PrRINCETON UN1v. F’20 COS 521: ADVANCED ALGORITHM DESIGN
Lecture 19: Online Primal-Dual Algorithms
Last updated: November 5, 2020

Lecturer: Sahil Singla

Today, we will learn how to use primal-dual LP setup to design online algorithms. The
lecture is based on Thomas Kesselheim’s notes'.

1 Online Primal-Dual Setup

The idea of online primal-dual algorithm is to simultaneously maintain a feasible primal
solution x and a feasible dual solution y. At t-th arrival, the algorithm updates both the
primal and the dual while maintaining feasibility. Since weak-duality implies that a feasible
dual gives a bound on the optimal primal value, we get the following lemma (which is a
slight generalization because we allow a scaled dual to be feasible).

Lemma 1. For a minimization problem, if

(a) in every step t the primal increase is bounded by [ times the dual increase, that is
P — pt=1) < g(p® — ptt=1)y
where PY = primal objective and DY) = dual objective at time t, and

(b) L times the dual solution is dual-feasible,
gl

then the algorithm is By-competitive.

2  Online Matching

As a warm-up to online primal-dual setup, we analyze the greedy algorithm for the online
matching problem?. In online matching, edges of a graph are revealed one-by-one and the
algorithm, which starts with M = (), has to immediately and irrevocably decide whether to
include the t-th edge e into matching M. The algorithm wants to maximize the size of M.

We will prove that the greedy algorithm, which selects the next edge e = (u,v) into M
if both end points u,v are currently unmatched, gives a 2 competitive ratio (i.e., always
maintains a matching size of at least half of the optimal offline matching size).

"http:/ /tes.cs.uni-bonn.de/lib/exe/fetch.php?media=teaching:ss20:vl-aau:lecturenotes03.pdf

2Pedantically, the analysis in this section for online matching should be called “online dual-fitting” instead
of “online primal-dual” because the primal algorithm does not use dual variables to make its decisions, but
the dual variables are only used for analysis. Since both ideas rely on weak-duality, we won’t distinguish.


http://tcs.cs.uni-bonn.de/lib/exe/fetch.php?media=teaching:ss20:vl-aau:lecturenotes03.pdf

Let’s start by writing an LP relaxation for the max-matching problem, where we denote
by N®(u) the edges incident to vertex u till time .

ecE®)

subject to Z :cg) <1 for all vertices w
e€N® (u)
:Bg) >0 for all e

Its dual program is given by:

minimize Z yq(f)

u

® > for all edges (u,v) till time ¢

v

subject to y(t) +y

u

1(}) >0 for all vertices u

Consider the primal solution z(®) being all 0 in the beginning. We set $g) = :nét‘l) + 1 if

e is the t-th edge and gets selected by the greedy algorithm, and otherwise set :cht) = :cgtfl).
For the dual, we start with y(® = 0. On arrival of t-th edge e = (u,v), if both u and v

are currently unmatched by the greedy algorithm then we set yg) = yl(,t) =1 and for every

other vertex u we set yff) = yq(f_l). On the other hand, if on arrival of ¢-th edge e = (u,v)

either of vertex u or v is already matched, we set yq(f) = yq(ffl) for all vertices. Next we show
that such a setting of primal and dual variables satisfies the conditions in Lemma 1 (after
making changes corresponding to maximization vs. minimization problem) with § = 1/2
and v = 1.

First, note that the primal is always feasible because we only set x. = 1 if the edge can
be selected in the greedy matching. Next, to prove dual feasibility, we show the following
invariant: all the vertices u that have been matched by the greedy algorithm till time ¢
satisfy that yq(f) = 1. This invariant is clearly true at ¢ = 0. Since we only increase y®
(compared to =), we only need to check the invariant for the new ¢-th edge e = (u, ).
Here the invariant holds because if both u, v are currently unmatched then we select it into

matching and set yff) = yl(,t) = 1. Given the invariant, dual feasibility immediately follows

because for any edge (u,v) that does not satisfy yi(f) + yf,t) > 1, we should have included it
into the greedy matching.

Finally, note that on each edge’s arrival, the increase in primal objective Zee E® xgt) —
Y ecE(E-1) fo‘” is at least half of the increase in dual objective ) yg) > yz(f_l). This is
because the dual only increases on arrival of ¢-th edge (u, v) when both uw and v are currently
unmatched in the greedy solution, and then dual increases by 2 and the primal increases
by 1. Thus we have shown a competitive ratio of 2 by Lemma 1.

3 Online Fractional Set Cover

Next we will apply the online-primal dual framework to an online variant of the set cover
problem. Let’s first recall the offline weighted set cover problem from Lecture 7: You are



given a universe of m elements U = {1,...,n} and a family of m subsets of U called
S C 2V, For each S € S, there is a cost ¢g. Your task is to find a cover C C S of minimum
cost Y gecCs. A set Cis a cover if for each e € U there is an S € C such that e € S.
Alternatively, you could say (Jg.o S = U. We assume that each element of U is included in
at least one S € §. So in other words § is a feasible cover. Otherwise, there might not be
a feasible solution.

Today, we will consider an online variant of a relaxation of this problem where we are
allowed to fractionally select sets and the elements to be covered are revealed one-by-one.
So, our goal is to solve the following kind of linear program online.

minimize g CSTg

Ses

subject to Z xg>1 foralle e U
S:eeS
xg >0 forall S e S

We have to maintain a feasible solution #(*) to the linear inequalities. In the t-th step, the
t-th element arrives and therefore we get to know the ¢t-th coverage constraint. Possibly, the
solution (*1) we had so far is infeasible now. In this case, we may only increase variables
to get to the solution z®, which is feasible again.

Recall the dual of the set cover LP

maximize Z Ye
ecU
subject toZye < cg forall S €S
ecS
Ye >0 forallec U
We will use a primal-dual algorithm. That is, besides maintaining a primal solution z®),
we will also maintain a dual solution y® = (y1,Y2,...,9). In step ¢, variable y; is added
to the dual LP and we can only set its value (i.e., we do not change y1,...,y;—1). We want

to eventually use Lemma 1.

3.1 Approach for Fractional Online Set Cover

When choosing z® and ,, our primary goal is that they have similar objective-function
values so that Property (a) in Lemma 1 holds with a small .

So, let us figure out what we would like to do. Suppose we are in step ¢t. That is, element
t arrives and we observe a new constraint )  g.,.g#s > 1 in the primal LP. In the dual,
a new variable y; arrives. Our current solution is 2D Tt fulfills all constraints except
maybe the new one. If we also have } . ;g l‘g_l) > 1, then there is nothing to do because
we can keep the old solution as the new one by setting 2®) = 2=, = 0.

In the case ) g. ,cq l'g_l) < 1, we will have to increase some primal variables to get a
feasible z®. Of course, 2! will be more expensive than z(!=1). We reflect this additional

cost in the value of 1, all other dual variables remain unchanged.



Let us slowly increase z starting from xz(*~1) and simultaneously increase y; starting
from 0. We do this in infinitesimal steps over continuous time.

We are at any point in time for which still ) ¢, ,c 75 < 1. We increase zg by drg. To
account for the increased cost, we increase y; by dy at the same time. The dual objective
function increases by dy this way. This is at least (D g. ;g Zs)dy because > g, ,cgrs < 1.
Simultaneously, the primal objective function increases by > ¢. ,c g csdrs. If we set dxg =
(i—g)dy for all S for which ¢ € S, then these changes exactly match up.

Ideally, we would follow exactly this pattern. However, notice that we start from z(©) =
0, so all increases would be 0. Therefore, let n > 0 be a very small constant and set

1
drs = —(vs+n)dy . (1)
cs

This is a differential equation. We try a solution of the form zg = C1e“2Y4C5. Then we
have dfgs = Cy(xg — C3). So comparing with (1), we get C3 = —n and Cy = é Moreover,
because for y = 0 we have zg = mg_l) we get ') = xg 2 + 7, This way

xg) +n= e%yt (xg_l) + 77) ,

where y; is the smallest value such that z(*) is a feasible solution to the first ¢ constraints
of the primal LP.

3.2 Algorithm

Let us now use the algorithmic approach above to design an algorithm for fractional online
set cover.

For our algorithm, we set n = % and initialize all zg = 0. In the ¢-th step, when
element t arrives, we introduce the primal constraint ) g, g x5 > 1 and a dual variable y;.
We initialize y; = 0 and update it as follows. For each S with ¢t € S, we increase xg from
xg D to xg) by

1 _
2 +n=es" (2§ 4n)
where y; is the smallest value such that z(*) becomes a feasible solution.
Theorem 2. The algorithm is O(log m)-competitive for online fractional set cover.

Proof. We will verify the conditions of Lemma 1 with =2 and v = In(m + 1).

We start by property (a). Consider the t-th step; element ¢ arrives in this step. We
have to relate P() — Pt=1) = 3~ cs(xg) — :r(; 1)) to y;. For every set S such that t € S,
we have

1 _
) b= (o ) |

and therefore

xg Vyn=e as¥ (Jfg)+77>

This lets us write the increase of xg as follows

x(;)—:vg_l) = (:Ug) —|—77) e o5 ( ® 4 ) = <1 - eféyt) (acg) + 77) < cls (:cf;) +77> Yt -



This way, we can bound the primal increase by

POPUD < 37 s (o) 4n)w= 30 ol Yo me<om

S:teS S:teS S:teS

because ) g.,cq a:g) = 1 (otherwise we would have increased variables by too much) and
Dogies < ma = 1.

Now, we turn to property (b). Consider a fixed S € S. We will verify that the dual
constraint for set S is fulfilled. By our algorithm if ¢ € S then

Y = Cg ln(a:g) +n) —cs ln(xg

otherwise x(;) = acg Y and so cg ln(a:g) +1n) —cs ln(xg_l) +n) = 0.
This lets us write the sum ), gy as

n - 2 4y
Zyt = Z (cs ln(xfg) +n)—cs ln(mg Dy 77)) =cgln (f()))

tesS t=1

RETF

(n)

Furthermore, xgo) > 0 because variables are never negative and xy’ < 1 because it does
not make sense to increase variables beyond 1. So

Zyt<csln< >=csln(m—|—1)=’ycS ) O

t:iteS

It is possible to extend Theorem 2 to an O(logn - logm) competitive algorithm for the
online set cover problem where the algorithm has to select sets integrally. The idea is to do
randomized rounding, try this as an exercise or see [1].

References

[1] N. Buchbinder, J. Naor. The Design of Competitive Online Algorithms via a Primal-
Dual Approach. Foundations and Trends in Theoretical Computer Science 3(2-3): 93-263
(2009)



	Online Primal-Dual Setup
	Online Matching
	Online Fractional Set Cover
	Approach for Fractional Online Set Cover
	Algorithm


