
Princeton Univ. F’20 COS 521: Advanced Algorithm Design

Lecture 2: Hashing

Lecturer: Sahil Singla Last Updated: September 2, 2020

1 Hashing: Preliminaries

Hashing can be thought of as a way to rename an address space. For instance, a router at
the internet backbone may wish to have a searchable database of destination IP addresses
of packets that are whizing by. An IP address is 128 bits, so the number of possible IP
addresses is 2128, which is too large to let us have a table indexed by IP addresses. Hashing
allows us to rename each IP address by fewer bits. Furthermore, this renaming is done
probabilistically, and the renaming scheme is decided in advance before we have seen the
actual addresses. In other words, the scheme is oblivious to the actual addresses.

Formally, we want to store a subset S of a large universe U (where |U | = 2128 in the
above example). And |S| = m is a relatively small subset. For each x ∈ U , we want to
support 3 operations:

• insert(x). Insert x into S.

• delete(x). Delete x from S.

• query(x). Check whether x ∈ S.

U

h

n elements

Figure 1: Hash table. x is placed in T [h(x)].

A hash table can support all these 3 operations. We design a hash function

h : U −→ {0, 1, . . . , n− 1} (1)

such that x ∈ U is placed in T [h(x)], where T is a table of size n. Typically, we can assume
that m ≤ n � |U | (i.e., the table size n is at least the size of |S|), although we will talk
about some applications where we hash to a set of size n < m.

Since |U | � n, multiple elements can be mapped into the same location in T , and we
deal with these collisions by constructing a linked list at each location in the table.

1

2

One natural question to ask is: how long is the linked list at each location?
This can be analysed under two kinds of assumptions:

1. Assume the input is the random.

2. Assume the input is arbitrary, but the hash function is random.

Assumption 1 may not be valid for many applications.
Hashing is a concrete method towards Assumption 2. We designate a set of hash func-

tions H, and when it is time to hash S, we choose a random function h ∈ H and hope
that on average we will achieve good performance for S. This is a frequent benefit of a
randomized approach: no single hash function works well for every input, but the average
hash function is good enough.

2 Hash Functions

What do we want out of a random hash function? Ideally, we would hope that h “evenly”
distributes the elements of S across the hash table. One option would be to map every
element in U to a random value in [n]. However, constructing such a “fully random” hash
function is very expensive: we would need to build a lookup table with |U | rows, each
storing log2(n) bits to specify the value of h(x) ∈ [n] for one x ∈ U . At this cost, we might
as well have just stored our original data in a |U | length array – it’s often simply impossible.

The goal in hashing is to find a cheaper function (fast and space efficient) that’s still
random enough to evenly distribute elements of S into our table. For a family of hash
functions H, and for each h ∈ H, h : U −→ [n]1, what do we mean by “random enough”?

For any x1, x2, . . . , xm ∈ S (xi 6= xj when i 6= j), and any a1, a2, . . . , am ∈ [n], ideally a
random H should satisfy:

• Prh∈H[h(x1) = a1] = 1
n .

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2] = 1
n2 . Pairwise independence.

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xk) = ak] = 1
nk . k-wise independence.

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xm) = am] = 1
nm . Full independence (note

that |U | = m).

Generally speaking, we encounter a tradeoff. The more random H is, the greater the
number of random bits needed to generate a function h from this class, and the higher the
cost of computing h. The challenge is to prove that, even when we use few random bits,
the hash stable still performs well in terms of insert/delete/query time.

2.1 Bound expected number of collisions

As a first step, we want to understand the expected length of a single linked list. Note
that this is just the first step towards understanding the runtime of our desired operations.
Assume that H is a pairwise-independent hash family.

1We use [n] to denote the set {0, 1, . . . , n− 1}

3

Now, we want to count the expected number of collisions. To do this, let the random
variable

Ixy = 1 if h(y) = h(x), else Ixy = 0. (2)

Observe that the number of collisions is exactly
∑

x 6=y Ixy. By linearity of expectation, we
get:

E[# collisions] =
∑
x 6=y

E[Ixy] =
∑
x 6=y

1/n =

(
m

2

)
/n , (3)

where the second equality follows as h(x) = h(y) with probability exactly 1/n whenever H
is pairwise independent. Observe that if, for example, we take n ≥ m2, then we are likely
to have zero collisions. On the other hand, for n = o(m2) it can be shown that there is a
high chance of collision (see Birthday paradox, e.g., on Wikipedia). Similarly, observe that
for a fixed x, even when n = 2m, that x is unlikely to have any collisions.

3 2-Universal Hash Families

Definition 1 (Carter and Wegman 1979). Family H of hash functions is 2-universal if for
any x 6= y ∈ U ,

Pr
h∈H

[h(x) = h(y)] ≤ 1

n
(4)

Exercise: Convince yourself that this property is weaker than pairwise independence
– i.e. that every pairwise independent hash function also satisfies (4).

We can design 2-universal hash families in the following way. Choose a prime p ∈
{|U |, . . . , 2|U |},2 and let

fa,b(x) = ax + b mod p (a, b ∈ [p], a 6= 0) (5)

Then let
ha,b(x) = fa,b(x) mod n (6)

We now make a few observations about fa,b(·), before arguing that the family H =
{ha,b(·)}a,b∈[p],a6=0 is 2-universal.

Observation 1. If x1 6= x2, then fa,b(x1) 6= fa,b(x2).

Proof. Assume for contradiction that fa,b(x1) = fa,b(x2) = s. Then:

ax1 + b = s mod p

ax2 + b = s mod p

⇒ a(x1 − x2) = 0 mod p.

2How do we know that such a prime exists? This is due to Bertrand’s Postulate, which exactly states
that such a prime exists. Second, how do we find such a prime? One option is to guess random numbers
between |U | and 2|U |, check if they’re prime, and continue until we find one. The Prime Number Theorem
states that each guess is likely to be prime with probability roughly 1/ log(|U |). Also, the AKS primality
test lets us test whether a number is in fact prime in time poly(log(|U |)). Alternatively, one could imagine
an online pre-computed database of primes that lie in the correct range.

4

Since p is a prime, and a 6= 0, this implies that x1 = x2 mod p. But p ≥ |U | ≥ max{x1, x2},
so this also means x1 = x2, a contradiction.

Of course, it could still very well be the case that ha,b(x1) = ha,b(x2). So we have to
later analyze the probability of this.

Lemma 1. For any x1 6= x2 and s 6= t, the following system

ax1 + b = s mod p (7)

ax2 + b = t mod p (8)

has exactly one solution (i.e. one set of possible values for a, b). In that solution, a 6= 0.

Proof. If you’re familiar with modular arithmetic, this is clear. Since p is a prime, the inte-
gers mod p constitute a finite field. This implies that any element in [p] has a multiplicative
inverse mod p, so we know that a = (x1 − x2)

−1(s− t) and b = s− ax1.

Figure 2: Modular arithmetic for prime p = 7.

It’s not to hard to see this directly with a little thought. We want to claim that

a(x1 − x2) = (s− t) mod p

has a unqiue solution a. Without loss of generality, assume that x1 > x2. When we multiply
(x1 − x2) by an integer, we’re moving around the circle pictured in Figure 2 in increments
of (x1 − x2). Since p is prime, at each step before the pth step, it better be that we hit a
new element of [p] on the circle. Otherwise, we would have found that (x1 − x2) (which is
< p) multiplies by some other number < p to equal a multiple of p. This of course can’t be
true when p is prime.

So, as we multiply (x1 − x2) by integers in [p], we hit (s− t) mod p exactly once.

By Lemma 1, since there are p(p− 1) different possible choices of a, b:

Pr
a,b←U({1,...,p−1}×{0,...,p−1})

[fab(x1) = s ∧ fab(x2) = t] =
1

p(p− 1)
(9)

Claim H = {ha,b : a, b ∈ [p] ∧ a 6= 0} is 2-universal.

5

Proof. For any x1 6= x2,

Pr[ha,b(x1) = ha,b(x2)] (10)

=
∑

s,t∈[p],s 6=t

1[s = t mod n)] ·Pr[fa,b(x1) = s ∧ fa,b(x2) = t] (11)

=
1

p(p− 1)

∑
s,t∈[p],s 6=t

1[s = t mod n] (12)

≤ 1

p(p− 1)

p(p− 1)

n
(13)

=
1

n
(14)

where 1 is an indicator function (that is, 1[x] = 1 if statement x is true, and 1[x] = 0
otherwise). Equation (13) follows because for each s ∈ [p], we have at most dp/ne t such
that s = t mod n, and one of these is s = t itself. So there are at most dp/ne−1 ≤ (p−1)/n
different t such that s 6= t and s = t mod n.

Can we design a collision free hash table then?

Solution 1: Collision-free hash table in O(m2) space.

Say we have m elements, and the hash table is of size n. Since for any x1 6= x2, Prh[h(x1) =
h(x2)] ≤ 1

n , the expected number of total collisions is just

E[
∑

x1 6=x2

h(x1) = h(x2)] =
∑

x1 6=x2

E[h(x1) = h(x2)] ≤
(
m

2

)
1

n
(15)

Let’s pick n ≥ m2, then

E[number of collisions] ≤ 1

2
(16)

and so by Markov’s inequality,

Pr
h∈H

[∃ a collision] ≤ 1

2
(17)

So if the size the hash table is large enough, we can easily find a collision free hash
function. In particular, if we try a random hash function it will succeed with probability
1/2. If we see a collision when inserting elements of S into the table, we simply draw a new
random hash function and try again. The expected time of this procedure is:

E[time to insert m items] = m +
1

2
m +

1

4
m + . . . = 2m.

Solution 2: Collision-free hash table in O(m) space.

At this point, we have designed a hash table that has no collisions. The drawback is that
our table must be large: m2 to store only m elements. But in reality, such a large table is
often unrealistic. We may use a two-layer hash table to avoid this problem.

6

0

1

n− 1

i

si elements

s2i locations

Figure 3: Two layer hash tables.

Specifically, let si denote the number of elements at location i. If we can construct a
second layer table of size s2i , we can easily find a collision-free hash table to store all the si
elements. Thus the total size of the second-layer hash tables is

∑m−1
i=0 s2i .

To bound the expected size of
∑m−1

i=0 s2i , we note that this sum is nearly equal to the
total number of hash collisions, which we bound in Equation (15)! Specifically,

E[
∑
i

s2i] = E[
∑
i

si(si − 1)] + E[
∑
i

si] =
m(m− 1)

n
+ m ≤ 2m (18)

Note that si(si − 1)/2 is exactly the number of collisions at location i (because if there
are si elements at location i, there are

(
si
2

)
pairs which collide at i). Therefore, the expected

sum E[
∑

i si(si−1)/2] is exactly the expected number of total collisions, which we bounded
with

(
m
2

)
/n previously.

Including the first layer, we have now designed a hash table of expected size 3m to store
m elements (so some overhead, but much less than before).

4 Preview to Lecture 3: Load Balancing

In our 2-level construction, we cared about limiting the total size of the hash table, and we
were able to do so by bounding

∑m
i=1 s

2
i . However, we did not bound each si individually –

it could be that some buckets of the first hash table are much larger than others. In some
applications of hashing, this is something you want to avoid.

A simple example is when your hash table is distributed and each bucket (or a small
set of buckets) is stored on a separate machine. The is a common architecture in large
“no-SQL” databases like Amazon’s DynamoDB or Apache Cassandra. In the distributed
case, memory isn’t a shareable resource across machines, so we care about showing that no
si is too large (i.e no machine is overloaded).

Another example arises when hashing is used to distribute workload across multiple
machines. As a toy example, suppose I look up directions from Princeton, NJ to Boston,
MA on Google maps. Google has many different serves computing efficient driving routes

7

and one potential strategy is to use a hash function to choose what server to send your
request (i.e hash the start and end locations).

Question: Why is hashing a good strategy? Why not just send the request to an arbitrary
or even randomly chosen server?

In Lecture 3 we will develop better tools for bounding the probability of random events
and we will be able to establish effective bounds on max[si].

5 Other Considerations: Dealing with Adversaries

Other issues arise when hashing is used in a distributed way instead of simply to build data
structures on a single machine. An interesting one is the issue of resistance to adversarial
attacks. In particular, a user submitting requests to a centralized server may be able to learn
the hash function being used by the server, even if that hash function is chosen randomly.

Question: How easy is it to learn our 2-universal hash function described in (6)?

This can open the door for denial of service attacks (DoS) attacks that intentionally
issue “colliding” requests. Even if an adversary does not have the resources to take down
a large web-service, they may have enough to take down one or several servers underlying
that service. I’ll post a blog post about these sorts of attacks and potential solutions on
the course webpage.

	Hashing: Preliminaries
	Hash Functions
	Bound expected number of collisions

	2-Universal Hash Families
	Preview to Lecture 3: Load Balancing
	Other Considerations: Dealing with Adversaries

