
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Homework 2

Out: Feb 1 Due: Feb 22

Instructions:

• Each problem is worth twenty-five points. Attempt any 4 of the 5 problems. If
you submit all 5 then the TAs might grade arbitrary 4 of them.

• Upload your solutions to the problems as a single PDF on Gradescope. Please
anonymize all your submissions (i.e., do not list your name in the PDF), but if you
forget, it’s OK.

• You may collaborate with any classmates, textbooks, Internet, etc. Please upload
a brief “collaboration statement” listing any collaborators as the last page of your
non-extra-credit solutions PDF on Gradescope. But after the collaboration, always
write your solutions individually.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

Problems:

§1 (Scheduling: LP Rounding) Suppose we are given n machines and m jobs where the
jth job takes time pji ∈ R≥0 to be executed on machine i. The goal of this problem
is to find an assignment σ : [m]→ [n] of all the jobs onto the n machines to minimize
the maximum load, i.e., minσ maxi∈[n]

∑
j:σ(j)=i pji. Let OPT denote this value for

the optimum assignment.

Let OPTguess denote the smallest value for which the following LP (where we disallow
“large” jobs on a machine) is feasible:∑

i

xji ≥ 1 ∀j ∈ [m]∑
j

xjipji ≤ OPTguess ∀i ∈ [n]

xji = 0 ∀j ∈ [m], i ∈ [n] with pji > OPTguess

xji ≥ 0 ∀j ∈ [m], i ∈ [n]

We will assume that OPTguess is known since this can be found up to a small 1 + ε
factor using binary search. Let x∗ji denote the optimal fractional solution to this LP.

1

2

(a) Prove that OPTguess ≤ OPT.

In the rest of the problem we will use x∗ji to find an integral assignment with maximum
machine load 2OPTguess. This will imply a 2-approximation due to (a).

For each machine i, let wi = d
∑

j x
∗
jie. Now make a bipartite graph with jobs on the

left and machines on the right: make wi copies of the machine i node on the right,
call them i1, . . . , iwi and make a single node on the left for each job j.

For each machine i, sort the jobs in decreasing order of pji, so that p(1)i ≥ p(2)i . . . ≥
p(m)i. Place edges from jobs to machine i in the following manner:

• Initialize current-node c := 1. Initialize current-job j := 1. Initialize job-weight
w := x∗j(1). Initialize node-weight-remaining r := 1.

• While (j ≤ m):

(i) If w ≤ r, add an edge from job (j) to node ic of weight w. Update r := r−w,
update j := j + 1, w := x∗(j)i (the newly updated j). Keep c := c.

(ii) Else, add an edge from job (j) to c of weight r. Update w := w − r, update
r := 1, update c := c+ 1. Keep j := j.

In other words, starting from the longest jobs, we put edges totaling weight x∗ji from
job j to (possibly multiple) nodes for machine i. We do so in a way such that the
longest jobs are on the earliest-indexed copies, and that each machine-copy has total
incoming weight at most 1 (actually all but the last copy have incoming weight exactly
one, and the last copy has weight at most one).

(b) Given the above bipartite graph, our rounding algorithm simply takes any match-
ing with m edges, ignoring the weights (i.e., matches every job somewhere) in
this graph. Prove that there exists a matching of size m.

Hint: You may assume without proof that for bipartite graphs if there is a
fractional matching of size k then there exists an integral matching of size ≥ k.

(c) Prove that the rounding algorithm in (b) satisfies that the total processing time
on each machine is at most 2OPTguess.

Hint: For each machine i, first prove that the total processing time of jobs
matched to its copies i2, . . . , iwi is at most OPTguess. Now, since the job matched
to copy i1 has processing time at most OPTguess, deduce that the total processing
time matched to all the wi copies of i is at most 2OPTguess.

§2 (Online Algorithms)

(a) (Two-Stage Matching: Hardness) Suppose there is a bipartite graph (A ∪B,E)
whose edge set E is unknown and is partitioned into E(1)∪E(2) by an adversary.
In Stage 1, the algorithm is revealed (A ∪ B,E(1)) and it has to immediately
pick a subset M (1) ⊆ E(1) such that M (1) is a matching. (Note that all edges
E(1) are simultaneously revealed and not one-by-one as in Online Matching from
class.) All unpicked edges E(1) \M (1) now disappear. In Stage 2, the algorithm
is revealed the remaining edges E(2) and it has to select a subset of edges M (2) ⊆

3

E(2) such thatM (1)∪M (2) is a matching. The goal of the algorithm is to maximize
its competitive ratio: the minimum ratio over all E(1)∪E(2) of the expected total
matching E[|M (1) ∪M (2)|] and the max offline matching in (A ∪ B,E), where
the expectation is over any internal randomness of the algorithm. (Note that
the Stage 2 decision for the algorithm is simple as it can just compute the max-
matching using E(2) on the vertices that were unmatched after Stage 1.)

Prove that no 2-stage online algorithm can obtain > 2/3 competitive ratio.

Hint: In Yao’s lemma, consider a distribution over two bipartite graphs where
first stage E(1) consists only of a single edge (a, b).

(b) (Online Set Cover) Consider the Online Fractional Set Cover problem studied in
class. Let f = maxe∈U |S ∈ S : e ∈ S| denote the maximum number of sets
in which an element could appear. Improve the analysis from class to obtain an
O(log f) competitive algorithm. (This is much better than O(logm) for f � m.)

§3 (Online Matching for Random Arrival) Consider a bipartite graph on n agents and
m items. Each agent i has a value vij ∈ R≥0 for item j. The maximum-weight
matching problem is to find an assignment M : [n] → [m] to maximize

∑
i∈[n] viM(i)

such that no item j is assigned to more than one agent, i.e., |M−1(j)| ≤ 1 for all
j ∈ [m]. In the online setting, the m items are given up-front and the n agents
arrive one by one in a uniformly-random order. Upon arriving, agent i reveals their
valuations vij for j ∈ [m], whereupon we may irrevocably allocate/assign one of the
remaining/unmatched items to i. Let V ? denote the value of the optimal matching.
(The case of m = 1 with a single item is exactly the single-item secretary problem.)
Consider the following online matching algorithm:

Ignore the first n/e agents. When agent i ∈ (n/e, n] arrives:

(i) Compute a max-value matching M (i) for the first i arrivals (ignoring past
decisions).

(ii) If M (i) matches the current agent i to item j, and if j is still avail-
able/unmatched, then allocate j to agent i; else, give nothing to agent i.

(We assume that the matching M (i) is unique, depends only on the identities of the
first i requests, and is independent of their arrival order. This can be ensured by
randomly perturbing all valuations vij slightly.)

(a) Prove that in M (i) the ith agent gets expected value at least V ?/n.

Hint: First prove that M (i) has an expected value at least (i/n)V ?.

(b) Similar to the single-item secretary analysis in the class, prove that if agent i is
matched to item j in M (i), then j is free with probability ≈ n

ei . Deduce that the
algorithm gives an e-approximation.

Hint: Start by conditioning on the random set of first i agents (not their relative
order) and the identity of the i-th agent. Now prove that the probability that j
is available for agent i is at least

∏
n/e<k<i

(
1− 1

k

)
≈ n

ei .

4

§4 (Stochastic Bandits) Consider a problem where you are given n labeled coins with
some unknown biases p1, . . . , pn ∈ [0, 1] (i.e., the i-th coin shows Heads independently
with some unknown but fixed probability pi). Consider a T step game where in each
step t ≤ T you may choose any one of the n coins to toss. (Think of T � n.) Your
goal is to design a tossing strategy to maximize the total number of seen heads. In
particular, if the algorithm tosses coin it the t-th step and the most biased coin has
probability pi∗ , then we want to minimize the regret :

T · pi∗ −
∑T

t=1 pit .

We could run the adversarial bandits algorithm (Exp3) from class to get O(
√
nT lnT)

regret (with 1 − 1/poly(T) probability), but in this exercise we will obtain an expo-
nentially better dependence on T using reward stochasticity (i.e., fixed coin biases).

Let ni,t denote the number of times coin i has been tossed before step t by our

algorithm. Define p̂i,t := # times i showed heads before t
ni,t

to be the empirical bias of coin i

before step t.

(a) A natural “greedy” algorithm is to toss each of the n coins once in the first n steps.
Then in each subsequent step t, the algorithm plays the coin with the highest
empirical bias, i.e., arg maxt p̂i,t. Prove that for n = 2, there exists unknown
biases p1, p2 such that this algorithm gives Ω(T) regret with Ω(1) probability.

Given that the above greedy algorithm could give a large regret, we will now construct

an “Optimistic Greedy” algorithm and show that its regret is O
(∑

i 6=i∗
lnT
∆i

+∆i

)
with

high probability, where ∆i := pi∗ − pi.

Optimistic Greedy Algorithm:

(i) In the first n steps/rounds, toss each of the n coins once in an arbitrary order.

(ii) In each subsequent step t ∈ {n + 1, . . . , T}, toss the coin with the highest

“optimistic empirical mean” arg maxi(p
optim
i,t) where poptimi,t := p̂i,t + 10

√
lnT
ni,t

.

(b) Consider any fixed coin i. Prove that for this coin the probability that poptimi,t < pi
at any time t during the executing of the algorithm is extremely small, like
< 1/T 5. Deduce by union bound that we have with 1 − 1/T 4 probability that
for every coin poptimi,t ≥ pi for all t.

(c) Consider any fixed coin i 6= i∗. Prove that you will toss this coin at most O(lnT
∆2

i
)

times, after which you will have poptimi,t < pi∗ ≤ poptimi∗,t with at least 1 − 1/T 3

probability (i.e., you would have found that i is a suboptimal coin).

(d) Since each time we toss a suboptimal coin i 6= i∗ we incur a regret of ∆i, deduce

from the above parts that the total regret of our algorithm is O
(∑

i 6=i∗
lnT
∆i

+∆i

)
with 1− 1/poly(T) probability.

5

Remark: The above regret bound O
(∑

i 6=i∗
lnT
∆i

+ ∆i

)
might appear very weak when

even one of the ∆i is small. It’s possible to modify the above analysis to get regret

bound O
(

min
{√

nT lnT ,
∑

i 6=i∗
lnT
∆i

+ ∆i

})
.

§5 (Approximate LP Solving via Multiplicative Weights) This exercise develops an algo-
rithm to approximately solve Linear Programs.

Consider the problem of finding if a system of linear inequalities as below admits
a solution - i.e., whether the system is feasible. This is an example of a feasibility
linear program and while it appears restrictive, one can use it solve arbitrary linear
programs to obtain approximate solutions. For all subparts, you may assume
that |aij | ≤ 1 and |bi| ≤ 1 for all i, j.

a>1 x ≥ b1
a>2 x ≥ b2

...

a>mx ≥ bm
xi ≥ 0 ∀ i ∈ [n]

n∑
i=1

xi = 1. (1)

(a) Design a simple algorithm to solve the following linear program, which has only
two non-trivial constraints. Below, the weights w1, w2, . . . , wm are fixed (along
with the vectors a>j and numbers bj), and x1, . . . , xn are the variables.

max

m∑
j=1

wj(a
>
j x− bj)

xi ≥ 0 ∀i ∈ [n]
n∑
i=1

xi = 1. (2)

(b) Prove that if there exist non-negative weights w1, w2, . . . , wm such that the value
of the program above is negative, then the system (1) is infeasible.

(c) The above setting of finding weights that certify infeasibility of (1) might remind
you of the setting of weighting the experts via multiplicative weights update rule
discussed in the class. Use these ideas to obtain an algorithm that a) either finds
a set of non-negative weights certifying infeasibility of LP in (1) or b) finds a
solution x that approximately satisfies all the constraints in (1), i.e., for each
1 ≤ j ≤ m, a>j x − bj ≥ −ε, and for each 1 ≤ i ≤ n, xi ≥ 0, and

∑n
i=1 xi = 1.

Prove that your algorithm terminates after solving O(ln(m)/ε2) LPs of form (2)
(you do not need to analyze the remaining runtime).

(Hint: Identify m “experts” - one for each inequality constraint in (1) and main-
tain a weighting of experts (starting with the uniform weighting of all 1s, say)

6

for times t = 0, 1, . . . , - these are your progressively improving guesses for the
weights. Solve (2) using the weights at time t. If the value of (2) is negative,
you are done, otherwise think of the “cost” of the jth expert as a>j x

(t)− bj where

x(t) is the solution to the LP (2) at time t and update the weights.)

Extra Credit:

§6 (extra credit: Two-Stage Matching: Algorithm) Consider the the two-stage matching
problem described in §2a. Now we will design a 2/3 competitive algorithm for this
problem in the special case where E(1) consists of a perfect matching on the induced
vertices.

Let A(1) ⊆ E(1) denote a perfect matching on the induced vertices (i.e., all vertices
that have an edge incident to them in E(1) are matched in A(1) but a vertex with
no incident edge in E(1) is unmatched).

(i) With probability 2/3 we choose M (1) = A(1) and otherwise we choose M (1) =
∅. (That is, w.p. 2/3 we select the perfect matching and w.p. 1/3 we pick no
edge in Stage 1.)

(ii) In Stage 2, we optimally add edges M (2) ⊆ E(2) to M (1) s.t. M (1) ∪M (2) is a
matching.

Prove that this algorithm is 2/3 competitive when E(1) contains a perfect matching
A(1) on the induced vertices.

Hint: Construct a randomized dual solution yu for u ∈ A ∪ B with the same value
as the algorithm (i.e.,

∑
e xe =

∑
u yu) and which 2/3-approximately satisfies all the

dual constraints (i.e., yu + yv ≥ 2/3 for every edge (u, v) ∈ E).

Remark: It’s possible to design a 2/3-competitive algorithm for this problem even
when E(1) does not contain a perfect matching on the induced vertices. However, that
result is more complicated and uses ideas such as Edmonds-Gallai decomposition.

