
Temporal Dynamics-Aware Adversarial Attacks on
Discrete-Time Dynamic Graph Models

Kartik Sharma

Georgia Institute of Technology

Atlanta, GA, United States

ksartik@gatech.edu

Rakshit Trivedi

Massachusetts Institute of Technology

Boston, MA, United States

rstrivedi@csail.mit.edu

Rohit Sridhar

Georgia Institute of Technology

Atlanta, GA, United States

rohitsridhar@gatech.edu

Srijan Kumar

Georgia Institute of Technology

Atlanta, GA, United States

srijan@gatech.edu

ABSTRACT

Real-world graphs such as social networks, communication net-

works, and rating networks are constantly evolving over time. Many

deep learning architectures have been developed to learn effective

node representations using both graph structure and dynamics.

While being crucial for practical applications, the robustness of

these representation learners for dynamic graphs in the presence of

adversarial attacks is highly understudied. In this work, we design

a novel adversarial attack on discrete-time dynamic graph models

where we desire to perturb the input graph sequence in a manner

that preserves the temporal dynamics of the graph while drop-

ping the performance of representation learners. To this end, we

motivate a novel Temporal Dynamics-Aware Perturbation (TDAP)

constraint, which ensures that perturbations introduced at each

time step are restricted to only a small fraction of the number of

changes in the graph since the previous time step. We present a

theoretically-motivated Projected Gradient Descent approach for

dynamic graphs to find effective perturbations under the TDAP

constraint. Experiments on two tasks — dynamic link prediction

and node classification, show that our approach is up to 4x more

effective than the baseline methods for attacking these models.

We extend our approach to a more practical online setting where

graphs become available in real-time and show up to 5x superior

performance over baselines We also show that our approach suc-

cessfully evades state-of-the-art neural approaches for anomaly

detection, thereby promoting the need to study robustness as a part

of representation-learning approaches for dynamic graphs.

CCS CONCEPTS

• Computing methodologies→ Neural networks; Supervised
learning; • Information systems→ Data mining.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599517

KEYWORDS

Graph Neural Networks, Dynamic Graphs, Adversarial Attacks

ACM Reference Format:

Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, and Srijan Kumar. 2023.

Temporal Dynamics-Aware Adversarial Attacks on Discrete-Time Dynamic

Graph Models. In Proceedings of the 29th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD ’23), August 6–10, 2023, Long Beach,
CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3580305.3599517

1 INTRODUCTION

Graph Neural Networks (GNNs) have been shown to be vulnerable

to adversarial perturbations [2, 12, 22, 30, 50, 60]. This has raised

major concerns against their use in important industrial applica-

tions such as friend/product recommendation [43, 46, 54] and fraud

detection [19, 56]. Recent advancements in designing attack and

defense mechanisms to address these concerns have predominantly

focused on GNN models for static graphs. In reality, the graph

structure evolves with time as new interactions happen and new

connections are formed [25, 28]. GNN models that incorporate the

temporal information are shown to outperform their static counter-

parts in modeling dynamic networks on tasks such as predicting

link existence in the future [8, 18, 23, 39, 44]. These models have

been used for security-critical applications such as recommenda-

tion engines for e-commerce [27] and social networks [41], urban

traffic monitoring [21], and modeling financial networks [16].

However, the vulnerability of these models to adversarial pertur-

bations is less studied. The design of adversarial attacks for dynamic

graphs to support such a study is challenging for two reasons — (1)

Attacks must simultaneously optimize both the edge(s) to perturb

and the time to perturb them, and (2) Attacks must preserve the

original graph evolution after perturbation in order to evade detec-

tion. Attacks that disturb the graph evolution are not desired since

they can be detected by various dynamic graph anomaly detection

methods [1, 5, 6]. Thus, it is crucial to formulate effective adversar-

ial attacks over time such that they do not significantly alter the

original evolution of the graph structure.

In this work, we introduce a novel Temporal Dynamics-Aware

Perturbation (TDAP) constraint to formulate evolution-preserving

attacks on discrete-time dynamic graphs. This constraint asserts

that the number of modifications added at the current timestep

should only be a small fraction of the actual number of changes

2023

https://doi.org/10.1145/3580305.3599517
https://doi.org/10.1145/3580305.3599517
https://doi.org/10.1145/3580305.3599517
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599517&domain=pdf&date_stamp=2023-08-04

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, & Srijan Kumar

Table 1: Comparison of our attack with existing works on

graph adversarial attacks. Note that an attack is TDAP if the

perturbations are aware of the local temporal dynamics.

Method Dynamic White-box Evasion Targeted TDAP Online

PGD [53] ✓ ✓ ✓

IG-JSMA [53] ✓ ✓ ✓

Fan et al. [14] ✓ ✓

Dyn-Backdoor [9] ✓ ✓

TGA [10] ✓ ✓ ✓ ✓

TD-PGD (proposed) ✓ ✓ ✓ ✓ ✓ ✓

with respect to the preceding timestep. We show theoretically that

perturbations made under TDAP constraint preserves the rate of

change both in the structural and the embedding spaces. To find

effective attacks under this proposed constraint, we consider a

temporally-local, targeted, white-box, and evasion setting. As noted

in Table 1, no prior works exist that can find attacks under our

novel setting. Thus, we present a theoretically-grounded Temporal

Dynamics-aware Projected Gradient Descent (TD-PGD) approach.

The locality of the constraint in time allows us to easily extend

this approach to find attacks in a more practical online setting

[35] that has not been studied before for dynamic graphs. Here,

perturbations are found in real-time without any knowledge of the

future snapshots. Our contributions can be summarized as follows:

(1) We introduce a novel Temporal Dynamics-Aware Perturbation

(TDAP) constraint to perturb discrete-time dynamic graphs

while theoretically preserving the evolution of the graphs.

(2) We present a theoretically-grounded PGD-based white-box at-

tack to find effective attacks on dynamic graphs under the novel

TDAP constraint in both offline and online settings.

(3) We show that TD-PGD outperforms the baselines across 4 dif-

ferent datasets, 3 victim models, and 2 tasks in both offline and

online settings. We release our code for future reference
1
.

(4) We also demonstrate that TDAP-constrained perturbations are

not detected by embedding-based anomaly detection methods.

2 RELATEDWORK

Representation Learning for Dynamic Graphs. GNNs have

been combined with sequential modeling architectures [23] to

model dynamic graphs. For instance, discrete-time graphs have been

modeled by using GNNs and RNNs together in a pipeline [34, 37]

or an embedded manner [8, 39]. Attention-based models have also

been proposed to jointly encode the graph structure and its dy-

namics [44]. For continuous-time graphs, both RNN [27, 31, 47, 48]

and attention-based models [41, 52] have been proposed to update

embeddings in real-time, upon the occurrence of a new event.

Adversarial Attacks on Graphs. Static GNNs are known to be

vulnerable to adversarial attacks in different settings [22]. White-

box attacks are studied assuming complete knowledge of the under-

lying model [50, 53]. Limiting the model knowledge, vulnerability

of static GNNs against gray-box [60] and black-box attacks [12]

have also been extensively studied. While most attacks are studied

under a budget constraint, someworks explore other strategies such

as edge-rewiring [32, 33], low-degree attack [30], and preservation

of homophily [11] and degree statistics [60].

1
https://github.com/claws-lab/TDAP

In comparison, the literature on adversarial attacks for dynamic

graphs is scarce. Time-aware Gradient Attack (TGA) [10] is a white-

box evasion attack that greedily selects the perturbations across

time under a budget constraint. In addition, attacks to poison train-

ing data [9] and black-box attacks using RL approaches [14] have

also been proposed.

AnomalyDetection onDynamicGraphs.Both supervised [6,

49, 57, 58] and unsupervised [18, 45, 55] anomaly detection ap-

proaches have been studied in the literature for dynamic graphs [1,

33, 40]. We focus on the more practical unsupervised methods in

this work. In the case of dynamic graphs, perturbations must pre-

serve the temporal flow to be imperceptible. Traditional anomaly

detection algorithms flag an instance to be anomalous if the dis-

tance between consecutive snapshots crosses a threshold [1]. In

particular, Graph Edit Distance and Hamming distance between

adjacency matrices have been used to monitor communication net-

works [5, 45]. More recently, neural approaches have looked at

the consecutive change in the embedding space to detect anom-

alies without feature extraction [6, 18]. NetWalk finds anomalies

by clustering the embeddings together [55].

Table 1 compares our contributions against prior work.

3 METHODOLOGY

Problem. Let G1,G2, · · · ,G𝑇 be the original graph snapshots

and G′
1
,G′

2
· · · ,G′

𝑇
be the corresponding perturbed snapshots. Note

that G𝑖 = (X𝑖 ,A𝑖) where X𝑖 ,A𝑖 are the node features and the

adjacency matrix for snapshot 𝑖 , respectively. Also, let M be a

victim dynamic graph model that we want to attack and let 𝑓M
be a function that generates the corresponding node embeddings

of G𝑡 given G1:𝑡−1. Let 𝑦task be the actual labels for a given task

(for dynamic link prediction, these correspond to binary labels

representing link existence in the future snapshot).

Then, the objective of the attacker is to introduce structural per-

turbations S𝑡 = A′𝑡 −A𝑡 at each timestep 𝑡 < 𝑇 such that the model

inference at timestep𝑇 for the target entities 𝐸𝑡𝑔 deteriorates. More

formally, the attacker solves the following optimization problem:

max

A′
1
,A′

2
, · · · ,A′

𝑇−1
L
task

(
𝑦
task
(𝑓M (A′1:𝑇−1)), 𝑦task, 𝐸𝑡𝑔

)
(1)

such that C(A′
1:𝑇−1) holds

for some constraint function C on the perturbed adjacency matrices

A′𝑡 for each time 𝑡 . Here, 𝑦
task

denotes the predicted labels for the

given task and L
task

is a task-specific loss, for example, a binary

cross entropy (CE) loss for link prediction.

The constraint function C is designed to ensure imperceptibility

of the adversarial perturbations. In the literature, a budget con-

straint has been widely used to enforce imperceptibility in graphs

[12] and computer vision [17]. However, this constraint only bounds

the total amount of perturbations that can be introduced by an at-

tacker. When the input is dynamic, as in the case of dynamic graphs,

the perturbations should be constrained in the context of how the

input evolves. However, since the budget constraint completely

ignores the graph dynamics, it could lead to a drastic change in the

evolution trend of the graph and thus, making the attacks easily

detectable. For instance, with the budget constraint, all the pertur-

bations can be made at a single time step, leading to an anomalous

spike, which would be easily detected as a possible attack by graph

2024

https://github.com/claws-lab/TDAP

Temporal Dynamics-Aware Adversarial Attacks on Discrete-Time Dynamic Graph Models KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Dynamic
Graph

Embedding
[7, 32, 38]

t=1 t=2 t=3

4

3

2

1

0

t=4

Prediction flips

TD-PGD

t

t=2 t=3t=1

Original Graphs

t=2 t=3t=1

Perturbed Graphs

Evades embedding-
based anomaly

detection [14, 39, 49]

Figure 1: Overview of the Temporal Dynamics-aware Pertur-

bation attack. The attacker is able to flip the prediction on

the target while (theoretically) evading detection.

anomaly detection methods for dynamic graphs [1, 5, 45]. Thus, a

constraint is desired that can ensure that the introduced perturba-

tions do not disrupt the evolving trend of the dynamic graphs.

3.1 Temporal Dynamics-Aware Perturbation

(TDAP) Constraint

The simplest measure to study evolution is to consider the change

in the input between consecutive time steps. Thus, for a discrete-

time input {x𝑡 }, this corresponds to the discrete-time differential

norm at time 𝑡 , given by 𝑑x𝑡 = ∥x𝑡 − x𝑡−1∥. Then, we define

Definition 1 (TDAP). The number of perturbations introduced
to input x at time step 𝑡 must not be more than a fraction 𝜖 times the
differential at 𝑡 , i.e. TDAP(𝜖) := ∥x′𝑡 − x𝑡 ∥ ≤ 𝜖𝑑x𝑡 ∀𝑡 .

For the case of dynamic graphs when the graph structure evolves

(for example, in social networks and transaction networks [39,

44]), this constraint becomes ∥A′𝑡 − A𝑡 ∥1 ≤ 𝜖𝑑A𝑡 . Alternatively, a

dynamic graph may also involve a temporally-evolving signal at

each node [29, 38, 42], in which case, this constraint is applied to

the node features as ∥X′𝑡 − X𝑡 ∥1 ≤ 𝜖𝑑X𝑡 .

In this work, we focus on dynamic graph structures such that

the constraint C (in Equation 1) for the perturbations is a TDAP

constraint. The optimization problem for the attacker, thus, becomes

max

A′
1
,A′

2
, · · · ,A′

𝑇−1
L
task

(
𝑦
task
(𝑓M (A′1:𝑇−1)), 𝑦task, 𝐸𝑡𝑔

)
(2)

such that ∀𝑡 ∈ (1,𝑇) :
∥A′𝑡 − A𝑡 ∥
∥A𝑡 − A𝑡−1∥

≤ 𝜖

∥A′
1
− A1∥ ≤ 𝜀1,

where 𝜖, 𝜀1 are given parameters for this optimization. We use ∥·∥
to denote the 1-norm of the matrix flattened into a vector a, unless
otherwise mentioned. This means ∥A′𝑡 − A𝑡 ∥ = ∥a′𝑡 − a𝑡 ∥1, where
a, a′ are flattened vectors of A,A′ respectively. Also, let us define
the perturbation matrix S𝑡 := A′𝑡 − A𝑡 and 𝜀𝑡 := 𝜖 ∥A′𝑡 − A𝑡 ∥. Then,
TDAP constraint can bewritten equivalently as ∥S𝑡 ∥ := ∥A′𝑡−A𝑡 ∥ =
∥a′𝑡 − a𝑡 ∥1 ≤ 𝜀𝑡 := 𝜖𝑑A𝑡 = 𝜖 ∥a𝑡 − a𝑡−1∥1 = 𝜖 ∥A𝑡 − A𝑡−1∥.

Implications. We show that TDAP constraint has the following

implications on the perturbations.

(1) Perturbations under TDAP constraint preserves the aver-

age rate of structural change.

Theorem 1. Let 𝑑A𝑡 =
1

𝑡

∑
𝜏≤𝑡 𝑑A𝜏 , 𝑑A′𝑡 =

1

𝑡

∑
𝜏≤𝑡 𝑑A′𝜏 . Then,

|1 − 2𝜖 |𝑑A𝑡 ≤ 𝑑A′𝑡 ≤ 2𝜖𝑑A𝑡 + 𝛽𝑡 , (3)

for some constant 𝛽𝑡 ∈ R≥0.

Proof. (1) |1 − 2𝜖 |dAt ≤ dA′t
Note that ∥·∥1 ≥ ∥·∥2, thus TDAP also gives us ∥a′𝜏 − a𝜏 ∥2 ≤ 𝜀𝜏 .

This implies a𝜏 − 𝜀𝜏e ≤ a′𝜏 ≤ a𝜏 + 𝜀𝜏e for all unit vectors e.
Substituting the above inequalities in ∥A′𝜏 − A′

𝜏−1∥ = ∥a′𝜏 −
a′
𝜏−1∥, we get ∥A

′
𝜏 −A′𝜏−1∥ ≥ ∥(a𝜏 − 𝜀𝜏e1) − (a𝜏−1 + 𝜀𝜏−1e2)∥1,

for some unit vectors e1, e2. Using reverse triangle inequality,
∥A′𝜏 − A′𝜏−1∥ ≥ |∥a𝜏 − a𝜏−1∥1 − ∥𝜀𝜏e1 + 𝜀𝜏−1e2∥1 | ≥
|∥a𝜏 − a𝜏−1∥1 − (𝜀𝜏 ∥e1∥1 + 𝜀𝜏−1∥e2∥1) |, due to triangle inequal-
ity. Summing both sides over all time steps until 𝑡 , we get∑
𝜏≤𝑡 ∥A′𝜏 − A′𝜏−1∥ ≥

∑
𝜏 |∥a𝜏 − a𝜏−1∥1 − 𝜀𝜏 − 𝜀𝜏−1 | ≥

|∑𝜏 ∥A𝜏 − A𝜏−1∥1 − 𝜖 (∥A𝜏 − A𝜏−1∥1 + ∥A𝜏−1 − A𝜏−2∥1) |.
Replacing

∑
𝜏 ∥A𝜏 − A𝜏−1∥ as 𝑑A𝑡 , we get the desired result.

(2) dA′t ≤ 2𝜖dAt + 𝛽
By definition of S𝜏 , 𝑑A′𝜏 = ∥A′𝜏 −A′𝜏−1∥ = ∥(A𝜏 + S𝜏) − (A𝜏−1 +
S𝜏−1)∥. Then, using triangle inequality, we get 𝑑A′𝜏 ≤ ∥A𝜏 +
S𝜏 ∥+∥A𝜏−1+S𝜏−1∥ ≤ ∥A𝜏 ∥+∥S𝜏 ∥+∥A𝜏−1∥+∥S𝜏−1∥. Now, since
∥S𝜏 ∥ ≤ 𝜖𝑑A𝜏 , 𝑑A′𝜏 ≤ 𝜖𝑑A𝜏 +𝜖𝑑A𝜏−1+∥A𝜏 ∥+ ∥A𝜏−1∥. Then, we
get𝑑A′𝑡 =

1

𝑡

∑
𝜏 𝑑A′𝜏 ≤ 1

𝑡

∑
𝜏 (𝜖𝑑A𝜏 + 𝜖𝑑A𝜏−1 + ∥A𝜏 ∥ + ∥A𝜏−1∥)

≤ 2𝜖 1𝑡
∑
𝜏 𝑑A𝜏 + 2

𝑡

∑
𝜏 ∥A𝜏 ∥, which gives us the desired result

for 𝛽𝑡 =
2

𝑡

∑
𝜏 ∥A𝜏 ∥. □

This means that the average structural evolution after TDAP

perturbations remains within a factor ofmax{2𝜖, |1− 2𝜖 |} of its
original value. Since 𝜖 is a parameter controlled by the attacker,

hemay tune this value to obtain arbitrarily strong bounds on the

average evolution. Also, note that the additive factor is just two

times the average number of edges in the past (or equivalently

the average degree in the past snapshots, for a targeted case).

In comparison, a budget constraint only bounds

∑
𝑡 ∥A′𝑡 − A𝑡 ∥

which gives no such guarantees on 𝑑A′𝑡 with respect to 𝑑A𝑡 .

(2) Perturbations under TDAP constraint preserves the rate

of embedding change.

Corollary 1. Let 𝑑Z𝑡 = ∥Z𝑡 − Z𝑡−1∥1. Then,
|1 − 2𝜖 |𝜒𝑡𝑑Z𝑡 ≤ 𝑑Z′𝑡 ≤ 2𝜖𝛾𝑡𝑑Z𝑡 + 𝛽𝑡𝛾𝑡 , (4)

for 𝛽𝑡 from Theorem 1 and some constants 𝜒𝑡 , 𝛾𝑡 ∈ R≥0.

Proof. We prove these results by showing 𝐶1,𝑡𝑑A𝑡 ≤ 𝑑Z𝑡 ≤
𝐶2,𝑡𝑑A𝑡 and𝐶

′
1,𝑡
𝑑A′𝑡 ≤ 𝑑Z′𝑡 ≤ 𝐶 ′

2,𝑡
𝑑A′𝑡 . Then, the result follows

by applying Theorem 1 such that 𝜒𝑡 = 𝐶 ′
1,𝑡
/𝐶2,𝑡 , 𝛾𝑡 = 𝐶 ′

2,𝑡
/𝐶1,𝑡 .

Note that Z𝑡 = f𝑡 (a𝑡 , a𝑡−1, · · · , a1), where f𝑡 : R𝑛
2𝑡 → R𝑛𝑑

such that 𝑛 is the number of nodes. Instead, we consider equiva-

lently the vector function Z𝑡 = f (a𝑡 , · · · , a1, 0, 0, · · · , 0), where
we append (𝑇 − 𝑡) zeros such that f : R𝑛

2𝑇 → R𝑛𝑑 . Let us con-
sider the concatenated vector a≤𝑡 = (a𝑡 , a𝑡−1, · · · , a1, 0, · · · , 0).
By Cauchy’s Mean Value Theorem in several variables, we have

∇−f · (a≤𝑡 − a≤𝑡−1) ≤ Z𝑡 − Z𝑡−1 ≤ ∇f · (a≤𝑡 − a≤𝑡−1), where
∇− is the left-hand derivative. This gives us ∥Z𝑡 − Z𝑡−1∥ ≤
∥∇f ∥ ∥a≤𝑡 − a≤𝑡−1∥ by Cauchy-Schwarz inequality and ∥Z𝑡 −

2025

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, & Srijan Kumar

Z𝑡−1∥ ≥ ∥∇−f ∥ ∥a≤𝑡 − a≤𝑡−1∥ cos(𝜃), by the definition of dot

product when 𝜃 is the angle in between.

Next, we note that ∥a≤𝑡 − a≤𝑡−1∥1 = ∥(a𝑡 − a𝑡−1, · · · , a2 −
a1, a1)∥1 =

∑
𝑡 ∥a𝑡 − a𝑡−1∥1 = 𝑇𝑑A𝑡 . Substituting this in mean

theorem results, we get 𝐶1,𝑡𝑑A𝑡 ≤ 𝑑Z𝑡 ≤ 𝐶2,𝑡𝑑A𝑡 for some

constants 𝐶1,𝑡 ,𝐶2,𝑡 . Similarly, we get for 𝑑Z′. □
This means that the embedding change after perturbation

remains within a factor that depends on the gradient of the

embedding function and the constants from Theorem 1. This

gives control to the attacker through 𝜖 to attack in a manner that

distorts the embedding evolution within a permissible value.

(3) Perturbations under TDAP constraint change the embed-

dings by a factor of the average rate of structural change.

Proposition 1. ∥Z′𝑡 − Z𝑡 ∥ ≤ ∥∇f ∥𝑡𝜖𝑑A𝑡 .

Proof. By Cauchy’s MVT on f with inputs a′≤𝑡 and a≤𝑡 , we
get Z′𝑡 − Z𝑡 ≤ ∇f · (a′≤𝑡 − a≤𝑡), which gives us ∥Z′𝑡 − Z𝑡 ∥ ≤
∥∇𝑓 ∥ ∥a′≤𝑡 − a≤𝑡 ∥ by Cauchy-Schwarz inequality. Note that

∥a′≤𝑡 −a≤𝑡 ∥1 =
∑
𝜏 ∥a′𝜏 − a𝜏 ∥1. Using TDAP constraint, we then

get ∥a′≤𝑡 − a≤𝑡 ∥1 ≤
∑
𝜏 𝜖 ∥a𝜏 − a𝜏−1∥ ≤ 𝑡𝜖𝑑A𝑡 . □

This means that due to TDAP, embeddings are perturbed by

only a factor of the average rate of structural change originally.

The attacker can further control this multiplicative factor via

𝜖 such that the embeddings after perturbation remain close

enough to their original values.

3.2 Attack Methods Under TDAP Constraint

While the TDAP constraint allows us to limit the effect of the

perturbations on the graph’s evolution, it is not clear how one can

efficiently find perturbations that maximize a loss function under

this constraint. To this end, we present two algorithms to solve the

optimization problem of Equation 2.

3.2.1 Greedy Time-Aware Gradient (TGA(𝜖)). Inspired by the
closest work [10], a greedy strategy can be adopted to find effective

perturbations under our TDAP constraint. We extend this existing

work to our novel constraint for a fair comparison. Here, pertur-

bations are simply selected in a greedy manner based on their

gradient with respect to the downstream loss, while satisfying the

constraint. Following TGA, we further reduce the time complexity

of this greedy search by dividing the search space into two steps.

First, we find the top-gradient perturbation at each time step and

then, select the one that reduces the prediction probability the most.

In particular, we greedily select the perturbations with the lowest

probability such that TDAP(𝜖) is not violated for any time step.

Complexity. We note here that TGA(𝜖) makes 𝑂 (𝜖∑𝑡 𝑑A𝑡)
backward calls to the victimmodel for gradient calculation. Let each

backward call take 𝑇𝑏𝑤 time for a modelM. Then, the total time

complexity for this algorithm is given by 𝑂 (𝜖∑𝑡 𝑑A𝑡𝑇𝑏𝑤). An effi-

cient implementation of greedy can greedily pick the top-gradient

perturbations without storing gradients. This stores just the se-

lected perturbations and gives a space complexity of 𝑂 (𝜖∑𝑡 𝑑A𝑡).

3.2.2 TemporalDynamics-aware ProjectedGradientDescent.
Since the constrained optimization in Equation 2 has a general con-

tinuous objective, a greedy approach is only sub-optimal (even for

a simpler convex objective) with no theoretical guarantees. A more

Algorithm 1 Temporal Dynamics-aware Projected Gradient

Descent (TD-PGD)

Require: TDAP variables 𝜀𝑡 (from Thm. 2), Initial vector s(0) , Loss
function L, Actual labels 𝑦, Target entities 𝐸𝑡𝑔 , Time steps 𝑇 ,

Learning rate 𝜂𝑖 , Iterations 𝑁 , Rounding iterations 𝑁𝑟

Ensure: Perturbation vector s(𝑖)𝑡 preserves TDAP(𝜖) for all 𝑖, 𝑡
1: for 𝑖 = 1 to 𝑁 do

2: Perturb: G′𝑡 ← G𝑡 ⊕ s(𝑖−1)𝑡 for all 𝑡 .

3: Gradient Descent: s(𝑖) ← s(𝑖−1) + 𝜂𝑖∇sL(G′, 𝑦, 𝐸𝑡𝑔).
4: Project: For all 𝑡 : s(𝑖)𝑡 ← ΠC (s(𝑖)𝑡) from Equation 5.

5: S𝑡 ← ROUND (s(𝑁)𝑡 , 𝑁𝑟 , {𝜀𝑡 })

standard approach to do optimization under a convex constraint is

to use projected gradient descent (PGD) [3, 4]. Since our problem

is in discrete-space, we first relax it into continuous space, find

the solution using PGD and then, randomly round it to obtain a

valid solution for the discrete problem. In particular, we relax the

perturbation matrix S𝑡 into a continuous vector s𝑡 and show that a

closed-form projection operator exists for the TDAP(𝜖) constraint.
Algorithm 1 demonstrates the steps involved in this approach (TD-

PGD), following the result of Proposition 2.

Proposition 2. Suppose C denotes the feasible perturbation
space for the constraints ∥A′𝑡−A𝑡 ∥/∥A𝑡−A𝑡−1∥ ≤ 𝜖 for all 1 < 𝑡 < 𝑇

and ∥A′
1
−A1∥ ≤ 𝜀1. Then, one can project the perturbation vector s𝑡

onto C as s′𝑡 = ΠC (s𝑡) = argmins′𝑡 ∈C
1

2
∥s′𝑡 − s𝑡 ∥22:

ΠC (s𝑡) =
{
𝑃 [0,1] (s𝑡 − 𝜇𝑡1) if ∃𝜇𝑡 > 0 : 1𝑇 𝑃 [0,1] (s𝑡 − 𝜇𝑡1) = 𝜀𝑡

𝑃 [0,1] (s𝑡) if 1𝑇 𝑃 [0,1] (s𝑡) ≤ 𝜀𝑡

(5)

where 𝜀𝑡 = 𝜖𝑑A𝑡 = 𝜖 ∥A𝑡 − A𝑡−1∥ for 𝑡 > 1, and 𝑃 [0,1] (𝑥) = 𝑥 if
𝑥 ∈ [0, 1], 0 if 𝑥 < 0 and 1 if 𝑥 > 1.

Proof. The constraints are 1𝑇 s′𝑡 ≤ 𝜀𝑡 , s′𝑡 ∈ [0, 1]. Lagrangian
of the projection optimization problem can then be written as

𝐿(s′𝑡 , s𝑡 ; 𝜇𝑡 ,𝝀0,𝝀1) = 1

2
∥s′𝑡 − s𝑡 ∥22 + 𝜇𝑡 (1

𝑇 s′𝑡 − 𝜀𝑡) +𝝀0 · (−s′𝑡) +𝝀1 ·
(s′𝑡−1). KKT conditions imply that s′𝑡−s𝑡 +𝜇𝑡−𝝀0+𝝀1 = 0, such that
𝜇𝑡 ,𝝀0,𝝀1 ≥ 0 and 𝜇𝑡 (1𝑇 s′𝑡−𝜀𝑡) = 0,𝝀0⊙(−s′𝑡) = 0,𝝀1⊙(s′𝑡−1) = 0,
while satisfying 1𝑇 s′𝑡 ≤ 𝜀𝑡 , s𝑡 ∈ [0, 1]. Thus, 𝝀0,𝝀1 can be replaced

by an elementwise clamping operation within [0, 1], i.e., 𝑃 [0,1] (·)
since they are zero when they are within the range and otherwise

equal to a value such that 𝑠𝑡 = 0 or 1. Thus, s′𝑡 = 𝑃 [0,1] (s𝑡 − 𝜇𝑡1)
such that 𝜇𝑡 = 0 if 1𝑇 𝑃 [0,1] (s𝑡) ≤ 𝜀𝑡 otherwise we find 𝜇𝑡 ≥ 0 such

that 1𝑇 𝑃 [0,1] (s𝑡 − 𝜇𝑡1) − 𝜀𝑡 = 0. □
Following [53], we use the bisection method [3] to solve the equa-

tion 1𝑇 𝑃 [0,1] (s𝑡 − 𝜇𝑡1) = 𝜀𝑡 in 𝜇𝑡 for 𝜇𝑡 ∈ [min(s𝑡 − 1),max(s𝑡)].
This converges in the logarithmic rate, i.e. it takes𝑂 (log

2
[(max(s𝑡)−

min(s𝑡 − 1))/𝜉]) time for 𝜉-error tolerance.

Randomized Rounding for TD-PGD (ROUND). Inspired by ex-
isting works on using PGD for graphs [15, 53], we use randomized

rounding in order to efficiently obtain a valid discrete perturbation

solution S𝑡 for our constraint from the continuous vector s(𝑁)𝑡 . In

particular, for a fixed number of iterations 𝑁𝑟 , we randomly sample

from the Bernoulli distribution formed by s(𝑁)𝑡 ∈ [0, 1]𝑛2

. Then,

we pick the sample that maximizes the loss while satisfying the

2026

Temporal Dynamics-Aware Adversarial Attacks on Discrete-Time Dynamic Graph Models KDD ’23, August 6–10, 2023, Long Beach, CA, USA

constraint. Furthermore, to ensure that we obtain at least one so-

lution, we adopt the top-k heuristic sampling strategy in the first

iteration [15] for our constraint, such that we select only the top 𝜀𝑡

values in s(𝑁)𝑡 for all 𝑡 . Thus, 1𝑇 S𝑡 = 𝜀𝑡 and the obtained discrete

solution will satisfy the TDAP constraint at each 𝑡 .

Complexity. It makes𝑂 (𝑁) backward calls to the victim model

for gradient calculation, where 𝑁 is the number of iterations for

the TD-PGD loop. In addition, the projection step takes𝑂 (∑𝑡 log2 [
(max(s𝑡) − min(s𝑡 − 1))/𝜉]) time per iteration. Since s𝑡 ∈ [0, 1]
for each element and there are |V| elements in s𝑡 (|V| is the to-
tal number of nodes), the projection takes 𝑂 (𝑇 log |V|) per itera-
tion. The total time complexity of the TD-PGD loop then becomes

𝑂 (𝑁𝑇𝑏𝑤 + 𝑁𝑇 log |V|). Since TD-PGD stores the whole perturba-

tion vector through its loop, the space complexity becomes𝑂 (|V|).

3.3 Online Adversarial Attacks

We also consider the online version of the problem in Equation 2.

In this setting, the perturbations are added in real-time, i.e. they
are both immediate and irrevocable. More formally, Equation 2

must now be solved considering online updates of the optimization

variables, i.e., (1)A′𝑡 is updated at time step 𝑡 without any knowledge

of A𝑡+1:𝑇 and (2) A′𝑡 remains unchanged for future time steps. Note

that TDAP constraint must still hold for A′𝑡 at all time steps 𝑡 .

Online TD-PGD. Inspired from its theoretical guarantees in

online convex optimization [59], we use Online Projected Gra-

dient Descent for our problem. In this framework, we are given

a function 𝑓𝑡 for each step 𝑡 and the goal is to choose 𝑥𝑡 in an

online manner such that the regret on the offline optimum 𝑥∗𝑡 ,
R(𝑓 , 𝑥) := ∑

𝑡 (𝑓𝑡 (𝑥𝑡) − 𝑓𝑡 (𝑥∗𝑡)) is minimized. In our problem, as

defined in Equation 2, we need to minimize a loss ℎ(A1:𝑇−1) at the
final time step 𝑇 . To use online gradient descent, we thus need to

write ℎ as

∑
𝑡 𝑓𝑡 (A𝑡) for some 𝑓𝑡 . Let us assume that ℎ is a cross-

entropy loss and that the embeddings at each time 𝑡 are encoded in

a sequential manner. Then,

ℎ({A𝑡 }𝑇−1𝑡=1) = −
∑
𝑑∈D

𝑦 (𝑑) log𝑝 (𝑑, {A𝑡 }) (6)

=
∑
𝑡

−
∑
𝑑∈D

𝑦 (𝑑) log 𝑝 (𝑑,A𝑡 |A1, · · · ,A𝑡−1) .

Thus, we define 𝑓𝑡 (A𝑡) = −
∑
𝑑∈D 𝑦 (𝑑) log 𝑝 (𝑑,A𝑡 |A1, · · · ,A𝑡−1),

which is the prediction loss for the data points D at time step

𝑡 . Algorithm 1 can then be updated to find attacks in real-time,

following Online Gradient Descent. In particular, for time 𝑡 , we

only perturb graphs for 𝜏 ∈ [1, 𝑡] and do the gradient descent on

the loss (in line 3) L({G𝜏 ⊕ s(𝑖−1)𝜏 }𝑡
𝜏=1

, 𝑦 (𝑡), ·). Since the projection
operator for TDAP (Equation 5) depends only on the current time

step 𝑡 , we can independently project for the current time, i.e. line 4
remains s(𝑖)𝜏 = ΠC (s(𝑖)𝜏) but only for 𝜏 ∈ [1, 𝑡].

4 EXPERIMENTAL SETUP

Datasets. We use these 3 datasets for dynamic link prediction

— Radoslaw2, UCI 2
, and Reddit3. Radoslaw and UCI are email

communication networks, where two nodes (users) are connected

if they have an email communication at time 𝑡 . Reddit is a hyperlink

2
http://konect.cc/networks/

3
https://snap.stanford.edu/data/soc-RedditHyperlinks.html

Table 2: Description of the datasets and performance of dif-

ferent models on them. For DBLP-5, we show accuracy of

node classification, while for the rest, we show ROC-AUC

for the dynamic link prediction. T denotes the number of

timesteps and Split is the time-interval (weekly (w)) for each

snapshot. We use the same split as [51] for DBLP-5.

|V| |E | 𝑇 Split # Labels DySAT EvolveGCN GC-LSTM

Radoslaw 167 22K 13 3w - 0.74 0.74 0.81

UCI 1.9K 24K 13 2w - 0.95 0.87 0.97

Reddit 35K 715K 20 4w - 0.95 0.94 0.94

DBLP-5 6.6K 43K 10 [51] 5 0.69 0.68 0.69

network representing directed connections between subreddits if

there is a hyperlink from one to the other at a given timestamp [26].

For node classification task, we use one publicly-available dataset,

DBLP-5 [51]. This is a co-author network with node attributes as

word2vec representations of the author’s papers. There are 5 node

labels representing the different fields that the authors belong to.

Table 2 shows the statistics of these datasets. We split each

dataset into a finite number of snapshots. Radoslaw is split us-

ing a 3-week period in 13 snapshots while the 13 snapshots in UCI
denote a 2-week period. The Reddit dataset spans over 3 years;

thus, we use a 2-month split to obtain the 20 snapshots. For DBLP-5,
we use the publicly available pre-processed data [51].

For datasets with no node features, i.e., Radoslaw, UCI, and
Reddit, we use uniformly random features with dimension 10.

The pre-processed DBLP-5 has 100 features for each node.

AttackMethods. We consider 4 different attack methods to find

perturbations under TDAP constraint. (1) TD-PGD is a projected

gradient descent with a valid projection operator for the TDAP con-

straint, as specified in Algorithm 1. (2) TGA(𝜖) greedily selects the
perturbation with the highest gradient value of the loss (we adapt

TGA [10] to our setting, as specified in Section 3.2). (3) Degree

flips the edges (adds or deletes if already there) attached with the

highest degree nodes in the graph at each time step, while making

at most 𝜖𝑑A𝑡 perturbations. (4) Random randomly flips (add or

delete) at most 𝜖𝑑A𝑡 edges at each time step 𝑡 .

Victim Models. We test the performance of the above attack

methods on 3 different discrete-time dynamic graphmodels. (1)GC-

LSTM [8] embeds GCN into an LSTM to encode the sequence of

graphs. (2) EvolveGCN [39] uses a recurrent model (RNN-LSTM)

to evolve the weights of a GCN. We use the EvolveGCN-O version

for our experiments. (3) DySAT [44] utilizes joint structural and

temporal self-attention to embed. For dynamic link prediction, we

trained using a Binary Cross Entropy loss on the edges in all but the

last snapshot, which was used as the test set. For node classification,

we use a 20% held-out set of nodes in the final snapshot as the test

set and minimize the Weighted Cross Entropy loss on the node

labels for the rest. Table 2 shows the performance of these models

on different datasets.

Metrics. We use the relative drop, as defined below, to evaluate

the efficacy of the attack methods.

Rel. Drop (%) =
Perturbed perf. − Original perf.

Original perf.

× 100, (7)

2027

http://konect.cc/networks/
https://snap.stanford.edu/data/soc-RedditHyperlinks.html

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, & Srijan Kumar

where performance (perf.) is evaluated using ROC-AUC for dynamic

link prediction and using Accuracy for node classification.

Setup. We consider a targeted setting, which means that pertur-

bation space is limited to adding/deleting an edge directly to the

target nodes (both end nodes in case of a target link). Each target is

attacked one by one and the total performance is measured using

the relevant performance metric over these targets.

Implementation. For TD-PGD optimization, we used ADAM

optimizer [24] with the initial learning rate of 10 and ran for 50

iterations. The initial perturbation vector s(0) was fixed as all ones,

giving each perturbation an equal chance at the start. Also, we stop

the greedy search in the TGA(𝜖) baseline if the time taken exceeds

300 s per target, which is at least 3 times that of TD-PGD.

We use TorchGeometric-Temporal
4
to train the victim models

EvolveGCN and GC-LSTM, while we use the pytorch implemen-

tation
5
for DySAT. We adopt the official code of TGA

6
to imple-

ment the TGA(𝜖) baseline. All the experiments were conducted

on Python 3.8.12 on a Ubuntu 18.04 PC with an Intel(R) Xeon(R)

CPU E5-2698 v4 @ 2.20GHz processor, 512 GB RAM, and Tesla

V100-SXM2 32 GB GPUs.

5 RESULTS

We compare different attack methods against the 3 victimmodels on

dynamic link prediction and node classification tasks in offline and

online settings. We also test the detectability of TDAP-constrained

perturbations against anomaly detectors. For all the experiments,

we vary 𝜖 from 0 to 1 and fix 𝜀1 = min𝑡>1 𝜀𝑡 := 𝜖𝑑A𝑡 .

5.1 Relative Performance Drop

5.1.1 Dynamic Link Prediction. In this section, we show the

attack performance on the task of dynamic link prediction [39, 44].

The task here is to predict whether a link (𝑢, 𝑣) will appear or not
at the future timestep. The objective of the attacker, thus, is to

introduce perturbations in the past time steps to make the model

mispredict link’s existence in future. We test the victim models on

the final snapshot for a set of target links. We consider 3 different

sets of 100 positive and 100 negative random targets and show the

mean relative ROC-AUC drop with error bars.

Figure 2 shows the performance of different attack methods on

this task across different datasets and models. TD-PGD outperforms

the other baselines in all cases, except in GC-LSTM model trained

on Reddit. Moreover, TD-PGD is able to drop the AUC by up to 4

times the baselines and lead to ∼ 100% drop in the AUC, completely

flipping the prediction. We also note that TD-PGD often has a

continuously decreasing slope and its performance saturates much

later than the other baselines. The second-best baseline is often

TGA(𝜖) but in many cases, it is only as good as random. One can

also note that EvolveGCN shows a larger drop than the other 2

models across all datasets. This may pertain to the lower model

complexity of EvolveGCN compared to others, which makes it

highly sensitive to input perturbations. We provide a comparative

4
https://pytorch-geometric.readthedocs.io/en/latest/index.html#

5
https://github.com/FeiGSSS/DySAT_pytorch

6
https://github.com/jianz94/tga

analysis of the robustness of these models against TD-PGD attack

for different datasets in Appendix A.1.

5.1.2 NodeClassification. In this section, we compare the attack

performance on the task of transductive node classification [39].

Here, the objective is to predict the node labels of a set of nodes

while knowing the labels of the other nodes at that time step.

Figure 3 shows the effect of structural perturbations on this task

by different attack strategies for the 3 models. Misclassifying the

labels for influential top-degree targets can significantly impact

a model’s usability in practice. Therefore, we consider the perfor-

mance on 50 top-degree nodes for each class. Results show that

TD-PGD outperforms the baselines in all models except DySAT, in

which all attacks perform almost equally. In particular, TD-PGD is

able to cause a 30% drop in EvolveGCN while the baselines only

lead to a drop of 5%. We also conducted an attack on the node fea-

tures by extending the TDAP constraint to features, as mentioned

in Section 3.1. We find that such feature perturbations are more

effective than structure perturbations for sparsely-connected ran-

dom targets and can bring the performance down by 30% across

models. We defer these results to Appendix A.3.

5.2 Detectability of TDAP perturbations

In this section, we show empirical evidence to complement the

theoretical implications (see Section 3.1) on the less detectable

nature of TDAP constrained perturbations.

Traditional Methods. Traditional methods flag an instance to

be anomalous if the distance (Graph Edit, Hamming, or spectral)

with the previous snapshot exceeds a certain threshold [5, 45].

Theorem 1 shows that the average rate of structural change remains

preserved within certain factors that can be tuned to fool these

detectors. Suppose one had chosen a threshold 𝐵 such that 𝑑A𝑡 ≥ 𝐵

is defined as an anomaly. If initially the graph sequence was not

anomalous on average, i.e., 𝑑A ≤ 𝐵, then after perturbation, 𝑑A′ ≥
𝐵 would happen if 𝑑A′ ≥ |1 − 2𝜖 |𝑑A ≥ 𝐵, i.e., 𝑑A ≥ 𝐵/(|1 − 2𝜖 |).
Thus, one can choose a value of 𝜖 such that this does not hold for a

given threshold 𝐵 and original snapshot dynamics 𝑑A.
DynGem Anomaly Detection Method. DynGem [18] pro-

poses to use the embedding change in consecutive snapshots to

detect anomalies. In particular, these methods consider the consec-

utive change after perturbation, 𝑑Z′𝑡 = ∥Z′𝑡 − Z′
𝑡−1∥ and flag an

edge as anomalous if 𝑑Z′𝑡 exceeds a threshold.
Here, we test whether such methods would be effective to detect

TDAP perturbations as anomalous by conducting a 2-sample t-test

between 𝑑Z and 𝑑Z′ (from TD-PGD) for each model-dataset pair

at different 𝜖 values. If they are statistically different, then, the

perturbations may be detected as anomalies for a certain threshold.

Table 3 notes the raw 𝑝-values of the 2-sample t-test between 𝑑Z′

and 𝑑Z. We find that the null hypothesis of the distributions being

the same was rejected (i.e., 𝑝-value ≤ 0.05) in only 40 of the total

117 cases. In particular, we note that perturbations in EvolveGCN

after 𝜖 > 0.2 may be detected across all datasets while for GC-

LSTM, the minimum such 𝜖 varies from 0.2 (on UCI) to 0.6 (on

Reddit). On the other hand, 𝑑Z′𝑡 in DySAT cannot be statistically

distinguished from 𝑑Z𝑡 for any 𝜖 . We also compare the range of
consecutive differences between embeddings before and after the

perturbation using the “Embedding Variability (EV)” metric (defined

2028

https://pytorch-geometric.readthedocs.io/en/latest/index.html#
https://github.com/FeiGSSS/DySAT_pytorch
https://github.com/jianz94/tga

Temporal Dynamics-Aware Adversarial Attacks on Discrete-Time Dynamic Graph Models KDD ’23, August 6–10, 2023, Long Beach, CA, USA

TD-PGD TGA() Degree Random

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

60

50

40

30

20

10

0

Re
l. D

ro
p

%

(a) Radoslaw, DySAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0

Re
l.

Dr
op

 %
(b) Radoslaw, EvolveGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

60

40

20

0

Re
l. D

ro
p

%

(c) Radoslaw, GC-LSTM

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

8

6

4

2

0

2

Re
l. D

ro
p %

(d) UCI, DySAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0
Re

l.
Dr

op
 %

(e) UCI, EvolveGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0

Re
l. D

ro
p

%

(f) UCI, GC-LSTM

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0

Re
l. D

ro
p

%

(g) Reddit, DySAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(h) Reddit, EvolveGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0
Re

l. D
ro

p
%

(i) Reddit, GC-LSTM

Figure 2: Attack performance on dynamic link prediction task across datasets and models.

and reported in Appendix A.4) to further support the claims of

effectiveness against DynGem-based anomaly detection.

NetWalk Anomaly DetectionMethod.NetWalk [55] clusters

the embeddings of a sample set of edges at each timestep and flags

an edge to be anomalous if its distance in the embedding space

from any cluster exceeds a certain threshold. One can note that

TDAP-constrained perturbations would be effective against such

a detector as well, due to Proposition 1. The embedding change

due to perturbation is only a small factor of the original average

rate of change in the adjacency matrices. Thus, the distance of edge

embeddings from the cluster centers should also remain bounded.

In order to test the evasion of TDAP perturbations against Net-

Walk, we used the 3 victim representation models to obtain the

embeddings and used the K-Means algorithm with 𝑘 = 5 for cluster-

ing at each time step. Perturbations are selected from the TD-PGD

algorithm and the edge embeddings are clustered in the original

and perturbed embedding space for a fixed set of held-out training

edges. The anomalous score is then calculated as the average dis-

tance of the perturbed edges to the nearest cluster’s centroid in the

corresponding embedding space.

We find the anomalous scores for the target edges before and

after the perturbation and instead of defining an arbitrary threshold,

we conducted a 2-sample t-test between the two distributions at

each 𝜖 for the three models in Radoslaw and UCI datasets. Table 4

notes the raw 𝑝-values of the t-test between the Netwalk anomalous

scores for the target edges in Z′ and Z. The hypothesis that the

2029

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, & Srijan Kumar

TD-PGD TGA() Degree Random

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

5

4

3

2

1

0

Re
l. D

ro
p %

(a) DBLP-5, DySAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30
25
20
15
10
5
0

Re
l. D

ro
p

%
(b) DBLP-5, EvolveGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(c) DBLP-5, GC-LSTM

Figure 3: Attack performance on node classification task for top degree nodes across models.

Table 3: Significance values from 2-sample t-test between

𝑑Z′ and 𝑑Z. Bold rows indicate that the difference is not sig-

nificant and thus, DynGem-based anomalous scoring would

be ineffective to detect TDAP perturbations as made by our

method TD-PGD.

Dataset Model Epsilon 𝑝-value (𝑑Z′, 𝑑Z)

Radoslaw

DySAT [0.02, 0.9] ≥ 0.8387
EvolveGCN [0.02, 0.2) ≥ 0.2054
EvolveGCN [0.2, 0.9] ≤ 0.0002*

GC-LSTM [0.02,0.3) ≥ 0.1704
GC-LSTM [0.3, 0.9] ≤ 0.0432*

UCI

DySAT [0.02, 0.9] ≥ 0.9252
EvolveGCN [0.02, 0.3) ≥ 0.0878
EvolveGCN [0.3, 0.9] ≤ 0.0197*

GC-LSTM [0.02, 0.2) ≥ 0.2674
GC-LSTM [0.2, 0.9] ≤ 0.0378*

Reddit

DySAT [0.02, 0.9] ≥ 0.9636
EvolveGCN [0.02, 0.3) ≥ 0.0735
EvolveGCN [0.3, 0.9] ≤ 0.0271*

GC-LSTM [0.02, 0.6) ≥ 0.0554
GC-LSTM [0.6, 0.9] ≤ 0.0270*

two distributions are similar was accepted (i.e., 𝑝-value > 0.05) in

all but five cases. These cases were EvolveGCN for Radoslaw at

𝜖 = 0.3, 0.5, 0.7, 0.9 and DySAT for Radoslaw at 𝜖 = 0.9. In all other

cases, we found that the distances from the cluster centroids of

these edges are not statistically different before and after TDAP

perturbations. Thus, NetWalk detection algorithm fails to detect

such perturbations.

5.3 Online Adversarial Attacks

In this section, we consider the online setting as described in Section

3.3 and compare the online version of TD-PGD with the Random

andDegree baselines on the dynamic link prediction task. Since the

loss at the final step is not available at time step 𝑡 , one cannot select

Table 4: Significance values from 2-sample t-test between

the NetWalk anomalous scores for Z′ and Z. Bold rows in-

dicate that the difference is not significant.

Dataset Model Epsilon 𝑝-value (𝑑Z′, 𝑑Z)

Radoslaw

DySAT [0.02, 0.7] ≥ 0.05301
DySAT 0.9 0.0200*

EvolveGCN [0.02, 0.1] ≥ 0.2966
EvolveGCN [0.3, 0.9] ≤ 0.00008*

GC-LSTM [0.02, 0.9] ≥ 0.1835

UCI
DySAT [0.02, 0.9] ≥ 0.1005

EvolveGCN [0.02, 0.1] ≥ 0.0581
GC-LSTM [0.02, 0.9] ≥ 0.1806

the perturbations in a greedy manner of the gradients. Therefore,

we do not have a TGA(𝜖) baseline for this setting.
Figure 4 shows the average performance of the three methods

for dynamic link prediction task on 3 datasets over 3 random seeds.

TD-PGD outperforms the other online baselines in most cases and

is able to achieve competent performance to the offline version. In

particular, it shows up to 5 times improvement over the existing

baselines (for EvolveGCN on UCI), which is close to the offline

TD-PGD as shown in Figure 2. However, TD-PGD does not perform

well in Figures 4a and 4i. Online TD-PGD perturbs the graph at

time 𝑡 according to the loss at that time step rather than the final

step. While it is guaranteed to give strong bounds for a convex

objective, some models may learn a complex non-convex function

in its input. We conjecture that the degradation may be due to such

functions being learned in these cases.

6 CONCLUSION

Our work has shown that state-of-the-art dynamic graph models

can be effectively attacked while preserving temporal dynamics. We

hope that our work serves as a first step toward opening exciting

research avenues for studying attacks and defense mechanisms for

both discrete and continuous-time dynamic graphs. Some limita-

tions of our current exposition can be noted. First, the proposed

2030

Temporal Dynamics-Aware Adversarial Attacks on Discrete-Time Dynamic Graph Models KDD ’23, August 6–10, 2023, Long Beach, CA, USA

TD-PGD Degree Random

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

20

10

0

10

Re
l. D

ro
p

%

(a) Radoslaw, DySAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%
(b) Radoslaw, EvolveGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(c) Radoslaw, GC-LSTM

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

4

2

0

2

Re
l. D

ro
p %

(d) UCI, DySAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0
Re

l.
Dr

op
 %

(e) UCI, EvolveGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

12.5

10.0

7.5

5.0

2.5

0.0

Re
l.

Dr
op

 %

(f) UCI, GC-LSTM

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0

Re
l. D

ro
p

%

(g) Reddit, DySAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

80

60

40

20

0

Re
l. D

ro
p

%

(h) Reddit, EvolveGCN

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

30

20

10

0
Re

l. D
ro

p
%

(i) Reddit, GC-LSTM

Figure 4: Online Attack performance on dynamic link prediction task across datasets and models.

method TD-PGD is not memory-efficient and may not scale to

larger graphs (due to its𝑂 (|E |) memory complexity for untargeted

settings). Second, randomly rounding the solution to discrete space

may lead to suboptimal perturbations. Future works can study

more effective and efficient methods to attack dynamic graphs un-

der TDAP constraint, possibly in the more restrictive black-box

setting. Finally, since TDAP constraint is designed to preserve the

local graph (and embedding) evolution, it may be ineffective against

frequency-based anomaly detection algorithms [7, 13]. We hope

that our work on evolution-preserving attacks inspires others to

move away from the impractical budget constraint and explore spe-

cific practical constraints for specific domains, such as evolution-

based and frequency-based anomaly detection for dynamic graphs.

ACKNOWLEDGEMENTS

This research/material is based upon work supported in part by NSF

grants CNS-2154118, IIS-2027689, ITE-2137724, ITE-2230692, CNS-

2239879, Defense Advanced Research Projects Agency (DARPA)

under Agreement No. HR00112290102 (subcontract No. PO70745),

and funding from Microsoft, Google, and Adobe Inc. Any opinions,

findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the

position or policy of DARPA, DoD, SRI International, NSF, and no

official endorsement should be inferred. We thank the anonymous

reviewers for their constructive comments.

2031

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, & Srijan Kumar

REFERENCES

[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly

detection and description: a survey. Data mining and Knowledge Discovery 29, 3

(2015), 626–688.

[2] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial attacks on

node embeddings via graph poisoning. In International Conference on Machine
Learning. PMLR, 695–704.

[3] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

[4] Sébastien Bubeck et al. 2015. Convex optimization: Algorithms and complexity.

Foundations and Trends® in Machine Learning 8, 3-4 (2015), 231–357.

[5] Horst Bunke, Peter J Dickinson, Miro Kraetzl, and Walter D Wallis. 2007. A
graph-theoretic approach to enterprise network dynamics. Vol. 24. Springer Science
& Business Media.

[6] Lei Cai, Zhengzhang Chen, Chen Luo, Jiaping Gui, Jingchao Ni, Ding Li, and

Haifeng Chen. 2021. Structural temporal graph neural networks for anomaly de-

tection in dynamic graphs. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management. 3747–3756.

[7] Yen-Yu Chang, Pan Li, Rok Sosic, MH Afifi, Marco Schweighauser, and Jure

Leskovec. 2021. F-fade: Frequency factorization for anomaly detection in edge

streams. In Proceedings of the 14th ACM International Conference on Web Search
and Data Mining. 589–597.

[8] Jinyin Chen, Xueke Wang, and Xuanheng Xu. 2018. Gc-lstm: Graph convolution

embedded lstm for dynamic link prediction. arXiv:1812.04206 (2018).
[9] Jinyin Chen, Haiyang Xiong, Haibin Zheng, Jian Zhang, Guodong Jiang, and

Yi Liu. 2021. Dyn-Backdoor: Backdoor Attack on Dynamic Link Prediction.

arxiv:2110.03875 (2021).
[10] Jinyin Chen, Jian Zhang, Zhi Chen, Min Du, and Qi Xuan. 2021. Time-aware gra-

dient attack on dynamic network link prediction. IEEE Transactions on Knowledge
and Data Engineering (2021).

[11] Yongqiang Chen, Han Yang, Yonggang Zhang, MA KAILI, Tongliang Liu, Bo

Han, and James Cheng. 2022. Understanding and Improving Graph Injection

Attack by Promoting Unnoticeability. In International Conference on Learning
Representations. https://openreview.net/forum?id=wkMG8cdvh7-

[12] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.

2018. Adversarial attack on graph structured data. In International conference on
machine learning. PMLR, 1115–1124.

[13] Dhivya Eswaran and Christos Faloutsos. 2018. Sedanspot: Detecting anomalies

in edge streams. In 2018 IEEE International conference on data mining (ICDM).
IEEE, 953–958.

[14] Houxiang Fan, Binghui Wang, Pan Zhou, Ang Li, Meng Pang, Zichuan Xu, Cai Fu,

Hai Li, and Yiran Chen. 2020. Reinforcement learning-based black-box evasion

attacks to link prediction in dynamic graphs. arxiv:2009.00163 (2020).
[15] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bo-

jchevski, and Stephan Günnemann. 2021. Robustness of Graph Neural Networks

at Scale. Advances in Neural Information Processing Systems 34 (2021).
[16] Antonia Gogoglou, Brian Nguyen, Alan Salimov, Jonathan B Rider, and C Bayan

Bruss. 2020. Navigating the dynamics of financial embeddings over time. In

Proceedings of the First ACM International Conference on AI in Finance. 1–8.
[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining

and harnessing adversarial examples. In International Conference on Learning
Representations.

[18] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. Dyngem: Deep em-

bedding method for dynamic graphs. arXiv:1805.11273 (2018).
[19] Bryan Hooi, Kijung Shin, Hyun Ah Song, Alex Beutel, Neil Shah, and Christos

Faloutsos. 2017. Graph-based fraud detection in the face of camouflage. ACM
Transactions on Knowledge Discovery from Data (TKDD) 11, 4 (2017), 1–26.

[20] Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, and Cho-

Jui Hsieh. 2019. On the robustness of self-attentive models. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. 1520–1529.

[21] Renhe Jiang, Du Yin, Zhaonan Wang, Yizhuo Wang, Jiewen Deng, Hangchen Liu,

Zekun Cai, Jinliang Deng, Xuan Song, and Ryosuke Shibasaki. 2021. Dl-traff:

Survey and benchmark of deep learning models for urban traffic prediction. In

Proceedings of the 30th ACM international conference on information & knowledge
management. 4515–4525.

[22] Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and

Jiliang Tang. 2021. Adversarial attacks and defenses on graphs. ACM SIGKDD
Explorations Newsletter 22, 2 (2021), 19–34.

[23] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,

Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic

Graphs: A Survey. Journal of Machine Learning Research 21, 70 (2020), 1–73.

[24] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-

mization. In International Conference on Learning Representations.
[25] Gueorgi Kossinets and Duncan J Watts. 2006. Empirical analysis of an evolving

social network. science 311, 5757 (2006), 88–90.
[26] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-

munity interaction and conflict on the web. In Proceedings of the 2018 World Wide
Web Conference on World Wide Web. International World Wide Web Conferences

Steering Committee, 933–943.

[27] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-

bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1269–1278.

[28] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:

Densification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2–es.

[29] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolu-

tional recurrent neural network: Data-driven traffic forecasting. In International
Conference on Learning Representations.

[30] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. 2020. Towards more practical

adversarial attacks on graph neural networks. Advances in neural information
processing systems 33 (2020), 4756–4766.

[31] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. 2020. Stream-

ing graph neural networks. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 719–728.

[32] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. 2021. Graph

adversarial attack via rewiring. In Proceedings of the 27th ACM SIGKDDConference
on Knowledge Discovery & Data Mining. 1161–1169.

[33] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. 2021. Graph Ad-

versarial Attack via Rewiring. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 1161–1169.

[34] Franco Manessi, Alessandro Rozza, and Mario Manzo. 2020. Dynamic graph

convolutional networks. Pattern Recognition 97 (2020), 107000.

[35] AndjelaMladenovic, Avishek Joey Bose, Hugo Berard,William LHamilton, Simon

Lacoste-Julien, Pascal Vincent, and Gauthier Gidel. 2021. Online Adversarial

Attacks. arxiv:2103.02014 (2021).
[36] Norman Mu and David Wagner. 2021. Defending against adversarial patches

with robust self-attention. In ICML 2021 Workshop on Uncertainty and Robustness
in Deep Learning.

[37] Apurva Narayan and Peter HO’N Roe. 2018. Learning graph dynamics using

deep neural networks. IFAC-PapersOnLine 51, 2 (2018), 433–438.
[38] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. 2021.

Transfer Graph Neural Networks for Pandemic Forecasting. In Proceedings of the
35th AAAI Conference on Artificial Intelligence.

[39] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,

Hiroki Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. 2020. Evolvegcn:

Evolving graph convolutional networks for dynamic graphs. In Proceedings of
the AAAI Conference on Artificial Intelligence. 5363–5370.

[40] Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Christos Falout-

sos, and Nagiza F Samatova. 2015. Anomaly detection in dynamic networks:

a survey. Wiley Interdisciplinary Reviews: Computational Statistics 7, 3 (2015),

223–247.

[41] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico

Monti, andMichael Bronstein. 2020. Temporal GraphNetworks for Deep Learning

on Dynamic Graphs. In ICML 2020 Workshop on Graph Representation Learning.
[42] Benedek Rozemberczki, Paul Scherer, Oliver Kiss, Rik Sarkar, and Tamas Ferenci.

2021. Chickenpox cases in hungary: a benchmark dataset for spatiotemporal

signal processing with graph neural networks. arXiv:2102.08100 (2021).
[43] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. 2021. Graph neural networks

for friend ranking in large-scale social platforms. In Proceedings of the Web
Conference 2021. 2535–2546.

[44] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.

Dysat: Deep neural representation learning on dynamic graphs via self-attention

networks. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 519–527.

[45] Peter Shoubridge, Miro Kraetzl, WALWallis, and Horst Bunke. 2002. Detection of

abnormal change in a time series of graphs. Journal of Interconnection Networks
3, 01n02 (2002), 85–101.

[46] Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang

Wang. 2020. Knowing your fate: Friendship, action and temporal explanations

for user engagement prediction on social apps. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining. 2269–
2279.

[47] Rakshit Trivedi, HanjunDai, YichenWang, and Le Song. 2017. Know-evolve: Deep

temporal reasoning for dynamic knowledge graphs. In international conference
on machine learning. PMLR, 3462–3471.

[48] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.

2019. Dyrep: Learning representations over dynamic graphs. In International
Conference on Learning Representations.

[49] Bin Wang, Teruaki Hayashi, and Yukio Ohsawa. 2020. Hierarchical graph convo-

lutional network for data evaluation of dynamic graphs. In 2020 IEEE International
Conference on Big Data (Big Data). IEEE, 4475–4481.

[50] Huijun Wu, ChenWang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming

Zhu. 2019. Adversarial Examples for Graph Data: Deep Insights into Attack

and Defense. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial

2032

https://openreview.net/forum?id=wkMG8cdvh7-

Temporal Dynamics-Aware Adversarial Attacks on Discrete-Time Dynamic Graph Models KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Intelligence Organization, 4816–4823. https://doi.org/10.24963/ijcai.2019/669

[51] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Yameng Gu, Xiao Liu, Jingchao Ni,

Bo Zong, Haifeng Chen, and Xiang Zhang. 2019. Adaptive neural network for

node classification in dynamic networks. In 2019 IEEE International Conference
on Data Mining (ICDM). IEEE, 1402–1407.

[52] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.

2020. Inductive representation learning on temporal graphs. In International
Conference on Learning Representations.

[53] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,

and Xue Lin. 2019. Topology Attack and Defense for Graph Neural Networks:

An Optimization Perspective. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19. 3961–3967. https://doi.org/10.

24963/ijcai.2019/550

[54] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[55] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei

Wang. 2018. Netwalk: A flexible deep embedding approach for anomaly detection

in dynamic networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2672–2681.

[56] Tong Zhao, Bo Ni, Wenhao Yu, Zhichun Guo, Neil Shah, and Meng Jiang. 2021.

Action Sequence Augmentation for Early Graph-based Anomaly Detection. In

Proceedings of the 30th ACM International Conference on Information & Knowledge
Management. 2668–2678.

[57] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. 2019. AddGraph: Anomaly

Detection in Dynamic Graph Using Attention-based Temporal GCN.. In IJCAI.
4419–4425.

[58] Dali Zhu, Yuchen Ma, and Yinlong Liu. 2020. A flexible attentive temporal graph

networks for anomaly detection in dynamic networks. In 2020 IEEE 19th Interna-
tional Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE, 870–875.

[59] Martin Zinkevich. 2003. Online convex programming and generalized infinitesi-

mal gradient ascent. In Proceedings of the 20th international conference on machine
learning (icml-03). 928–936.

[60] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial

attacks on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2847–2856.

2033

https://doi.org/10.24963/ijcai.2019/669
https://doi.org/10.24963/ijcai.2019/550
https://doi.org/10.24963/ijcai.2019/550

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kartik Sharma, Rakshit Trivedi, Rohit Sridhar, & Srijan Kumar

APPENDIX

A ADDITIONAL EXPERIMENTS

A.1 PGD Performance On Different Models

Figure 5 compares the TD-PGD attack performance over random

targets of different victim models for dynamic link prediction. One

can note that EvolveGCN is the least robust among these models as

TD-PGD causes the most drop in this model across datasets. On the

other hand, GC-LSTM and DySAT show similar drops with DySAT

being slightly more robust among them. This can be explained due

to the implicit robustness of attention-based architecture [20, 36]

and lower model complexity of EvolveGCN. GC-LSTM, on the

other hand, has a high model complexity as it embeds a GCN in

each component of the LSTM module, owing to its robustness.

A.2 Attack Efficiency

Figure 6 compares the running time per target for different attack

methods on the largest dataset, Reddit. We find that TGA(𝜖) is the
most expensive method and scales almost linearly with 𝜖 (capped

at 300 s). TD-PGD takes around half the time than TGA(𝜖) and
remains constant with an increase in 𝜖 . This trend can be attributed

to the difference in the complexity of the two methods, as shown

in Section 3.2, as the time taken by TD-PGD does not depend on 𝜖 .

A.3 Node Classification Over Random Targets

Figure 7 compares the drop on the node classification task for

different models over random targets. One can note that all attack

models perform as well as the other on EvolveGCN and DySAT,

while TD-PGD outperforms others on GC-LSTM by a factor of 2.

No attack method is found to achieve a significant drop, i.e., below
5%, in the accuracy of DySAT and EvolveGCN on DBLP-5.

Feature perturbations. Thus, we explore other ways to attack

this task. We find that node attributes are more important for node

classification than the temporal structure. Thus, we formulate per-

turbations over node attributes/features. In particular, we have con-

tinuous perturbations S𝑋𝑡 = X′𝑡 − X𝑡 such that ∥X′𝑡 − X𝑡 ∥ ≤ 𝜖𝑑X𝑡

for all 𝑡 . We then adopt the Algorithm 1 to this problem to find effec-

tive feature perturbations. In particular, we replace s𝑡 to denote the
feature perturbation vector at time 𝑡 , i.e., the vector corresponding
to X′𝑡 − X𝑡 . Finally, since the perturbations are supposed to be in

continuous space, we remove the rounding step (line 4) and return

the matrix form of {s𝑡 } as S𝑋 . Thus, TD-PGD can be used to find

effective attacks in the feature perturbation setting as well.

However, since TGA(𝜖) andDegree takes decisions based on the
structure, we omit these baselines for this setting. We use Random

to introduce uniformly random perturbations in the feature matri-

ces of the random nodes. Figure 8 compares the attack performance

of the two feature perturbation methods on DBLP-5 over random
targets. One can note that TD-PGD is able to achieve around 30%

drop for all the models while it could not drop the performance

below 5% for these random targets using structural perturbations.

This can be explained by the low degree of these targets (average

∼ 10 over 10 time steps) which allows for a small no. of perturba-

tions per time step according to the TDAP constraint. Furthermore,

the node features here correspond to the word2vec attributes of

the author papers while the labels represent the field of the author.

Thus, there is a strong connection between the attributes and the

downstream labels, which makes feature perturbation more effec-

tive than structural co-author perturbations to flip predicted labels

for the classification task.

A.4 Detectability of Attack Methods

Embedding Variability. Another way to detect attacks can be

extended from [18] by proposing a novel metric Embedding Vari-

ability (EV). This compares the consecutive embedding difference

for the perturbed graph and that for the original graph. Consecu-

tive embedding difference has been used to identify anomalies in

the data [18]. Here, we measure how the range of this difference

changes due to the perturbation. In particular, we consider

𝐸𝑉 (Z,Z′) :=
����1 − max𝜏 𝑑Z′𝜏 −min𝜏 𝑑Z′𝜏

max𝜏 𝑑Z𝜏 −min𝜏 𝑑Z𝜏

���� (8)

This measures the relative variability of the consecutive change

in the embedding space. For the attacks to be less detectable, this

metric should be close to 0.

Table 5 compares the attack performance of the best method TD-

PGD at 𝜖 = 0.5 and the corresponding variability in the embeddings,

as given by Equation 8. We note the median and 10% and 90%

quantile values for the EV metric. One can note that at least 50% of

the attacks changed the evolution by a factor of only 1± 0.25, as the
median EV ≤ 0.25 across datasets. Furthermore, we note that TD-

PGD is able to cause up to 90% drop in performance while changing

the evolution of 90% of these targets by only 0.62. This shows that

TDAP allows for undetectable yet effective attacks. These results

further show that anomaly detection methods such as DynGem [18]

that bound 𝑑Z′ = ∥Z′𝑡 −Z′𝑡−1∥ may fail to detect such attacks as the

attacker can choose a specific 𝜖 at which 𝑑Z′ is within a specific

factor of 𝑑Z (that is guaranteed by Corollary 1).

We also compare other attack methods for the embedding vari-

ability and found Degree to be the most detectable with an EV of

almost twice that of TD-PGD. However, regardless of the attack

method, TDAP-constrained perturbations are found to have an EV

of less than 1 for at least 50% of the targets.

Table 5: Comparison of attack performance and detectabil-

ity with respect to Embedding Variability (EV) for TD-PGD

at 𝜖 = 0.5. Mean relative drop is noted with the standard devi-

ation in parentheses. While for EV, median values are noted

with 10% and 90% quantile values in the parentheses.

Dataset Model Rel. Drop % EV

Radoslaw
DySAT -47.03 (5.42) 0.00 (0.00, 0.04)

EvolveGCN -91.61 (3.58) 0.25 (0.03, 0.79)

GC-LSTM -52.63 (5.09) 0.07 (0.01, 0.19)

UCI
DySAT -4.02 (2.08) 0.06 (0.01, 0.39)

EvolveGCN -96.21 (0.17) 0.11 (0.01, 0.62)

GC-LSTM -16.12 (0.75) 0.20 (0.03, 0.85)

Reddit
DySAT -23.24 (4.18) 0.02 (0.00, 0.34)

EvolveGCN -79.31 (3.13) 0.13 (0.02, 1.23)

GC-LSTM -15.59 (1.28) 0.13 (0.02, 0.84)

2034

Temporal Dynamics-Aware Adversarial Attacks on Discrete-Time Dynamic Graph Models KDD ’23, August 6–10, 2023, Long Beach, CA, USA

GCLSTM EvolveGCN DySAT

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0
Re

l. D
ro

p
%

(a) Radoslaw

0.
02

0.
06

0.
10

0.
30

0.
50

0.
70

0.
90

Epsilon

100

80

60

40

20

0

Re
l. D

ro
p

%

(b) UCI

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

80

60

40

20

0

Re
l. D

ro
p %

(c) Reddit

Figure 5: TD-PGD performance on dynamic link prediction task across datasets and models.

TD-PGD TGA() Degree Random

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0

100

200

300

Tim
e/t

ar
ge

t (
s)

(a) Reddit, DySAT

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0

100

200

300

400

500
Tim

e/t
ar

ge
t (

s)

(b) Reddit, EvolveGCN

0.0
2

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

0

100

200

300

400

Tim
e/t

ar
ge

t (
s)

(c) Reddit, GC-LSTM

Figure 6: Running time of different attack methods on the largest dataset (Reddit)

TD-PGD TGA() Degree Random

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

2

1

0

1

2

Re
l. D

ro
p %

(a) DBLP, DySAT

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

3

2

1

0

Re
l. D

ro
p %

(b) DBLP, EvolveGCN

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

20

15

10

5

0

Re
l. D

ro
p %

(c) DBLP, GC-LSTM

Figure 7: Structural perturbation performance on node classification task over random targets.

TD-PGD Random

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

30
25
20
15
10
5
0

Re
l. D

ro
p %

(a) DBLP, DySAT

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

30

25

20

15

10

5

0

Re
l. D

ro
p %

(b) DBLP, EvolveGCN

0.0
2

0.0
6

0.1
0

0.3
0

0.5
0

0.7
0

0.9
0

Epsilon

30

20

10

0

Re
l. D

ro
p %

(c) DBLP, GC-LSTM

Figure 8: Feature perturbation performance on node classification task over random targets.

2035

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Temporal Dynamics-Aware Perturbation (TDAP) Constraint
	3.2 Attack Methods Under TDAP Constraint
	3.3 Online Adversarial Attacks

	4 Experimental Setup
	5 Results
	5.1 Relative Performance Drop
	5.2 Detectability of TDAP perturbations
	5.3 Online Adversarial Attacks

	6 Conclusion
	References
	A Additional Experiments
	A.1 PGD Performance On Different Models
	A.2 Attack Efficiency
	A.3 Node Classification Over Random Targets
	A.4 Detectability of Attack Methods

