
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Homework 1

Out: Jan 10 Due: Jan 28 Feb 1

Instructions:

• Upload your solutions to the non-extra-credit problems as a single PDF on Grade-
scope. Please anonymize all your submissions (i.e., do not list your name in the PDF),
but if you forget, it’s OK.

• You may collaborate with any classmates, textbooks, Internet, etc. Please upload
a brief “collaboration statement” listing any collaborators as the last page of your
non-extra-credit solutions PDF on Gradescope. But after the collaboration, always
write your solutions individually.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

• Each problem is worth twenty points (even those with multiple subparts).

Problems:

§1 (Matroids) A matroid on [n] elements is a collection of sets that generalized the
concept of linear independence for vectors. Specifically, a matroid I satisfies:

• Non-trivial: ∅ ∈ I.

• Downwards-closed: If S ∈ I, then T ∈ I for all T ⊆ S.

• Augmentation: If S, T ∈ I, and |S| > |T |, then there exists an i ∈ S \ T such
that T ∪ {i} ∈ I.1

(a) Prove that the following collections are matroids:

i. (Uniform matroid) Sets of size at most k (that is, the elements are [n], and
I = {X ⊆ [n]| |X| ≤ k}).

ii. (Graphic matroid) Acyclic subgraphs of any undirected graph G = (V,E)
(that is, the elements are E and I = {X ⊆ E|X contains no cycles}).

1Think of this as a generalization of linear independence: if I give you a set S of k linearly independent
vectors, and T of < k linearly independent vectors, then there is some vector in S not spanned by T .
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iii. (Transversal matroid) Let G = (L,R,E) be a bipartite graph. The elements
are L, and I = {X ⊆ L| |N(S)| ≥ |S| ∀S ⊆ X} (N(S) are the neighbors of
S: {x ∈ R| ∃y ∈ S, (x, y) ∈ E}). That is, X ∈ I if and only if all nodes in
X can be simultaneously matched to R.

(b) (Greedy Algorithm) Given weights wi ≥ 0, i ∈ [n], and some collection of fea-
sible sets I where ∅ ∈ I, your goal is to find the max-weight feasible set:
arg maxS∈I{

∑
i∈S wi}. Consider a greedy algorithm that first sorts the elements

in decreasing order of wi (i.e. picks a permutation σ such that wσ(i) ≥ wσ(i+1)

for all i), then iteratively does the following (initializing A = ∅, i = 1, go until
i > n): Check if A ∪ {σ(i)} ∈ I. If so, add σ(i) to A. Update i := i+ 1. Prove
that this greedy algorithm finds the max-weight feasible set no matter what non-
negative weights are input if and only if I is a matroid (that is, prove that the
algorithm succeeds whenever I is a matroid. Also, if I is not a matroid, provide
an instance of weights for which the algorithm fails).

§2 (Submodularity) In this problem we study properties of a submodular function f :
2Ω → R≥0 where Ω is a set of m elements.

(a) Prove that the following two definitions of submodular functions are equivalent:

i. For all sets A,B ⊆ Ω, we have f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

ii. For every set X ⊆ Y ⊆ Ω and x ∈ Ω \ Y , we have f(X ∪ {x}) − f(X) ≥
f(Y ∪ {x})− f(Y ).

(b) In the submodular welfare problem, there are n bidders and a set Ω of m items.
The value of bidder i ∈ {1, . . . n} for a subset of items S ⊆ Ω is given by a
monotone (i.e., f(A) ≤ f(B) for every A ⊆ B) submodular function fi(S) where
fi(∅) = 0. We want to allocate the m items to the n bidders, i.e., find an item
partitioning where bidder i gets susbset Si ⊆ Ω and Si∩Sj = ∅ for i 6= j, and the
goal is to maximize the welfare

∑
i∈{1,...,n} fi(Si). Show that the greedy algorithm

which considers the items one-by-one in an arbitrary order and allocates the next
item j to the bidder which has the highest marginal value (i.e., which maximizes
fi(S∪j)−fi(S) where S is the currently allocated set of items to bidder i), gives
a 2-approximation algorithm for the submodular welfare problem.

Hint: First prove that a submodular function remains submodular even if you
“contract” a set, i.e., fS(A) := f(S ∪A)− f(S) is submodular on Ω \ S.

§3 (a) (Concentration) Suppose there are n coupons {1, . . . , n}. Each step, you draw a
uniformly random coupon independently with replacement (i.e., you may redraw
coupons), and you repeat this until you have drawn all n coupons at least once.
Prove that with probability at least 1− 1/n, the process takes O(n log n) steps.

(b) Consider the following process for matching n jobs to n processors. In each step,
every job picks a processor at random. The jobs that have no contention on the
processors they picked get executed, and all the other jobs back off and then
try again. Jobs only take one round of time to execute, so in every round all
the processors are available. Show that all the jobs finish executing w.h.p. after
O(loglog n) steps.
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Hint: Try to argue that if there are currently εn unmatched jobs, then in the
next round roughly ε2n jobs remain unmatched.

§4 (Basic Feasibility & Iterated Rounding) Suppose you are given a matrix A ∈ {0, 1}n×n
such that each column of A has at most s ones, i.e., column sparsity is at most s. We
will analyze the following polynomial time algorithm to find a coloring ~ε ∈ {−1,+1}n
such that ‖A~ε‖∞ = ‖

∑
t~atεt‖∞ = O(s), where ~at is the t-th column of A.

The algorithm will iteratively color more and more columns of A. Initially, all columns
are “uncolored” and a column ~at gets “colored” when εt is defined.

• In any iteration, if the number of remaining uncolored columns is at most 2s,
color them arbitrarily and halt.

• Otherwise, we solve an LP with fractional variables denoting the fractional col-
ors of the uncolored columns. For every row i that contains more than 2s un-
colored ones, put an LP constraint that its fractional discrepancy is zero, i.e.,∑

t at(i)Yt = 0 where Yt denotes LP variable xt ∈ [−1, 1] for uncolored columns
t, and Yt denotes constant εt for colored columns t.

• Find a basic solution x∗ of the above LP, and for any uncolored column t that
gets x∗t ∈ {−1,+1} in this basic solution, we permanently set its εt to that color.

• Repeat.

(a) Show that in any iteration, the number of row constraints that we put is at most
half the number of currently uncolored columns. Deduce that a basic solution
will integrally color at least half the columns in each iteration.

(b) Show that this algorithm obtains a solution with discrepancy O(s). This means,
e.g., that if each column has O(1) non-zero entries then the discrepancy is O(1).

Remark: There is nothing special about A ∈ {0, 1}n×n vs. A ∈ [0, 1]n×T , i.e., having
T � n columns and real entries. We can easily extend the above result using the idea
of finding a basic solution in the beginning with at most n uncolored columns.

§5 (a) (Scheduling) Suppose we are given n machines and m jobs where the jth job
takes time pji ∈ R≥0 to be executed on machine i. The goal of this problem is to
find an assignment σ : [m]→ [n] of all the jobs onto the n machines to minimize
the maximum load, i.e., minσ maxi∈[n]

∑
j:σ(j)=i pji.

i. Consider the special case of the problem where job sizes don’t depend on
the machines, i.e., pji = pj for all j (this is called the “identical machines”
scheduling). Use NP-Hardness of Subset-Sum2 to prove that this problem is
NP-Hard even for n = 2 machines.

ii. Consider the greedy algorithm for scheduling: consider the jobs in an arbi-
trary order and schedule the next job on the machine that has the least load
currently, breaking ties arbitrarily. Prove that this algorithm gives an O(1)
approximation on identical machines.

2Given a set of m integers, the goal is to partition them into two parts such that the sum of the numbers
in each part is equal (which equals half of the sum of all numbers).
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iii. Prove that the LP relaxation below is valid for the problem, i.e., it gives a
lower bound on the optimum (think xji means job j is assigned to machine i).
Next, give a family of identical machines problem instances where for every
n the integrality gap (ratio of optimum to LP value) is Ω(n):

min L

s.t.
∑

i xji ≥ 1 ∀j ∈ [m]∑
j xjipji ≤ L ∀i ∈ [n]

xji ≥ 0 ∀j ∈ [m], i ∈ [n]

Remark: In the next assignment we will use a modification of this LP to
design O(1) approximation algorithms for general (non-identical) scheduling.

(b) (Separation Oracle) Describe separation oracles for the following convex sets.
Your oracles should run in linear time, assuming the given oracles run in linear
time (so you can make a constant number of black-box calls to the given oracles).

i. The `1 ball, {x : ‖x‖1 ≤ 1}. Recall that ‖x‖1 =
∑

i |xi|.
ii. Any convex set A that we have a projection oracle for. I.e. we have an oracle

to compute arg minx∈A ‖x− y‖2 for any y.

iii. The ε-neighborhood, E, of any convex set A: E = {x : ∃y ∈ A with ‖x −
y‖2 ≤ ε}, given a projection oracle for A.

Extra Credit:

§6 (extra credit) In a combinatorial auction there are n bidders and m items. Bidder i has
a monotone valuation vi(·) where vi(S) is their value for item set S (and vi(S ∪ T ) ≥
vi(S) for all S, T ). A Walrasian Equilibrium is a price for each item ~p such that:

• Each buyer i selects to purchase a set Bi ∈ arg maxS{vi(S)−
∑

j∈S pj}.
• The sets Bi are disjoint, and ∪iBi = [m].

Prove that a Walrasian equilibrium exists for v1, . . . , vn if and only if the optimum of
the LP relaxation below (called the configuration LP) is achieved at an integral point
(i.e. where each xi,S ∈ {0, 1}). Hint: use strong duality!

max
∑
i

∑
S

vi(S) · xi,S

∀i,
∑
S

xi,S = 1

∀j,
∑
S3j

∑
i

xi,S ≤ 1

∀i,∀S, xi,S ≥ 0

Also, find an example of 2 items & 2 bidders where Walrasian equilib. doesn’t exist.

§7 (Open Problem) Can you extend the discrepancy result in Problem 4 to every prefix,
i.e., find a coloring ~ε such that maxt ‖

∑
i≤t~aiεi‖∞ = O(s)? Can you prove this result

for some larger function f(s) that does not depend on n and T (like f(s) = 2s)?


