(n,t2)∈In(t2)

NC(n) · verdict(n, t2)

|In(t2)|
Case 1. Now, consider the scenario where t1 and t2 have

identically credible egonetworks such that verdict(n, t1) >=
verdict(h(n), t2)∀(n, t1) ∈ In(t1)

Since the tweets have identically credible egonetworks,
|In(t1)| = |In(t2)|. Hence, the comparison of the accuracies
of the two tweets depends only on the respective weighted
sums of the verdicts written for the tweets i.e.∑

(n,t1)∈In(t1)

NC(n) · verdict(n, t1)

and ∑
(n,t2)∈In(t2)

NC(n) · verdict(n, t2)

Since the tweets are identically credible, they have a one-
to-one mapping h : In(t1) → In(t2) such that NC(n) =
NC(h(n)),∀(n, t1) ∈ In(t1). Hence, the comparison of their
accuracies is dependent only on the respective sums of the
verdicts written for the tweets i.e.∑

(n,t1)∈In(t1)

verdict(n, t1)

and ∑
(n,t2)∈In(t2)

verdict(n, t2)

As verdict(n, t1) >= verdict(h(n), t2),∀(n, t1) ∈ In(t1),
we have : ∑

(n,t1)∈In(t1)

NC(n) · verdict(n, t1)

>=
∑

(n,t2)∈In(t2)

(h(n)) · verdict(n, t2)

⇒ A(t1) >= A(t2)

which satisfies axiom 1.

Case 2. Now, consider two tweets t1 and t2 with iden-
tical egonetworks. Thus, the two tweets have a one-to-one
mapping h : In(t1) → In(t2) with |verdict(n, t1)| =
|verdict(h(n), t2)|, where |In(t1)| = In(t2)|.

Thus, the comparison between the accuracies of the tweets
depends only on the sum of the weighted verdict of notes
received by the two tweets, with the weight being the note
corresponding note credibilities. i.e.∑

(n,t1)∈In(t1)

NC(n) · verdict(n, t1)

and ∑
(n,t2)∈In(t2)

NC(n) · verdict(n, t2)

If consider that for t1, the positive verdict (‘not misleading’)
notes have higher credibility than the positive notes of t2
and the negative verdict (‘misleading’) notes of t1 have lower
credibility than the negative notes of t2. Thus,

NC(n) >= NC(h(n))∀(n, t1) ∈ In+(t1)

and
NC(m) <= NC(h(m))∀(m, t1) ∈ In−(t1)

Since the one-to-one mapped verdicts for the tweets are of
the same absolute value, the sum of the higher credibilities for
t1 gets amplified in the positive direction, whereas, the sum
of the lower credibilities for t2 become further negative.∑

(n,t1)∈In(t1)

NC(n) · verdict(n, t1)

>=
∑

(n,t2)∈In(t2)

NC(n) · verdict(n, t2)

⇒ A(t1) >= A(t2)

which satisfies axiom 2.

• Credibility of a note:
Consider two notes n1 and n2 written respectively by users

u1 and u2.
The credibilities of the notes are given by:

NC(n1) =
1

3

(
λ1

∑
(u1,n1)∈In(n1)

TR(u1) · helpfulness(u1, n1)

|In(n1)|
+ λ2TW (u1) + λ3 (1− |A(t)− verdict(n1, t)|)

)
and

NC(n2) =
1

3

(
λ1

∑
(u2,n2)∈In(n2)

TR(u2) · helpfulness(u2, n2)

|In(n2)|
+ λ2TW (u2) + λ3 (1− |A(t)− verdict(n2, t)|)

)
Case 1. Now, consider two notes n1 and n2 with identically

trustworthy rating and writing egonetworks and with equal



verdicts to equally accurate tweets t1 and t2. Hence, A(t1) =
A(t2) and verdict(n1, t1) = verdict(n2, t2).

Due to the two notes having identically trustworthy writing
networks, TW (u1) = TW (u2), and because of identically
trustworthy rating networks, there is a one-to-one mapping
h : In(n1) → In(n2) with TR(u) = TR(h(u)) where
|In(n1)| = |In(n2)|.

Hence, the comparison between the credibilites of the
two notes depends only on the first term in the crediblity
formulation, i.e. the sums of the helpfulness ratings received
by the two notes i.e.∑

(u1,n1)∈In(n1)

helpfulness(u1, n1)

and ∑
(u2,n2)∈In(n2)

helpfulness(u2, n2)

Now, if we assume that for n1, more ‘helpful’ ratings have
been given than n2, then∑

(u1,n1)∈In(n1)

helpfulness(u1, n1)

>=
∑

(u2,n2)∈In(n2)

helpfulness(u2, n2)

⇒ NC(n1) >= NC(n2)

which satisfies axiom 3.

Case 2. Consider two notes n1 and n2 with identical and
identically trustworthy writing egonetworks, which give equal
verdicts to equally accurate tweets t1 and t2.
∴ A(t1) = A(t2) and verdict(n1, t1) = verdict(n2, t2).
Identical egonetworks mean |In(n1)| = |In(n2)| and

that there is a one-to-one mapping h : In(n1) → In(n2)
with helpfulness(u, n1) = helpfulness(h(u), n2). Iden-
tically trustworthy writing egonetworks additionally mean
TW (u1) = TW (u2).

Thus, the comparison of the credibilities of the two notes,
depend only on the first term, i.e.∑

(u1,n1)∈In(n1)

TR(u1) · helpfulness(u1, n1)

and ∑
(u2,n2)∈In(n2)

TR(u2) · helpfulness(u2, n2)

Further consider that for the n1, more ‘helpful’ ratings have
been given than n2. Thus, there is a one-to-one mapping
h : In(n1) → In(n2) with TR(u) = TR(h(u)) and
helpfulness(u, n1) >= helpfulness(h(u), n2)∀(u, n1) ∈
In(n1).

∴
∑

(u1,n1)∈In(n1)

TR(u1) · helpfulness(u1, n1)

>=
∑

(u2,n2)∈In(n2)

TR(u2) · helpfulness(u2, n2)

⇒ NC(n1) >= NC(n2)

which satisfies axiom 4.

Case 3. Now, consider two notes n1 and n2 with identical
and identically trustworthy rating egonetwork and with equal
verdicts to equally accurate tweets t1 and t2. Hence, A(t1) =
A(t2) and verdict(n1, t1) = verdict(n2, t2).

Because of identical egonetworks, there is a one-to-one
mapping h : In(n1) → In(n2) with helpfulness(u, n1) =
helpfulness(h(u), n2). Because of identically trustworthy
rating egonetworks, TR(u) = TR(h(u))∀(u, n1) ∈ In(n1),
where |In(n1)| = |In(n2)|,

Thus, the comparison of the credibilities of the two notes
depends only on the second term i.e. TW (u1) and TW (u2).

Now if, the first user has higher trustworthiness than the
other,

TW (u1) >= TW (u2)

⇒ NC(n1) >= NC(n2)

which satisfies axiom 5.

Case 4. Now, consider that the two notes have identi-
cally trustworthy rating and writing egonetworks. Because
of the identically trustworthy writing networks, TW (u1) =
TW (u2). Moreover, because of the identically trustwor-
thy rating networks |In(n1)| = |In(n2)| and there ex-
ists a one-to-one mapping h : In(n1) → In(n2) such
that TR(u) = TR(h(u)) with helpfulness(u, n1) =
helpfulness(h(u), n2),∀(u, n1) ∈ In(n1)

As a result, the comparison between the credibilities of the
two notes is respectively dependent only on the third term
in credibility formulation, i.e. the closeness of the verdict
of the tweets for which notes are written i.e. 1 − |A(t1) −
verdict(n1, t1)| and 1− |A(t2)− verdict(n2, t2)|.

Now if one note, say n1 has the verdict closer to the tweet
accuracy, then

|A(t1)− verdict(n1, t1)| <= |A(t2)− verdict(n2, t2)|

⇒ 1−|A(t1)−verdict(n1, t1)| >= 1−|A(t2)−verdict(n2, t2)|

⇒ NC(n1) >= NC(n2)

which satisfies axiom 6.

• Trustworthiness of user in writing notes:
Consider two users with one-to-one mapping h :

Outn(u1) → Outn(u2), such that |Outn(u1)| = |Outn(u2)|
and NC(n) >= NC(h(n))∀n ∈ Outn(u1).



According to the formulation, the trustworthiness of user u1
and user u2 in writing notes is respectively given by

TW (u1) =

∑
n∈Outn(u1)

NC(n)

|Outn(u1)|
and

TW (u2) =

∑
n∈Outn(u2)

NC(n)

|Outn(u2)|

But since |Outn(u1)| = |Outn(u2)|, the comparison of
trustworthiness scores between u1 and u2 is dependent only
on the respective sums of the credibilities of notes written by
the two users i.e. ∑

n∈Outn(u1)

NC(n)

and ∑
n∈Outn(u2)

NC(n)

Since NC(n) >= NC(h(n))∀n ∈ Outn(u1),∑
n∈Outn(u1)

NC(n) >=
∑

n∈Outn(u2)

NC(n)

⇒ TW (u1) >= TW (u2)

which satisfies axiom 7.

• Trustworthiness of user in rating notes:
Consider two users u1 and u2, who have rated an equal

number of notes, i.e. |Outr(u1)| = |Outr(u2)|, such that they
have a one-to-one mapping h : Outr(u1)→ Outr(u2).

According to the formulation, the trustworthiness of the
users in rating notes is given by :

TR(u1) =

∑
(u1,n)∈Outr(u1)

(
1− |helpfulness(u1,n)−NC(n)|

2

)
|Outr(u1)|

and

TR(u2) =

∑
(u2,n)∈Outr(u2)

(
1− |helpfulness(u2,n)−NC(n)|

2

)
|Outr(u2)|

Since |Outr(u1)| = |Outr(u2)|, the comparison between
the rating trustworthiness of the two users depends only on the
respective sums of closeness between the rating and credibility
for all the notes rated by the users i.e.∑

(u1,n)∈Outr(u1)

(
1− |helpfulness(u1, n)−NC(n)|

2

)
and ∑

(u2,n)∈Outr(u2)

(
1− |helpfulness(u2, n)−NC(n)|

2

)

Let one user, say u1, have ratings closer to its credibility
scores (of the notes it has rated) than that of the other user,
u2. Because of the one-to-one mapping described previously,
we have, ∀(u1, n) ∈ Outr(u1),

|helpfulness(u1, n)−NC(n)| <=
|helpfulness(u2, h(n))−NC(h(n))|

⇒
∑

(u1,n)∈Outr(u1)

(
1− |helpfulness(u1, n)−NC(n)|

2

)
>=

∑
(u2,n)∈Outr(u2)

(
1− |helpfulness(u2, n)−NC(n)|

2

)
⇒ TR(u1) >= TR(u2)

which satisfies axiom 8.
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