
Princeton Univ. F’20 COS 521: Advanced Algorithm Design

Lecture 5: Linear Programs and LP Rounding

Lecturer: Sahil Singla Last updated: September 14, 2020

One of the running themes in this course is the notion of approximate solutions. Of
course, this notion is tossed around a lot in applied work: whenever the exact solution
seems hard to achieve, you do your best and call the resulting solution an approximation.
In theoretical work, approximation has a more precise meaning whereby you prove that the
computed solution is close to the exact or optimum solution in some precise metric. We
saw some earlier examples of approximation in sampling-based algorithms; for instance our
hashing-based estimator for set size. It produces an answer that is w.h.p. within (1 + ε) of
the true answer. Today we will see many other examples of approximation that rely upon
linear programming (LP).

1 Quick Refresher on Linear Programming

A linear program has a set of variables (in the example below, x1, . . . , xn), a linear objective
(in the example below, ~c · ~x), and a system of linear constraints (in the example below,
Aji · ~x ≤ bj , for all j, and xi ≥ 0 for all i). A linear program in “standard form” therefore
takes the following form:

max
∑
i

cixi

s.t.
∑
i

Ajixi ≤ bj , ∀j

xi ≥ 0, ∀i.

Recall that it is OK to have variables which aren’t constrained to be non-negative,
equalities instead of inequalities, min instead of max, etc. (and all such linear programs are
equivalent to one written in standard form — if you’re unfamiliar with LPs, you may want
to prove this as a quick exercise). Linear programs can be solved in weakly polynomial
time via the Ellipsoid algorithm (which we’ll see later in class). “Weakly polynomial time”
means the following:

• You are given as input an n-dimensional vector ~c, and an m×n matrix A. Each entry
in ~c and A will be a rational number which can be written as the ratio of two b-bit
integers.

• Therefore, the input is of size poly(n,m, b). A weakly polynomial time algorithm is
just an algorithm which terminates in time poly(n,m, b) (and the Ellipsoid algorithm
is one such algorithm).

• A stronger stance might be to say that the input is really of size poly(n,m), but
you acknowledge that of course doing numerical operations on b-bit integers will take

1



2

time poly(b). A strongly polynomial-time algorithm would be one which performs
poly(n,m) numerical operations (and then the algorithm will also terminate in time
poly(n,m, b), because each operation terminates in time poly(b). A major (major,
major) open problem is whether a strongly poly-time algorithm exists for solving
linear programs. Note that the Ellipsoid algorithm does more numerical operations if
the input numbers have more bits, it’s not just that each operation takes longer.

2 Integer Programs

In discrete optimization problems, we are usually interested in finding 0/1 solutions. Using
LP one can find fractional solutions, where the relevant variables are constrained to take
real values in [0, 1]. Sometimes, we can get lucky: you write an LP relaxation for a problem,
and the LP happens to produce a 0/1 solution. Now, you know that this 0/1 solution is
clearly optimal: not only is it the best 0/1 solution, it’s even the best [0, 1] solution. We
will see on example of this phenomenon in PSet 2, where we use a linear program to find
the minimum cut in a graph (a problem for which we have already seen other algorithms
in the previous lectures).

Another important polynomial-time problem that admits a linear program which exactly
solves the integral problem is max-weight bipartite matching. Given a bipartite graph G =
((A,B), E) with edge weights w : E → R≥0 (i.e., the vertices in G can be partitioned into
sets A and B and each edge in E is of the form (a, b) for some vertex a ∈ A and b ∈ B),
the max-weight bipartite matching problem is to find a subset of edges M ⊆ E that do not
share a vertex while maximizing

∑
e∈M w(e). We won’t prove it in class but the optimal

value of the following linear program returns the max-weight matching:

max
∑

(a,b)∈E

w((a, b)) · x(a,b)

0 ≤ x(a,b) ≤ 1 ∀(a, b) ∈ E∑
b:(a,b)∈E x(a,b) ≤ 1 ∀a ∈ A∑
a:(a,b)∈E x(a,b) ≤ 1 ∀b ∈ B.

Needless to say, we don’t expect this magic to repeat for NP-hard problems. So the
LP relaxation yields a fractional solution in general. Then we give a way to round the
fractional solutions to 0/1 solutions. This is accompanied by a mathematical proof that the
new solution is provably approximate.

The rest of the lecture discusses different LP rounding schemes.

3 Deterministic Rounding (Weighted Vertex Cover)

First we give an example of the most trivial rounding of fractional solutions to 0/1 solutions:
round variables< 1/2 to 0 and≥ 1/2 to 1. Surprisingly, this is good enough in some settings.

In the weighted vertex cover problem, which is NP-hard, we are given a graph G = (V,E)
and a weight for each node; the nonnegative weight of node i is wi. The goal is to find a
vertex cover, which is a subset S of vertices such that every edge contains at least one vertex



3

of S. Furthermore, we wish to find such a subset of minimum total weight. Let V Cmin be
this minimum weight. The following is the LP relaxation:

min
∑

iwixi
0 ≤ xi ≤ 1 ∀i
xi + xj ≥ 1 ∀ {i, j} ∈ E.

Let OPTf be the optimum value of this LP. It is no more than V Cmin since every 0/1
solution (including in particular the 0/1 solution of minimum cost) is also an acceptable
fractional solution.

Applying deterministic rounding, we can produce a new set S: every node i with xi ≥
1/2 is placed in S and every other i is left out of S.
Claim 1: S is a vertex cover.
Reason: For every edge {i, j} we know xi + xj ≥ 1, and thus at least one of the xi’s is at
least 1/2. Hence at least one of i, j must be in S.
Claim 2: The weight of S is at most 2OPTf .
Reason: OPTf =

∑
iwixi, and we are only picking those i’s for which xi ≥ 1/2. 2.

Thus we have constructed a vertex cover whose cost is within a factor 2 of the optimum
cost even though we don’t know the optimum cost per se.

Exercise: Show that for the complete graph the above method indeed computes a set of
size no better than 2 times OPTf .

Remark: This 2-approximation was discovered a long time ago, and despite myriad attempts
we still don’t know if it can be improved. Using the so-called PCP Theorems, Dinur and
Safra showed (improving a long line of work) that 1.36-approximation is NP-hard. Khot
and Regev showed that computing a (2−ε)-approximation is UG-hard, which is a new form
of hardness popularized in recent years. The bibliography mentions a popular article on
UG-hardness.

4 Simple randomized rounding: MAX-2SAT

Simple randomized rounding is as follows: if a variable xi is a fraction then toss a coin
which comes up heads with probability xi. If the coin comes up heads, make the variable 1
and otherwise let it be 0. The expectation of this new variable is exactly xi. Furthermore,
linearity of expectations implies that if the fractional solution satisfied some linear constraint
cTx = d then the new variable vector satisfies the same constraint in the expectation. But
in the analysis that follows we will in fact do something more.

The MAX2SAT problem consists of n boolean variables x1, x2, . . . , xn. Let us define a
literal to mean a variable or its negation. The MAX2SAT problem also consists of clauses
J1 ∪ J2 where a clause in J1 is of type y for some literal y and a clause in J2 is of type y ∨ z
for some literals y, z. The goal is to find an assignment of the variables to maximize the
number of satisfied clauses. (Aside: If we wish to satisfy all the clauses, then in polynomial
time we can check if such an assignment exists. Surprisingly, the maximization version
is NP-hard.) The following is the LP relaxation. We have a variable zj for each clause
j ∈ J1 ∪ J2, where the intended meaning is that it is 1 if the assignment decides to satisfy



4

that clause and 0 otherwise. (Of course the LP can choose to give zj a fractional value.)

max
∑
j∈J

zj

1 ≥ xi ≥ 0 ∀i
zj ≤ 1 ∀j ∈ J1 ∪ J2
yj1 ≥ zj ∀j ∈ J1
yj1 + yj2 ≥ zj ∀j ∈ J2

Here yj1 is shorthand for xi if the first literal in the jth clause is the ith variable, and
shorthand for 1− xi if the literal is the negation of the i variable. (Similarly for yj2.)

If MAX-2SAT denotes the number of clauses satisfied by the best assignment, then it is
no more than OPTf , the value of the above LP. Let us apply randomized rounding to the
fractional solution to get a 0/1 assignment. How good is it?

Claim: E[number of clauses satisfied] ≥ 3
4 ×OPTf .

We show that the probability that the jth clause is satisfied is at least 3zj/4 and then
the claim follows by linear of expectation.

If the clause is of size 1, say xr, then the probability it gets satisfied is xr, which is at
least zj . Since the LP contains the constraint xr ≥ zj , the probability is certainly at least
3zj/4.

Suppose the clauses is xr ∨ xs. Then zj ≤ xr + xs and in fact it is easy to see that
zj = min {1, xr + xs} at the optimum solution: after all, why would the LP not make
zj as large as allowed; its goal is to maximize

∑
j zj . The probability that randomized

rounding satisfies this clause is exactly 1 − (1 − xr)(1 − xs) = xr + xs − xrxs. Moreover,
(xr +xs)

2− (xr −xs)2 = 4xsxr, so xsxr ≤ (xr +xs)
2/4, and the probability that the clause

is satisfied is at least xr + xs − (xr + xs)
2/4.

If xr + xs ≤ 1, then this is clearly at least 3(xr + xs)/4. If xr + xs ≥ 1, then this is at
least 3/4 (the partial derivative wrt xs and xr are both non-negative while (xr + xs) ≤ 2).
In either case it’s at least 3zj/4. 2.

Remark: This algorithm is due to Goemans-Williamson, but the original 3/4-approximation
is due to Yannakakis. The 3/4 factor has been improved by other methods to 0.94.

5 More Clever Rounding: Job Scheduling

Here, we’ll consider a more clever rounding scheme that also starts from an LP relaxation
due to Shmoys and Tardos. Consider the problem of scheduling jobs on machines. That is,
there are n jobs and m machines. Processing job i on machine j takes time pij . Your goal
is to finish all jobs as quickly as possible: that is, if xij = 1 whenever job i is assigned to
machine j (and 0 otherwise), minimize maxj{

∑
i xijpij}. This lends itself to a natural LP



5

relaxation:

min T

xij ∈ [0, 1] ∀i, j∑
j

xij ≥ 1 ∀i

T ≥
∑
i

pijxij ∀j

That is, we want to minimize the maximum load on any machine, subject to every job
being assigned (at least) once. Unfortunately, this LP has a huge integrality gap. That
is, the best fractional solution might be significantly better than the best integral solution.
Why? Maybe there’s only one job with p1j = 1 for all machines j. Then the best fractional
solution will set x1j = 1/m for all machines and get T = 1/m. But clearly the best integral
schedule takes time 1. The problem is that we’re asking for too much: if there’s a single
job that itself takes time t� T to process on every machine, we can’t possibly hope to get
a good approximation to T with an integral schedule. Instead, we’ll consider the following
modified relaxation:

min T

xij ∈ [0, 1] ∀i, j∑
j

xij ≥ 1 ∀i

T ≥
∑
i

pijxij ∀j

xij = 0 ∀i, j such that pij > t

The problem with the previous example was that a single job had processing time 1, but
T = 1/m and we asked for a new schedule with processing time O(1/m). Instead, we’ll ask
for one of time T + t. Note that if the optimal schedule has total processing time P , then
the maximum time it takes to process any job is some t ≤ P . So if we solve the above LP
with this given t, the optimal schedule will be considered, and we’ll have T ≤ P and t ≤ P
for a 2-approximation. Note also that there are only nm different processing times in the
input, so we can just try all of them and guarantee that one of them will give the correct
guess of t.

Now for the rounding. For each machine j, let wj = d
∑

i xije. Make a bipartite graph
with jobs on the left and machines on the right. Make dwje copies of the machine j node,
call them j1, . . . , jwj . Make a single node on the right for each job.

For each machine j, sort the jobs in decreasing order of pij , so that p(1)j ≥ p(2)j . . . ≥
p(n)j . Place edges from jobs to machine j in the following manner:

1. Initialize current-node c := 1. Initialize current-job i := 1. Initialize job-weight
w := x(1)j . Initialize node-weight-remaining r := 1.

2. While (i ≤ n):



6

(a) If w ≤ r, add an edge from job (i) to jc of weight w. Update r := r−w, update
i := i+ 1, w := x(i)j (the newly updated i). Keep c := c.

(b) Else, add an edge from job (i) to c of weight r. Update w := w − r, update
r := 1, update c := c+ 1. Keep i := i.

In other words, starting from the slowest jobs, we put edges totalling weight xij from
job i to (possibly multiple) nodes for machine j. We do so in a way such that the slowest
jobs are on the earliest-indexed copies, and that each copy has total incoming weight at
most 1 (actually all but the last copy have incoming weight exactly one, and the last copy
has weight at most one). Now our rounding algorithm simply takes any matching with n
edges, ignoring the weights (i.e. matches every job somewhere) in this graph. We first need
to claim that such a matching exists, then claim that the total processing time is not too
large.

Proposition 1. In the bipartite graph defined above, there exists a matching of size n.

Proof. Because the total edge weight coming out of job i into a copy of machine j is xij
for all i, j, the total edge weight coming out of job i in total is 1. Moreover, the total edge
weight coming into each copy of machine j is at most 1. Therefore, we have constructed a
fractional matching of size n, and there is also an integral matching of size n (this is the
same fact discussed in Section 2, which we didn’t prove).

To see this a little more concretely, recall that one way to find a matching in a bipar-
tite graph is via max-flow. Our “fractional” matching has explicitly defined a flow in the
corresponding max-flow graph of size n, so there must also exist a matching of size n.

The above argues that the algorithm is well-defined (note that the proof is not “com-
plete” in the sense that we didn’t prove that fractional matchings imply integral matchings,
and not everyone already saw how to find bipartite matchings via max-flow. But it’s “for-
mal” in the sense that the proof is complete with either of these outside theorems). Now
we need to argue that the total processing time is good.

Proposition 2. The total processing time until all jobs are completed in any schedule output
by the algorithm is at most T + t.

Proof. We’ll show that for all machines j, the total processing time of jobs assigned to j
is at most T + t (which is equivalent to the proposition statement). Note first that every
job with an edge to node jc has a lower processing time than any job with an edge to node
jc−1. So let Tc denote the processing time of the slowest job with an edge to jc. Then we
have T ≥

∑
i xijpij ≥

∑wj

c=2 Tc. This is because the jobs assigned to node jc account for∑
i xij = 1, and each have pij ≥ Tc+1. Finally, observe that T1 ≤ t, as by definition we

didn’t allow any jobs to be placed on machines where their processing time exceeded t. So
T + t ≥

∑
c Tc. Finally, observe that the maximum possible processing time of the unique

job assigned to node jc is Tc, so the total processing time of machine j is
∑

c Tc ≤ T + t.

This is a really influential rounding scheme that accomplishes much more than just what
is proved here - see the original paper and follow-ups for details.


	Quick Refresher on Linear Programming
	Integer Programs
	Deterministic Rounding (Weighted Vertex Cover)
	Simple randomized rounding: MAX-2SAT
	More Clever Rounding: Job Scheduling

