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1 Preliminaries

Very high-dimensional vectors are ubiquitous in science, engineering, and machine learning.
They give a simple way of representing data: for each object we want to study, we collect
a very large set of numerical parameters, often with no inherent order or structure. We use
these parameters to compare, analyze, and make inferences about those objects.

High-dimensional data comes from genetic data sets, time series (e.g. audio or seismo-
graphic data), image data, etc. It is also a common output of feature generation algorithms.

Feature generation algorithms are commonly used to pre-process image and audio data
as well. For example, Shazam and other “song matching” services preprocess audio by
computing a spectrogram, which essentially computes many Fourier transforms of different
sections of the signal, shifted to start at different time points. More on this example later.

What do we want to do with such high dimensional vectors? Cluster them, use them
in regression analysis, feed them into machine learning algorithms. As an even more basic
goal, all of these tasks require being able to determine if one vector is similar to another.
Even this simple task becomes an unwiedly in high-dimensions.

2 Dimensionality Reduction

The goal of dimensionality reduction is to reduce the cost of working with high-dimensional
data by representing it more compactly. Instead of working with an entire vector, can we
find a more compact “fingerprint” – i.e. a shorter vector – that at least allows us to quickly
compare vectors? Or maybe the fingerprint preserves certain properties of the original
vector that allows it to be used in other downstream tasks.

Computer scientists have developed a remarkably general purpose toolkit of dimensional-
ity reduction methods for constructing compact representations that can be used effectively
in a huge variety of downstream tasks. In this section of the course, we will study some of
those methods.

3 The Johnson-Lindenstrauss Lemma

We start with a particular powerful and influential result in high-dimensional geometry. It
applies to problems involving the `2 norm:

‖x‖2 =

√√√√ m∑
i=1

x2i
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For two vectors x and y, ‖x− y‖2 is the Euclidean distance.

Problem 1. Given n points v1, v2, ..., vn ∈ Rd, we want to find a function f : Rd → Rm
such that m is much smaller than d and for all i, j,

(1− ε)‖vi − vj‖2 ≤ ‖f(vi)− f(vj)‖2 ≤ (1 + ε)‖vj − vj‖2. (1)

In other words, the distance between all pairs of points in preserved.

The following main result (Lemma in their words) is by Johnson & Lindenstrauss [1]:

Theorem 2 (Johnson-Lindenstrauss Lemma). There is a function f satisfying (1) that
maps vectors to m = O( logn

ε2
) dimensions. In fact, f is a linear mapping and can be applied

in a computationally efficient way!

The following ideas do not work to prove this theorem: (a) take a random sample of m
coordinates out of d. (b) Partition the d coordinates into m subsets of size about n/m and
add up the values in each subset to get a new coordinate.1

We’re going to choose f randomly. In particular, let G be a m× d random matrix with
each entry a normal random variable, Gi,j ∼ N (0, 1). Let Π = 1√

m
G:

f(x) = Πx.

So each entry in u = f(v) equals v · g for some vector g filled with scaled Gaussian random
variables. Other choices for G work: for example, we can use random signs or a random
orthonormal matrix (used in the original proof). More on this next lecture.

We’re going to prove a slightly stronger statement for this map:

Theorem 3 ((ε, δ)-JL property). If m = O(log(1/δ)/ε2), then for any vector x,

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22 (2)

with probability (1− δ).

Note that, while stated with the squared Euclidean norm, (2) immediately implies that
(1− ε)‖x‖2 ≤ ‖Πx‖2 ≤ (1 + ε)‖x‖2 (just by taking a square root of all sides, and observing
that this brings the constants closer to 1). Then, to prove Theorem 2 from this stronger
statement, we use the linearity of f to see that:

‖f(vi)− f(vj)‖2 = ‖Πvi −Πvj‖2 = ‖Π(vi − vj)‖2.

So, with probability (1− δ) we preserve one distance. We have
(
n
2

)
= O(n2) distances total.

By a union bound, we preserve all of them with probability 1− δ as long as we reduce δ to
δ/
(
n
2

)
, which means that m = O(log(n/δ)/ε2). This gives Theorem 2. So, we can focus our

attention on proving Theorem 3.

1To see why these approaches fail whp, consider the case of two vectors: (1, 0, . . . , 0) and (0, 1, 0, . . . , 0).
Then the first approach succeeds iff we happen to pick coordinate one or two as one of the coordinates,
which is unlikely. To see why the second approach fails, consider two vectors (1, . . . , 1, 0, . . . , 0) and
(0, . . . , 0, 1, . . . , 1). Then the second approach whp generates nearly-identical vectors even though the initial
two vectors are far apart.
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Proof. Let w = Gx be a scaling of our dimension reduced vector. Our goal is to show that
‖x‖22 is approximated by:

‖Πx‖22 = ‖ 1√
m
Gx‖22 =

1

m

m∑
i=1

w2
i .

Consider one term of the sum, w2
i , which is a random variable since G is chosen randomly.

We will start by showing that each term is equal to ‖x‖22 in expectation. We have:

wi =

d∑
j=1

xjgj

where each gj ∼ N (0, 1). So E[wi] =
∑d

j=1 xjE[gj ] = 0 and thus Var[wi] = E[w2
i ]. It follows

that:

E[w2
i ] = Var[wi] =

d∑
j=1

Var[xjgj ] =
d∑
j=1

x2j Var[gj ] =
d∑
j=1

x2j = ‖x‖22.

Thus E[w2
i ] = ‖x‖22 and our estimate is correct in expectation:

E

[
1

m

m∑
i=1

w2
i

]
= ‖x‖22.

How do we know that it’s close to this expectation with high probability? We actually
know that wi is a normal random variable.

Fact 4 (Stability of Gaussian random variables). If X and Y are independent and X ∼
N (0, a2) and Y ∼ N (0, b2), then X + Y ∼ N (0, a2 + b2). The property that the sum of
Gaussian’s remains Gaussian is known as “stability”2.

So wi ∼ N (0, ‖x‖2) = ‖x‖2 · N (0, 1). It follows that w2
i is a χ2 (chi-squared) random

variable and 1
m

∑m
i=1w

2
i is a chi-squared random variable with m degrees of freedom. You

can look up the CDF on Wikipedia for a χ2 tail bound, but it essentially concentrates
around its mean as well as a Gaussian. In particular, if v = 1

m

∑m
i=1w

2
i , then3:

Pr [|Ev − v| ≥ εEv] ≤ 2e−mε
2/8.

So, if we set m = O(log(1/δ)/ε2) then ‖Πx‖22 = 1
m

∑m
i=1 satisfies:

‖x‖22 − ε‖x‖22 ≤ ‖Πx‖22 ≤ ‖x‖22 + ε‖x‖22

with probability 1− δ.
2There are other classes of stable distributions, but the normal distribution is the only stable distribution

with bounded variance, which gives some intuition for why the central limit theorem holds for random
variables with bounded variance.

3See e.g. https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf

https://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
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Theorem 5 (Alternative (ε, δ)-JL construction). If m = O(log(1/δ)/ε2), then for any
vector x,

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22 (3)

with probability (1− δ).

Proof. Choose m vectors z1, ..., zm ∈ <d at random by choosing each coordinate randomly

from {
√

1
m ,−

√
1
m}. Then consider the mapping from <d to <m given by

x −→ (x · z1, x · z2, . . . , x · zm).

Observe that this is the same as letting Π be a random matrix where each entry is
independently uniform in {

√
1/m,−

√
1/m}. Now, consider a vector x ∈ Rd, and let’s

consider the vector u = Πx:

‖u‖2 =
m∑
k=1

(
zk · x

)2
=

m∑
k=1

(
d∑
`=1

zk` x`

)2

.

Again, we want to compute the expected value of one term
(∑d

`=1 z
k
` x`

)2
and argue that

it is exactly ‖x‖22/m. Indeed:

E[(

d∑
`=1

zk` x`)
2] = E[

d∑
`=1

d∑
j=1

zk` x`z
k
j xj ]

=
d∑
`=1

d∑
j=1

x`xjE[zk` z
k
j ] =

d∑
`=1

x2`E[(zk` )2]

= ||x||22 ·
1

m
.

Above, the first two equalities are simply expanding linearity of expectation. The penul-
timate equality observes that E[xk`x

k
j ] = 0 whenever ` 6= k, and the final equality observes

that E[(xk` )
2] = 1

m .
Therefore, the expectation of ‖u‖2 is ‖x‖2. If we show that ‖u‖2 is concentrated enough

around its mean, then it would prove the theorem. More formally, this is done in the
following Chernoff bound lemma. The point is that because each u2` is independent and
bounded, their sum should concentrate around its expectation.

Seemingly, the the right proof approach should be to bound the random variables and
then use a Chernoff bound, or perhaps Bernstein’s inequality. Unfortunately, this doesn’t
give a particularly good bound because the random variables can be quite large, albeit with
really tiny probability (in particular, observe that each u2k could be as large as |x|21/m). The
proof of the following lemma is omitted:

Lemma 6. There exists a constant c such that:

Pr[||u||22 /∈ (||x||22 ± ε||x||22)] ≤ e−cε
2m.
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With Lemma 6, we can now observe that taking m = ln(1/δ)/(cε2) = O(log(1/δ)/ε2)
results in a failure probability of only δ.

It’s worth noting that Theorem 2 is tight – i.e. there are point sets that cannot be
embedded into less than O(log n/ε2) dimensions if we want to preserve all pairwise distances.
This was proven up to a log(1/ε) factor by Noga Alon in [2]. The fully tight result was only
obtained in 2017 [3]. The result was proven first for linear embeddings and then extended
to a lower-bound for all possible functions f .

4 Applications

There are many, many applications of the JL lemma. Here are a few that we will see on
the problem set or in later classes:

• Approximate all-pairs distances in O(n2 log n+ nd) time vs. the naive O(n2d) time.

• Approximate distance based clustering.

• Approximate support vector machine (SVM) classification and more.

• Sparse recovery.compressed sensing.

• Approximate linear regression.

4.1 Linear regression

In addition to its use in proving the original lemma about distances, the (ε, δ)-JL property
for norm preservation is often directly useful in applications. Furthermore, many appli-
cations crucially use the linearity of the Johnson-Lindenstrauss embedding, not just its
approximation properties. Here we consider a classic example: least squares regression.

Given n data vectors a1, . . . , an ∈ Rd and n response values y1, . . . , yn ∈ R. Usually we
think of a1, . . . , an as the rows in an n × d matrix A and y1, . . . , yn as entries in n length
vector y. Goal:

min
x∈Rd

n∑
i=1

(ai · x− yi)2 = min
x∈Rd

‖Ax− y‖22 (4)

Typically this probably requires O(nd2) time to solve. We will speed this up by reducing
n using the Johnson-Lindenstrauss Lemma.4 In particular, let Π ∈ Rm×n be chosen from
a random family of matrices satisfying Theorem 3. To obtain an approximate solution we
will solve the “sketched” problem:

min
x∈Rd

‖ΠAx−Πy‖22, (5)

4Importantly, note that we are aiming to reduce n (the number of vectors) and not d (the dimension).
Of course, since we only care about the matrix A, we could think of n as the dimension and d as the number
of vectors, but just be aware that this deviates from their semantic meaning.
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which can be solved in O(md2) time (once πA and Πy are computed — we won’t discuss this
aspect, but there are JL transforms which are also fast). We want to prove that a solution
to this smaller problem is a good approximate solution to the original. Before doing so, we
claim a simpler result:

Lemma 7. As long as m = O(log(1/δ)/ε2) then, for any particular x,

(1− ε)‖Ax− y‖22 ≤ ‖ΠAx−Πy‖22 ≤ (1 + ε)‖Ax− y‖22

with probability 1− δ.

This is a direct consequence of Theorem 3, applied to the vector Ax− y.
If we could show the same result for all x then we would be in good shape. Specifically,

let x∗ be the optimal solution for the original regression problem (4) and let x̃∗ be the
optimal solution for the sketched problem (5). We have:

‖Ax̃∗ − y‖22 ≤
1

1− ε
‖ΠAx̃∗ −Πy‖22 ≤

1

1− ε
‖ΠAx∗ −Πy‖22 ≤

1 + ε

1− ε
‖Ax∗ − y‖22

For ε ≤ .25, 1+ε
1−ε ≤ 1 + 3ε. So we would get a relative error approximation to the regression

problem. Question: For the argument above, why did we need a bound for all x?5

But how would we extend Lemma 7 to all x? We certainly can’t use a union bound
argument – there are an infinite number of possible vectors x.

5 Beyond the Union Bound

Recall that we have some A ∈ Rn×d and some y ∈ Rn (we have n training examples for our
linear regression, each in Rd), we want to approximately solve:

min
x∈Rd

‖Ax− y‖22 (6)

by instead solving the “sketched” problem

min
x∈Rd

‖ΠAx−Πy‖22. (7)

As long as Π is chosen so that m ≤ n, then ΠA contains fewer data points than A and (7)
can be solved much faster than (6): in O(md2) vs. O(nd2) time.

Let x̃∗ be the optimal solution for (7). We want to argue that

‖Ax̃∗ − y‖22 ≤ (1 + ε) min
x∈Rd

‖Ax− y‖22,

and saw that, to do so, it suffices to prove:

∀x ∈ Rd (1− ε)‖Ax− y‖22 ≤ ‖Π(Ax− y)‖22 ≤ (1 + ε)‖Ax− y‖22. (8)

Proving this statement requires establishing a Johnson-Lindenstrauss type bound for an
infinity of possible vectors Ax − y, which obviously can’t be tackled with a union bound
argument. Today we will see how to prove this result using a different approach.

5Answer: Because the solution x̃∗ depends on Π. So we cannot simply fix x̃∗ and then use Theorem 3,
because then we won’t have the right x̃∗.
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6 Subspace Embeddings

We will prove a more general statement that implies (8) and is useful in other applications.

Theorem 8. Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If Π ∈ Rm×n is chosen
from any distribution D satisfying Theorem 3, then with probability 1− δ,

(1− ε)‖v‖2 ≤ ‖Πv‖2 ≤ (1 + ε)‖v‖2 (9)

for all v ∈ U , as long as m = O
(
d log(1/ε)+log(1/δ)

ε2

)
6.

Figure 1: Theorem 8 extends Theorem 3 to all points in a linear subspace U .

How does Theorem 8 imply (8)? We can apply it to the d + 1 dimensional subspace
spanned by A’s d columns and y. Every vector Ax − y lies in this subspace. So, for

regression, we will require dimension m = O
(
(d+1) log(1/ε)

ε2

)
. In particular, note that this

means we can approximately solve linear regression over n� d examples for the same work
as m = Oε(d) examples.

We start with the observation that Theorem 8 holds as long as (9) holds for all points
on the unit sphere in U . This is a consequence of linearity. We denote the sphere SU :7

SU = {v | v ∈ U and ‖v‖2 = 1}.

Any point v ∈ U can be written as cx for some scalar c and some point x ∈ SU . If
(1 − ε)‖x‖2 ≤ ‖Πx‖2 ≤ (1 + ε)‖x‖2 then c(1 − ε)‖x‖2 ≤ c‖Πx‖2 ≤ c(1 + ε)‖x‖2 and thus
(1− ε)‖cx‖2 ≤ ‖Πcx‖2 ≤ (1 + ε)‖cx‖2.

7 An argument via ε-nets

We will prove Theorem 8 by showing that there exists a large but finite set of points Nε ⊂ SU
such that, if (9) holds for all v ∈ Nε, then it must hold for all v ∈ SU , and by the argument
above, for all v ∈ U . Nε is called an “ε-net”.

Lemma 9. For any ε ≤ 1, there exists a set Nε ⊂ SU with |Nε| =
(
4
ε

)d
such that ∀v ∈ SU ,

min
x∈Nε

‖v − x‖ ≤ ε.

6It’s possible to obtain a slightly tighter bound of O
(
d+log(1/δ)

ε2

)
. It’s a nice challenge to try proving

this. Hint: use a constant factor net NO(1) instead of an ε net Nε as we do below.
7Below, write the vectors v using any basis for U , and let their norm be their norm written in this basis.



8

Figure 2: An ε-net Nε for a sphere in a 2 dimensional subspace U .

Construction of the ε-net.

Proof. Consider the following greedy procedure for constructing Nε (which we don’t actually
need to implement – it’s just for the proof argument):

• Set Nε = {}

• While such a point exists, choose an arbitrary point v ∈ SU where @x ∈ Nε with
‖v − x‖ ≤ ε. Set Nε = Nε ∪ {v}.

After running this procedure, we have Nε = {x1, . . . , x|Nε|} points that satisfy the condition
minx∈Nε ‖v − x‖ ≤ ε for all v ∈ SU . So we just need to bound |Nε|.

To do so, we note that, for all i, j, ‖xi − xj‖ ≥ ε. If not, then either xi or xj would not
have been added to Nε by our greedy procedure. Accordingly, if we place balls of radius
ε/2 around each xi:

B(x1, ε/2), . . . , B(x|Nε|, ε/2)

then for all i, j, B(xi, ε/2) does not intersect B(xj , ε/2).
The volume of a d dimensional ball of radius r is crd for some value c that does not

depend on r. So the total volume of B(x1, ε/2) ∪ . . . ∪ B(x|Nε|, ε/2) is |Nε| · c
(
ε
2

)d
. At the

same time, B(x1, ε/2), . . . , B(x|Nε|, ε/2) are contained inside a ball of radius 1 + ε/2, which

has volume < c2d. So we have:

|Nε| · c
( ε

2

)d
< 2d which implies |Nε| ≤

(
4

ε

)d
.

Extension to all vectors.

We are now ready to prove Theorem 8.

Proof. Choose m = O
(
log(|Nε|/δ)

ε2

)
= O

(
d log(1/ε)+log(1/δ)

ε2

)
so that (9) holds for all x ∈ Nε.
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Now consider any v ∈ SU . It’s not hard to see that, for some x0, x1, x2 . . . ∈ Nε, v can
be written:8

v = x0 + c1x1 + c2x2 + . . .

for constants c1, c2, . . . where |ci| ≤ εi. Applying triangle inequality, we have

‖Πv‖2 = ‖Πx0 + c1Πx1 + c2Πx2 + . . . ‖2
≤ ‖Πx0‖+ ε‖Πx1‖+ ε2‖Πx2‖2 + . . .

≤ (1 + ε) + ε(1 + ε) + ε2(1 + ε) + . . .

≤ 1 +O(ε).

Similarly,

‖Πv‖2 = ‖Πx0 + c1Πx1 + c2Πx2 + . . . ‖2
≥ ‖Πx0‖ − ε‖Πx1‖ − ε2‖Πx2‖2 − . . .
≥ (1− ε)− ε(1 + ε)− ε2(1 + ε)− . . .
≥ 1−O(ε).

So we have proven

1−O(ε) ≤ ‖Πv‖2 ≤ 1 +O(ε)

for all v in SU . As discussed early, this is sufficient to prove the theorem.
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time resulting in a partial sum that gets exponentially closer to v.


	Preliminaries
	Dimensionality Reduction
	The Johnson-Lindenstrauss Lemma
	Applications
	Linear regression

	Beyond the Union Bound
	Subspace Embeddings
	An argument via -nets

