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1 Strong Duality

In the last lecture we discussed weak duality: using dual solutions as upper bounds on how
good a primal solution could be. In fact, something quite strong is true: there is always a
dual witnessing that the optimal primal is optimal. We’ll give a proof, but note that most
of the intuition (aside from geometry/linear algebra) is provided by Weak Duality. We’ll
just discuss the “classic” case, the “partial” case is similar and omitted. First recall the
primal and the dual LPs.

max
∑
i

cixi (LP1)∑
i

Ajixi ≤ bj , ∀j

xi ≥ 0, ∀i.

min
∑
j

wj · bj (LP2)

∑
j

wj ·Aji ≥ ci, ∀i

wj ≥ 0, ∀j.

Theorem 1 (Strong LP Duality). Let LP1 be any maximization LP and LP2 be its dual
(a minimization LP). Then:

• If the optimum of LP1 is unbounded (+∞), the feasible region of LP2 is empty.

• If the feasible region of LP1 is empty, the optimum of LP2 is either unbounded (−∞),
or also infeasible.

• If optimum of LP1 finite, then the optimum of LP2 is also finite, and they are equal.

(Proof adapted from Anupam Gupta’s scribed lecture notes here).
The key ingredient in the proof will be what’s called the Separating Hyperplane Theo-

rem.

Theorem 2 (Separating Hyperplane Theorem). Let P be a closed, convex region in Rn,
and ~x be a point not in P . Then there exists a ~w such that ~x · ~w > max~y∈P {~y · ~w}.

Proof. Consider the point ~y ∈ P closest to ~x (that is, minimizing ||~x− ~y||2 over all ~y ∈ P .
As distance is a positive continuous function, and P is a closed region, such a ~y exists. Now
consider the vector ~w = ~x− ~y. We claim that the chosen ~w is the desired witness.

Observe first that (~x − ~y) · ~w = ||~w||22 > 0, so indeed ~x · ~w > ~y · ~w. We just need to
confirm that ~y = arg max~z∈P {~z · ~w} and then we’re done.

Assume for contradiction that ~z · ~w > ~y · ~w and ~z ∈ P . Then as P is convex, ~zε =
(1 − ε)~y + ε~z ∈ P as well for all ε > 0. Observe that ||~x − ~zε||22 = ||~x − ~y + ε(~y − ~z)||22 =
||~x−~y||22+2ε(~x−~y)·(~y−~z)+ε2||~y−~z||22 = ||~x−~y||22+2ε~w ·(~y−~z)+ε2||~y−~z||22. By hypothesis,
~w · (~y−~z) < 0, and ||~y−~z||22 is finite, so for sufficiently small ε, we get ||~x−~zε||22 < ||~x−~y||22,
a contradiction.
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Now, consider the optimum ~x of LP1. Let S denote the j for which
∑

iAjixi = bj , and
S̄ the constraints for which

∑
iAjixi < bj . We claim that ~c can be written as a convex

combination of the vectors ~Aj , j ∈ S (up to possible scaling).

Lemma 3. Let ~x be the optimum of LP1, and let S denote the j for which
∑

iAjixi = bj.
Then there exist {λj ≥ 0}j∈S such that ci =

∑
j∈S λjAji for all i.

Proof. Assume for contradiction that this were not the case. As the space X of all vectors
~y for which there exists {λj ≥ 0}j∈S such that yi =

∑
j∈S λjAji for all i is clearly closed

and convex, we can apply the separating hyperplane theorem. So there would exist some ~γ
such that ~c · ~γ > max~y∈X{~y · ~γ}. Now consider the vector ~x+ ε~γ.

We know that for all j ∈ S,
∑

iAjiγi ≤ 0. If not, then max~y∈X{~y · ~γ} = +∞, because
we could blow up λj . So for all j ∈ S,

∑
iAji(xi + εγi) ≤ bj . Moreover, for all i /∈ S,∑

iAjixi < bj , and
∑

iAjiγi is finite. So there exists a sufficiently small ε so that ~x+ ε~γ is
feasible for LP1.

Finally, observe that max~y∈X{~y · ~γ} ≥ 0, as ~0 ∈ X. So ~c · ~γ > 0, and we have shown
that ~x was not optimal.

Now with the lemma in hand, we want to show a dual whose value matches ~c · ~x. Let
~c =

∑
j∈S λj

~Aj with λj ≥ 0 as guaranteed by the lemma. Set wj = λj for all j ∈ S, and
wj = 0 for all j /∈ S. First, is it clear that ~w is feasible for LP2, as we have explicitly set
wj so that ci =

∑
j wjAij for all i. Now we just need to evaluate its value:

∑
j

bjwj =
∑
j∈S

bjwj +
∑
j /∈S

bj · 0 =
∑
j∈S

(
∑
i

Ajixi)wj =
∑
i

∑
j∈S

Ajiwj

xi =
∑
i

cixi.

So its objective value is exactly the same as LP1.

2 Set Cover using Dual Fitting

In this section we will see an example where we use weak LP duality for an approximation
algorithm. Interestingly, our algorithm never solves an LP, it will just use an LP and its
dual to analyze the algorithm.

In the min-cost Set Cover problem we are given a universe U := {1, 2, . . . , n} of n
elements and a collection of m subsets S := {S1, . . . , Sm} where

⋃
k Sk = U . We are also

given a cost function c : S → R≥0 that assigns a cost to every subset in S. The goal is to
find a min-cost subcollection of S such that its union equals U . This is a classic NP-Hard
problem, e.g., it generalizes the Vertex Cover problem that we studied in Lecture 5. Let
OPT denote the cost of the optimal solution. We will analyze approximation guarantees of
the Greedy Algorithm in Figure 1:

The Greedy Algorithm always returns a valid solution since we assumed
⋃

k Sk = U .
We will prove the following result.

Theorem 4. The Greedy Algorithm gives an Hn approximation to the min-cost Set Cover
problem, where Hn := 1 + 1

2 + 1
3 + . . .+ 1

n = Θ(log n).
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Let A represent uncovered elements and let C represent selected sets.
Initialization: A = U and C = ∅.
While A 6= ∅:

1. Find a set Sk ∈ S that maximizes α =
1

c(Sk)
·
(∣∣∣Sk ∩A∣∣∣) .

2. For each newly covered element e ∈ Sk ∩A, set price(e) = 1/α.

3. Update A← A \ Sk and C ← C ∪ k.

Note that the second step doesn’t affect the algorithm. It will be only used for analysis.

Figure 1: The Greedy Algorithm

There are several proofs known for this theorem. (You might want to try a direct
combinatorial proof.) We will consider an LP based proof where we consider the following
natural LP:

min
∑

k∈{1,...,m}

c(Sk) · xk∑
k:Sk3e

xk ≥ 1 ∀e ∈ {1, . . . , n}

xk ≥ 0 ∀k ∈ {1, . . . ,m}

Since by setting xk = 1 for sets Sk in the optimal solution, and otherwise setting xk = 0,
we get a feasible solution to the LP of cost OPT , we know that the optimal fractional
solution x∗ to the LP satisfies

∑
k c(Sk)x∗k ≤ OPT .

We will actually never compute x∗1

and only use the fact that the LP value gives a lower bound on OPT. Instead, we compare
the Greedy Algorithm to the following dual LP (since the primal LP was a minimization
problem, the dual LP is a maximization problem):

max
∑

e∈{1,...,n}

ye∑
e∈Sk

ye ≤ c(Sk) ∀k ∈ {1, . . . ,m}

ye ≥ 0 ∀e ∈ {1, . . . , n}

By weak-duality, we know that any feasible solution to the dual LP gives a lower bound
on
∑

k c(Sk)x∗k. Thus, our plan to upper bound the cost of the greedy algorithm is to show
a feasible dual solution

(
ze
)
e∈E which satisfies that the total cost of the Greedy Algorithm∑

k∈C
c(Sk) ≤ Hn ·

∑
e

ze. (1)

1Exercise: The randomized rounding algorithm that selects each set Sk independently with probability
min{1 , x∗

k · logn} is an O(logn) approximation algorithm.
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This will prove Theorem 4 since by weak-duality
∑

e ze ≤
∑

k c(Sk)x∗k ≤ OPT .

We define ze =
1

Hn
·price(e), where recall from Figure 1 that price(e) intuitively denotes

how much element e pays for Sk when it first gets covered. Proving (1) is easy because
the Greedy Algorithm sets an element’s price exactly once, and at that point the algorithm
exactly distributes c(Sk) between the newly covered elements. Thus the algorithm’s total
cost

∑
k∈C c(Sk) =

∑
e price(e) = 1

Hn

∑
e ze.

Next, we prove that
(
ze
)
e∈E is a feasible solution to the dual LP. By definition, ze ≥ 0.

Now consider any set S ∈ S. We want to show
∑

e∈S ze ≤ c(S). Start by renaming the
elements (for analysis) of S to be {e1, e2, . . . , e|S|} in the order they are covered by the
Greedy Algorithm (breaking ties arbitrarily). Observe that whenever an element ei ∈ S
was first covered, the algorithm had the option of selecting S (and may be it even did) at a
cost of c(S) and cover |S| − i+ 1 new elements. Thus, irrespective of which set the Greedy

algorithm actually selects, we know that price(ei) ≤ c(S)
|S|−i+1 . This implies

∑
e∈S

ze =
1

Hn

∑
ei∈S

price(ei) ≤ 1

Hn

∑
ei∈S

c(S)

|S| − i+ 1
= c(S) ·

H|S|

Hn
≤ c(S).
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