
Princeton Univ Fall ’20 COS 521:Advanced Algorithms

Homework 4

Out: Oct 24 Due: Nov 13

Instructions:

• Upload your solutions (to the non-extra-credit) to each problem as a separate PDF
file (one PDF per problem) to codePost. Please make sure you are uploading the
correct PDF! Please anonymize your submission (i.e., do not list your name in the
PDF), but if you forget, it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to codePost. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please upload
a brief “collaboration statement” listing any collaborators as a separate PDF on code-
Post (if you forget, it’s OK). But always write up your solutions individually.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

• Each problem is worth twenty points (even those with multiple subparts), unless
explicitly stated otherwise.

Problems:

§1 This exercise is to remind you of some basic linear algebra.

(a) Show that every eigenvalue of a real symmetric matrix M ∈ Rn×n is real.

Hint: Use xTMx = xTMx for any n dimensional complex vector x.

(b) Show that any two eigenvectors corresponding to distinct eigenvalues of a real
symmetric matrix M ∈ Rn×n are orthogonal.

(c) Show that there exist n orthogonal eigenvectors of any real symmetric matrix
M ∈ Rn×n that span the entire n dimensional space.

(d) Using the previous part, show that the spectral norm of any matrix A ∈ Rm×n,

defined to be ‖A‖2 := maxx
‖Ax‖2
‖x‖2 , is achieved when x is the eigenvector corre-

sponding to the largest eigenvalue of ATA.

(e) Show that if the columns of a real square matrix M ∈ Rn×n are orthonormal
(i.e., have unit `2 norm and are pairwise orthogonal), then the rows of M are
also orthonormal. (Hence, M is a unitary matrix.)

1

2

§2 This problem asks you to prove a bound on the spectral norm of random matrices
which is valuable in analyzing many randomized algorithms.

Construct a random symmetric matrix R ∈ Rn×n by setting Rij = Rji to +1 or −1,
uniformly at random. Prove that, with high probability,

‖R‖2 ≤ c
√
n log n,

for some constant c. This is much better than the naive bound of ‖R‖2 ≤ ‖R‖F = n.

Hint: For a symmetric matrix R, show that another way to write the spectral norm

besides ‖R‖2 := maxx
‖Rx‖2
‖x‖2 is that ‖R‖2 = maxx

|xTRx|
xT x

.

Hint: Try to bound xTRx
xT x

for one particular x, and then extend the result to hold for

all x, simultaneously, by taking a ε-net for ε = 1
poly(n) from Lecture 12. It is possible to

solve this problem using the standard Hoeffding bound for bounded random variables
– so don’t use exotic concentration bounds!

§3 A matroid on [n] elements is a collection of sets that generalized the concept of linear
independence for vectors. Specifically, a matroid I satisfies:

• Non-trivial: ∅ ∈ I.

• Downwards-closed: If S ∈ I, then T ∈ I for all T ⊆ S.

• Augmentation: If S, T ∈ I, and |S| > |T |, then there exists an i ∈ S \ T such
that T ∪ {i} ∈ I.1

(a) Prove that the following collections are matroids:

i. Sets of size at most k (that is, the elements are [n], and I = {X ⊆ [n]| |X| ≤
k}).

ii. Acyclic subgraphs of any undirected graph G = (V,E) (that is, the elements
are E and I = {X ⊆ E|X contains no cycles}).

iii. Let G = (L,R,E) be a bipartite graph. The elements are L, and I =
{X ⊆ L| |N(S)| ≥ |S| ∀S ⊆ X} (N(S) are the neighbors of S: {x ∈
R| ∃y ∈ S, (x, y) ∈ E}). That is, X ∈ I if and only if all nodes in X can be
simultaneously matched to R.

(b) Given weights wi ≥ 0, i ∈ [n], and some collection of feasible sets I where ∅ ∈ I,
your goal is to find the max-weight feasible set: arg maxS∈I{

∑
i∈S wi}. Consider

a greedy algorithm that first sorts the elements in decreasing order of wi (i.e.
picks a permutation σ such that wσ(i) ≥ wσ(i+1) for all i), then iteratively does
the following (initializing A = ∅, i = 1, go until i > n): Check if A ∪ {σ(i)} ∈ I.
If so, add σ(i) to A. Update i := i + 1. Prove that this greedy algorithm finds
the max-weight feasible set no matter what non-negative weights are input if and
only if I is a matroid (that is, prove that the algorithm succeeds whenever I is
a matroid. Also, if I is not a matroid, provide an instance of weights for which
the algorithm fails).

1Think of this as a generalization of linear independence: if I give you a set S of k linearly independent
vectors, and T of < k linearly independent vectors, then there is some vector in S not spanned by T .

3

§4 In the submodular welfare problem, there are n bidders and m items. The value of
bidder i ∈ {1, . . . n} for a subset of items S ⊆ {1, . . . ,m} is given by a monotone
submodular function fi(S) where fi(∅) = 0. We want to allocate the m items to the
n bidders, i.e., find an item partition where bidder i gets susbset Si ⊆ {1, . . . ,m} and
Si ∩ Sj = ∅ for i 6= j, and the goal is to maximize the welfare

∑
i∈{1,...,n} fi(Si). Show

that the greedy algorithm which considers the items one-by-one in an arbitrary order
and allocates the next item j to the bidder which has the highest marginal value (i.e.,
which maximizes fi(S ∪ j) − fi(S) where S is the currently allocated set of items to
bidder i), gives a 2-approximation algorithm for the submodular welfare problem.

Hint: Note that a submodular function remains submodular even if you “contract”
a set, i.e., fS(A) := f(S ∪ A) − f(S) is also a submodular function on elements
{1, . . . ,m} \ S.

§5 (Discrepancy Theory) Suppose you are given a matrix A ∈ {0, 1}n×n such that each
column of A has at most s ones, i.e., column sparsity is at most s. We will analyze
the following polynomial time algorithm to find a coloring ~ε ∈ {−1,+1}n such that
‖A~ε‖∞ = ‖

∑
t~atεt‖∞ = O(s), where ~at is the t-th column of A.

The algorithm will iteratively color more and more columns of A. Initially, all columns
are “uncolored” and a column ~at gets “colored” when εt is defined.

• In any iteration, if the number of remaining uncolored columns is at most 2s,
color them arbitrarily and halt.

• Otherwise, we solve an LP with fractional variables denoting the fractional col-
ors of the uncolored columns. For every row i that contains more than 2s un-
colored ones, put an LP constraint that its fractional discrepancy is zero, i.e.,∑

t at(i)Yt = 0 where Yt denotes LP variable xt ∈ [−1, 1] for uncolored columns
t, and Yt denotes constant εt for colored columns t.

• Find a basic solution x∗ of the above LP, and for any uncolored column t that
gets x∗t ∈ {−1,+1} in this basic solution, we permanently set its εt to that color.

• Repeat.

(a) Show that in any iteration, the number of row constraints that we put is at
most half the number of currently uncolored columns. Thus a basic solution will
integrally color many columns in each iteration.

(b) Show that this algorithm obtains a solution with discrepancy O(s).

Remark: There is nothing special about A ∈ {0, 1}n×n vs. A ∈ {0, 1}n×T , i.e., having
T � n columns. We can easily extend the above result to T columns using the idea
of finding a basic solution in the beginning with at most n uncolored columns.

§6 (Online set cover): In the online set cover problem, we are given a universe U :=
{1, . . . , n} of n elements and a family S := {S1, . . . , Sm} of m sets where each

⋃
i Si =

U . The algorithm starts with A = ∅ which denotes the collection of selected sets. In
each time step t ∈ {1, . . . , T}, an adversary reveals an element et ∈ U , and the online
algorithm has to immediately ensure that et ∈

⋃
S∈A S, i.e., if et is already covered

4

then the algorithm doesn’t need to select a new set, and otherwise the algorithm has
to select a set into A that contains et. The goal of the algorithm is to minimize the
size of A. Show that there are problem instances such that the offline optimal solution
has |A| = O(1) but any deterministic online algorithm has size Ω(logm).

Hint: You may prove the lower bound even against an online algorithm that is allowed
to maintain a fractional set cover, i.e., it maintains ~x ∈ [0, 1]m such that

∑
i : et∈Si

xi ≥
1 and the algorithm is only allowed to increase the coordinates of ~x.

Extra Credit:

§1 (Extra credit) Calculate the eigenvectors and eigenvalues of the (adjacency matrix of
the) n-dimensional boolean hypercube, which is the graph with vertex set {−1, 1}n
and x, y are connected by an edge iff they differ in exactly one of the n locations.
(Hint: Use symmetry extensively.)

§2 (Open Problem) Can you extend the discrepancy result in Problem 5 to every prefix,
i.e., find a coloring ~ε such that maxt ‖

∑
i≤t~aiεi‖∞ = O(s)? Can you prove this result

for some other function f(s) that does not depend on n and T (like f(s) = 2s)?

