
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Homework 3

Out: Feb 23 Due: March 15

Instructions:

• Each problem is worth twenty-five points. Attempt any 4 of the 5 problems. If
you submit all 5 then your total score will be the sum of top 4 problem scores.

• Upload your solutions to the problems as a single PDF on Gradescope. Please
anonymize all your submissions (i.e., do not list your name in the PDF), but if you
forget, it’s OK.

• You may collaborate with any classmates, textbooks, Internet, etc. Please upload
a brief “collaboration statement” listing any collaborators as the last page of your
non-extra-credit solutions PDF on Gradescope. But after the collaboration, always
write your solutions individually.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

Problems:

§1 (Strongly-Convex) Consider an α-strongly convex differentiable function f1 with the
2-norm of its gradient always bounded by G. Suppose we want to minimize f and let
x∗ denote its minimum. Show that the gradient descent algorithm with step size 1

α(t+1)

satisfies f
(∑

t xt
T

)
− f(x∗) ≤ G2(1+log T)

2αT . (Thus, strong-convexity allows us to get 1/T

dependency in regret instead of 1/
√
T dependency for general convex functions.)

(Hint: Change the potential function in the analysis from Lecture 11 to Φ(t) = tα
2 ‖xt−

x∗‖2. Also, use that
∑

t∈{1,...,T}
1
t ≤ 1 + log T .)

§2 (General PIs) In Lecture 13 we used Online Contention Resolution Scheme (OCRS)
to design a 2-competitive algorithm for Prophet Inequality problem of selecting one
item on weighted Bernoulli distributions. In this exercise we will extend this technique

1A differentiable function f is α-strongly convex for α > 0 if for all x, y ∈ Rn we have f(y) ≥ f(x) +
〈∇f(x), y − x〉+ α

2
‖y − x‖22.

1

2

to more general discrete distributions and to selecting k ≥ 1 items (i.e., our online
algorithm can select at most k random variables and its goal is to maximize their sum
in expectation. The benchmark is the expected sum of the highest k elements.)

Suppose we are given distributions Di of n independent random variables supported
on non-negative real numbers w1, w2, . . . , wm, where Xi ∼ Di takes value wj with
probability pij for i ∈ [n] and j ∈ [m] (this means

∑
j pij = 1 for all i ∈ [n]).

Our online algorithm will be revealed outcomes X1, . . . , Xn one-by-one and it has to
immediately accept/reject, where in total it can accept at most k random variables.

(a) Prove that the following LP relaxation gives an upper bound on the expected
offline optimum, i.e, the expected sum of the highest k random variables.

max
x

∑
i

∑
j

xijwj

s.t. xij ≤ pij ∀i ∈ [n], j ∈ [m]∑
i

∑
j

xij ≤ k

xij ≥ 0 ∀i ∈ [n], j ∈ [m]

Next, we discuss an online rounding algorithm. For the problem of selecting at most
k elements, an α-OCRS for 0 ≤ α ≤ 1 is defined as follows: we are given x1, . . . , xn ∈
[0, 1] s.t.

∑
i xi ≤ k; here xi denotes the probability with which element i is active

independently. Our OCRS algorithm is revealed one-by-one whether the i-th element
is active or not, and it has to immediately accept/reject the i-th element if it’s active
(an inactive element automatically gets rejected). The OCRS algorithm can accept at
most k elements in total. We say that such an algorithm is an α-OCRS if it guarantees
that each element i ∈ [n] gets selected at least α · xi fraction of the times.

(b) Design a 1−O(
√

log k
k)-OCRS for selecting k elements. (Note that this approaches

1 as k becomes large.)

(Hint: Generalize the 1/4-OCRS proof that we saw in Lecture 13. In particu-
lar, argue using Chernoff bounds that an online algorithm that rejects the i-th

element with probability Θ(
√

log k
k) and otherwise accepts if it’s active gives a

1−O(
√

log k
k)-OCRS.)

(c) Using (a), show that an α-OCRS for selecting k elements implies a 1/α-competitive
algorithm for the PI problem of selecting at most k random variables.

(Hint: Suppose x∗ij is the optimal LP solution. Let xi :=
∑

j x
∗
ij denote the

probability with which the i-th element is active in the α-OCRS for selecting k
elements .)

§3 (Pandora’s Box Matching) In this problem we consider a combinatorial generalization
of the Pandora’s Box problem that we saw in Lecture 15 to selecting a matching.

Suppose we are given a graph G = (V,E). The weight/value of each edge e ∈ E is
given by a random variable Xe ∼ De (thus each edge corresponds to a box), where

3

De is known probability distribution. Our algorithm can find the outcome/realization
Xe by paying a known cost ce ∈ R≥0. The goal is to design a policy that opens a
subset O ⊆ E of the boxes/edges and selects a subset S ⊆ O of them that form a
valid matching to maximize the expected total utility:

E
[

max
S⊆O s.t. S is a matching

∑
e∈S

Xe −
∑
o∈O

co

]
.

(a) Prove that this Pandora’s box matching problem generalizes the single item
Pandora’s box problem that we saw in class.

(Hint: Consider the star graph: a single node u connected to multiple nodes
v1, v2, . . . , vn.)

(b) Recall the definitions of σe and κe from Lecture 15. That is, we define σe s.t.
it satisfies E[(Xe − σe)

+] = ce and define κe = min{Xe, σe}. Prove that the
expected utility of the optimal policy for Pandora’s Matching problem is at most

E
[

max
S⊆E s.t. S is a matching

∑
e∈S

κe

]
.

(Hint: In class we saw why for single-item Pandora’s box the optimal utility is
at most E[maxκi]. Slightly modify that proof to prove this result.)

§4 (Gittin’s Index ⇒ Pandora’s Box) Suppose we are given a Pandora’s Box instance
where Box i contains a random value Xi that we can find by paying a cost ci, where Xi

takes a discrete value rj ∈ R≥0 for j ∈ {1, . . . ,m} with probability pij and
∑

j pij = 1.
In Lecture 15 we already saw the optimal policy for Pandora’s Box. In this problem
we will design the same policy and prove its optimality but using the Gittin’s Index
Theorem from Lecture 16. (That is, you cannot use any results from Lecture 15 to
solve this problem.)

For the reduction, we define the following Gittin’s Index instance with n different
Markov Chains where the i-th chain (that corresponds to i-th box) has m+ 1 states.
The i-th Markov chain starts at State 0 and if we Play it then we transition to one of
the m states where we reach State j w.p. pij (this state corresponds to Xi = rj) and
receive reward −ci. If we further play this Markov chain then we stay in State j with
probability 1 and receive reward rj(1− γ) every time we play it (see Figure 1).

0 j
prob: pij , rew: −ci

prob: 1, rew: rj(1− γ)

Figure 1: Markov chain showing the transition for Xi = rj .

The idea of the above reduction is to imagine γ → 1. Now the optimal strategy will
first Play a few boxes (i.e., open them by paying their costs; since γ → 1 the discount
factor is negligible right now) and once the algorithm wants to stop at some box i then
it keeps playing that i-th Markov chain till time ∞ (since it will continue remaining
the highest index chain). Note that this is the reason the reward of playing in State

4

j is scaled by a factor of (1− γ), since if we get rj(1− γ) for all the time steps then
our total γ-discounted reward equals rj .

(a) Let λi denote the Gittin’s index for the i-th Markov Chain when in State 0. We
define σ̃i := λi

1−γ . Prove that the following equation holds:

E
[
− ci − (1− γ)σ̃i + γ

(
Xi − σ̃i

)+]
= 0

(b) Note that if γ → 1 then σ̃i approaches Weitzman’s index σi from class (i.e., the
solution to E[(Xi − σi)+] = ci). Use this to prove that for γ → 1 the Gittin’s
Index policy on this instance becomes the same as Weitzman’s Index policy.

§5 (Adaptivity Gaps for Stochastic Matching) In this problem we will generalize ProbeMax
from Lecture 17 to selecting a matching.

Suppose we are given a bipartite graph G with parts A,B and edges E. The weight
of each edge e ∈ E is given by a random variable Xe, where Xe = v with some
known probability fe,v. Our algorithm can open at most k edges and find their
outcomes/realizations Xe. The goal is to design a policy that opens a subset O ⊆ E
of the edges, where |O| ≤ k, and select a subset S ⊆ O of them that form a valid
matching to maximize the weight of the matching:

E
[

max
S⊆O s.t. S is a matching

∑
e∈S

Xe

]
.

(a) Prove that the following LP gives an upper bound on the optimal policy:

maximize
∑
e,v

v · ze,v

subject to
∑
e

ye ≤ k∑
e : e is incident to vertex u

∑
v

ze,v ≤ 1 u ∈ A∑
e : e is incident to vertex u

∑
v

ze,v ≤ 1 u ∈ B

ze,v ≤ fe,v · ye ∀e ∈ E , ∀v
ze,v ≥ 0 ∀e ∈ E , ∀v

(b) Prove that the adaptivity gap for this problem is O(1).

(Hint: To argue about an edge e = (a, b), apply the union bound and Markov’s
inequality argument from both vertex a and vertex b.)

Extra Credit:

§6 (extra credit) In the setting of Problem 3, find an algorithm with expected utility, i.e.
total reward minus total cost, at least 1/2 of the upper bound in Problem 3.

5

(Hint: Run the greedy matching algorithm w.r.t. the indices σe and use the fact that
for offline max-weight matching if we greedily select edges in decreasing weight order
then we get a 1/2 approximation.)

§7 (extra credit:) Consider the OCRS problem of selecting at most k elements in Prob-

lem 2. Show that there exists a 1 − O
(√

1
k

)
-OCRS for selecting k elements, i.e.,

improve the result in Problem 2 by removing the extra
√

log k factor.

(Hint: Generalize the idea of 1/2-OCRS from Lecture Notes.)

