
Princeton Univ. F’20 COS 521: Advanced Algorithm Design

Lecture 17: Submodular Functions, Lovász Extension and
Minimization

Lecturer: Sahil Singla Last updated: October 29, 2020

Based on the notes from Ankur Moitra’s class at MIT (see references for a link).
This lecture introduces submodular functions as a generalization of some functions we

have previously seen for e.g. the cut function in graphs. We will see how we can use the
ellipsoid method developed in the previous lecture to minimize an arbitrary submodular
function.

1 Submodular Functions

Definition 1 (Submodular Functions). Let N be a set of n elements. A function f : 2N →
R is said to be submodular, if it satisfies following property of diminishing marginal returns:
for every A ⊆ B ⊆ N and j 6∈ B, f(A ∪ {j})− f(A) ≥ f(B ∪ {j})− f(B).

One way to understand submodularity is to think of f as a utility functions. Then, the
diminishing marginal returns property says that the marginal utility gained by adding a
new item to a smaller set is no less than the marginal utility gained by adding a new item
to a larger set.

The defining property of diminishing marginal returns is equivalent to the following (see
the notes by Jeff Bilmes for a proof):

Lemma 1. A function f : 2N → R is submodular if and only if for every X,Y ⊆ N ,
f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y).

2 Examples of Submodular Functions

Submodular functions generalize familiar quantities studied before in this class. For a graph
G(V,E) on n vertices, let f(S) = E(S, S̄), the number of edges that lie in the cut defined
by the vertex set S. It is an easy exercise to prove that f is a submodular function.

Another important example is a coverage function: let G(U, V,E) be a bipartite graph
with the bipartition U and V of vertices with |U | = n. For every S ⊆ U , f(S) be the size
of the neighborhood of vertices in S. Then f is a submodular function. f is also monotone
- for any S and j ∈ U , f(S ∪ {j}) ≥ f(S). Observe that the cut function above is not
necessarily monotone.

Our final example is from information theory - let x1, x2, . . . , xn be discrete random
variables. For any A ⊆ [n], let H(A) be the joint entropy of the {xi}i∈A, i.e., H(A) =
−
∑

a P ({xi}i∈A = a) logP ({xi}i∈A = a). Then, H is a submodular function.

1

2

3 Representation and Optimization

For the special cases above, we are familiar with the algorithmic tasks of optimization. For
example, we know that finding the minimum size cut in a graph is an easy problem while
there’s a 0.878 approximation algorithm for the problem of finding a maximum size cut in
a graph. Incidentally, while the above approximation factor requires the use of semidefinite
programming, there’s a simple algorithm that returns a random cut which yields a 0.5
approximation ratio. Incidentally, this trivial algorithm cannot be improved by even a sub-
exponential size linear programs (see references) even though a simple semidefinite program
does phenomenally better!

What about optimizing arbitrary submodular functions? This immediately leads to
the question of how the submodular function we are interested in is represented. This is
a tricky issue and in general, there exist submodular functions which do not have (even
in an approximate sense) a small representation (see the paper by Balcan and Harvey in
the references for details of one such construction). In most applications, we do have a
representation with us, however, we would like our algorithms to not be tied to a given
representation. Thus, we will want to make minimal assumptions about it. We will see
that we can give non-trivial algorithms by just having a oracle access to the submodular
function - we will only need that given any x, some oracle returns to us the value of the
underlying function at x.

As the case of min-cut might suggest, there’s an efficient algorithm for minimizing an
arbitrary submodular function given just oracle access to it! The maximization problem
is of course NP-hard (Max-Cut is a special case) but it turns out that for a non-negative
submodular function the oracle access is enough to yield a 0.5 approximation guarantee
(this is by no means trivial though - see the paper by Buchbinder, Naor and Schwartz in
references.) The naive algorithm that selects each element independently with probability
half is known to give 0.25 approximation.

Our interest here is going to be in minimizing an arbitrary submodular function.

4 Minimizing Convex Functions over Convex Sets

Our main interest today is to give a polynomial time algorithm for minimizing an arbitrary
submodular function. Even though submodular function is a discrete object, we will be
able to minimize it by reduction to minimizing a continuous convex function over a convex
set. Before describing this reduction, we recall how to use the ellipsoid method in order to
minimize an arbitrary convex function f : Rn → R over a convex set K.

We will need the following assumptions:
1) There’s an efficient evaluation oracle and gradient oracle for f i.e., given a point x,

we can compute f(x) and ∇f(x).
2) There’s a known ellipsoid containing K and there’s an efficient separation oracle for

K.
First note that by doing a binary search over a parameter c, we can reduce minimizing

f to the problem of finding a point (or proving emptiness) in Sc = K ∪{x | f(x) ≤ c} given
a (rough) interval where the minimum must lie. Notice that Sc is convex whenever f is a
convex function.

3

We now want to use the ellipsoid method to find a point in Sc or to prove it is empty.
Recall that we can use the ellipsoid method from previous classes to do this provided we
can satisfy two conditions:

a) There’s an ellipsoid that contains Sc (one usually knows a bound on the diameter of
the set K in which case we can just set this ellipsoid to be the sphere of the same diameter.)
This is satisfied immediately from the assumption on K above.

b) There’s an efficient separation oracle for Sc: We want to show that given a separation
oracle for K, we can build an efficient separation oracle for Sc. Let x ∈ Rn. Then, we first
test if x ∈ K, and if x 6∈ K then obtain a separating hyperplane using the separation
oracle for K. In case x ∈ K, we test if f(x) ≤ c by using the evaluation oracle for
f . If f(x) > c, then, observe that by convexity of f , for any minimizer of f , say x∗,
f(x)− f(x∗) ≤ ∇f(x)(x− x∗) which is a hyperplane (in x∗ after we put c instead of f(x∗))
that separates x and the convex set of all minimizers of f .

Thus, we have that we can minimize f over K efficiently.

5 Lovász Extension

We want to use the above idea for minimizing a convex function given oracle + gradient
access over a convex set to minimize an arbitrary submodular function. To do this, we
will define an extension f̂ of a given submodular function f ; here, f̂ will be a continuous
function that extends f to all of [0, 1]n. The definition itself makes sense for an arbitrary
set function f : 2N → R. However, f̂ will be convex if and only if f is submodular.

First, we think of f : 2N → R as f : {0, 1}n → R by associating a set S with its 0-1
indicator from {0, 1}n (recall that n = |N |).

Definition 2. Let f : {0, 1}n → R. Define f̂ , the Lovász extension of f , so that for any
z ∈ [0, 1]n, f̂(z) = Eλ∼[0,1][f({i | zi ≥ λ})] where λ ∼ [0, 1] denotes a uniformly random
sample from the interval [0, 1].

Why is f̂ an extension of f? Let z ∈ {0, 1}n. Then notice that for any λ ∈ [0, 1],
{i | zi ≥ λ} = S where S = {i | zi = 1}. Thus, f̂ agrees with f over the hypercube and is
some kind of an average of f at fractional points.

We can in fact explicitly find out this averaging representation of f̂(z). To do this, we
define a “chain” of sets associated with any z ∈ {0, 1}n. For simplicity of notation, assume
that z0 = 1 ≥ z1 ≥ z2 . . . ≥ zn ≥ 0 = zn+1. Let Si for any i ∈ [n] ∪ {0} equal {1, 2, . . . , n}.
Then, S0 = ∅ ⊆ S1 ⊆ S2 . . . ⊆ Sn = [n].

Further notice that if λ ∈ [zi, zi+1) (the probability of which is equal to zi − zi+1) for
any i ∈ [n] ∪ {0}, then {j | zj ≥ λ} = Si. Thus,

f̂(z) =

n∑
i=0

(zi − zi+1)f(Si). (1)

In particular, to evaluate f̂ at any z, we need only n + 1 calls to the evaluation oracle
for f .

4

6 Lovász Extension is Convex iff f is submodular

The key result of today is the following:

Theorem 2. Let f̂ be the Lovász Extension of f : {0, 1}n → R. Then, f̂ is convex iff f is
submodular.

Proof. We will only show the “if”part - that is, if f is submodular then f̂ is convex. This
is what is needed for our minimization algorithm. The proof is a neat application of LP
Duality and is a reminder that duality is not only useful as in algorithm design but also
a powerful method of arguing structural properties especially in situations where one can
define the quantity of interest as the optimum value of a linear program.

We will assume that f(∅) = 0 and that 1 ≥ z1 ≥ z2 . . . zn ≥ 0. This is WLOG as
otherwise we can define a new function f ′ = f − f(∅) which satisfies the first property and
is submodular and rename the coordinates.

In Definition 2, we have a definition of the Lovász extension via an explicit formula.
We now give a second definition of the same function as an optimum of a linear program.
Specifically, for f , the submodular function above, define the associated base polyhedron
Pf (a polyhedron is just a possibly unbounded convex set defined as the intersection of a
finite number of hyperplanes, as against a polytope which is a bounded polyhedron) by the
following (exponentially many) inequalities:

x ∈ Pf iff for every S ⊆ [n]
∑
i∈S

xi ≤ f(S)∑
i∈[n]

xi = f([n]).

We then define g(z) = max z>x for x ∈ Pf . This is a linear program - we will call it
the primal (P) program. Note that we don’t have constraints xi ≥ 0 (since the submodular
function could be negative), and hence this is a polyhedron.

Our first claim is that g(z) = f̂(z) for every z ∈ [0, 1]n. In other words, the LP opti-
mum above is an alternate definition of f̂(z). To see why this helps, we observe that g is
convex. The idea is simple and general, the maximum of linear functions is always con-
vex. Concretely, for 1 ≥ λ1 ≥ 0 and z1, z2 ∈ [0, 1]n, observe that g(λ1z1 + (1 − λ1)z2) =
maxx∈Pf

(λ1z
>
1 x+ (1−λ1)z>2 x) ≤ λ1 maxx∈Pf

z>1 x+ (1−λ1) maxx∈Pf
z>2 x = λ1g(z1) + (1−

λ1)g(z2).
Thus, proving f̂ = g completes the proof. To show this, we will use weak duality.
Verify that the dual linear program (D) to (P) is given by:

min
∑
S⊆[n]

ySf(S)

s.t.
∑
S3i

yS = zi for every i

yS ≥ 0 for every S ([n].

How does this help us? We want to prove that the optimum value of (P) is f̂(z). We
will do this by “guessing” the optimal solutions to (P) and (D) (you’ll see why it’s intuitive

5

to guess these solutions, especially when you know what we want to prove). Given such a
guess, how do we verify that they are indeed optimal?

By weak duality, for any x ∈ Pf and any y feasible for D, z>x ≤
∑

S⊆[n] ySf(S). If

for our guesses x∗ for (P) and y∗ for (D) it so happens that z>x∗ =
∑

S⊆[n] y
∗
Sf(S), then

x∗ and y∗ have to be optimal for the respective linear programs as any better solution will
violate weak duality!

We define x∗ by: x∗i = f(Si)− f(Si−1) for every i ∈ [n] and y∗ by:

y∗S =

zi − zi+1 for S = Si for i < n
zn if S = N
0 otherwise.

We now make four claims about x∗ and y∗ which will complete the proof. First, we
establish that z>x∗ = f̂(z).
CLAIM 1 (Primal Objective): z>x∗ = f̂(z).

Next, we claim that x∗ and y∗ are both optimal.

CLAIM 2 (Dual Objective): z>x∗ =
∑

S⊆[n] y
∗
Sf(S).

And finally,
CLAIM 3 (Dual Feasibility): y∗ is feasible for (D).
CLAIM 4 (Primal Feasibility): x∗ is feasible for (P).

Using our discussion from above, the above claims complete the proof. Let us now verify
them one by one.

First,

z>x∗ =
∑
i

zi · (f(Si)− f(Si−1)) (2)

=
n−1∑
i=1

(zi − zi+1)f(Si) + znf(Sn) (3)

=
∑
S⊆[n]

y∗Sf(S). (4)

(3) along with (1) establishes Claim 1. (4) establishes Claim 2.
Let us now proceed to Claims 3 and 4. Observe that y∗ has all non-negative entries

because zi ≥ zi+1 for every i. Further, for any i,
∑

S:S3i y
∗
S =

∑
j≥i y

∗
Sj

= (zi − zi+1) +

(zi+1 − zi+2)) + · · ·+ (zn−1 − zn) + zn = zi as required. This establishes that y∗ is feasible
for (D).

Let us now finally come to Claim 4. Observe that
∑

i∈[n] x
∗
i =

∑
i≤n(f(Si)− f(Si−1)) =

f([n]) − f(∅) = f([n]) using that f(∅) = 0. Let S ([n]. Then, we must show that∑
i∈S x

∗
i ≤ f(S). We will argue this by induction on the size of the set S. The base case

trivially holds as f(∅) = 0 ≥
∑

i∈∅ x
∗
i . Let us now prove the inductive case (observe that so

far we haven’t used the submodularity of f - this is the part of the argument it comes in).
Let i be the largest index in S. By definition of submodularity, f(S) + f(Si−1) ≥

f(S ∪ Si−1) + f(S ∩ Si−1) = f(Si) + f(S \ {i}) which can be rearranged to

f(S) ≥ f(Si)− f(Si−1) + f(S \ {i}) = x∗i + f(S \ {i}) ≥
∑
i∈S

x∗i ,

6

where we used the inductive hypothesis in the final inequality. This completes the proof of
Claim 4.

7 Wrapping Up

Now that we know that the Lovász extension of f is convex iff f is submodular, we can
minimize the Lovász extension of f over [0, 1]n whenever f is submodular. At first glance,
it’s not clear what this buys us: what happens if the minimizer isn’t in {0, 1}n? How do we
then turn this into a minimizer for f?

The other magic property of the Lovász extension (which is especially surprising when
it is convex), is that it always achieves its minimum at an extreme point (and moreover, a
minimum on the extreme point can be found given any interior minimum).

To see this, consider any minimizer ~z. For simplicity of notation, again assume that
1 ≥ z1 ≥ . . . ≥ zn ≥ 0. Then f̂(z) =

∑n
i=0(zi − zi+1)f(Si) as stated previously. Therefore,

f̂(z) is a convex combination of f evaluated at n+ 1 different sets, and f̂(z) ≥ mini f(Si).
In fact, as ~z was the minimum, we must have f̂(z) = f(Si) for all i such that zi− zi+1 > 0.
Therefore, once we know the minimizer ~z of f̂(·), we can immediately output the minimizer
S of f(·).

The “basic part” is the work immediately above: the minimizer of the Lovász extension is
always an extreme point, and an extreme point minimizer can be deduced from a minimizer
of the extension. Because this point is in fact a minimum even of the extension to [0, 1]n,
it is certainly the minimum over {0, 1}n. Normally, functions which have minima on the
extremes are not convex.

The “magic part” is that the Lovász extension happens to be convex when f is submod-
ular. When f is submodular, we can actually minimize the extension in poly-time, enabling
us to minimize f .

Bibliography

1. Lecture Slides: “Submodular functions, their optimization and applications.” Jeff
Bilmes. Dept. of Elect. Eng., Univ. Washington, Seattle, Apr. 1, 2011 [Online].
Available: http://melodi.ee.washington.edu/~bilmes/ee595a_spring_2011/lecture2.
pdf

2. A tight linear time (1/2)-approximation for unconstrained submodular maximization.
Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. In FOCS, 2012.

3. Approximating Rectangles by Juntas and a weakly exponential lower bound on linear
programs for constraint satisfaction Pravesh K. Kothari, Raghu Meka and Prasad
Raghavendra. Available: https://arxiv.org/abs/1610.02704

4. Learning Submodular Functions Maria Florina Balcan and Nick Harvey. In STOC
2011.

5. Lecture Notes: Submodular Functions and Lovász Extension Ankur Moitra. Available
at: http://people.csail.mit.edu/moitra/docs/6854notes13.pdf

http://melodi.ee.washington.edu/~bilmes/ee595a_spring_2011/lecture2.pdf
http://melodi.ee.washington.edu/~bilmes/ee595a_spring_2011/lecture2.pdf
https://arxiv.org/abs/1610.02704
http://people.csail.mit.edu/moitra/docs/6854notes13.pdf

	Submodular Functions
	Examples of Submodular Functions
	Representation and Optimization
	Minimizing Convex Functions over Convex Sets
	Lovász Extension
	Lovász Extension is Convex iff f is submodular
	Wrapping Up

