
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Homework 4

Out: March 16 Due: April 5

Instructions:

• Each problem is worth twenty-five points. Attempt any 4 of the 5 problems. If
you submit all 5 then your total score will be the sum of top 4 problem scores.

• Upload your solutions to the problems as a single PDF on Gradescope. Please
anonymize all your submissions (i.e., do not list your name in the PDF), but if you
forget, it’s OK.

• You may collaborate with any classmates, textbooks, Internet, etc. Please upload
a brief “collaboration statement” listing any collaborators as the last page of your
non-extra-credit solutions PDF on Gradescope. But after the collaboration, always
write your solutions individually.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

Problems:

§1 (VCG with Approximation Algorithms) Prove that the VCG reduction doesn’t work
for the following greedy approximation algorithm (i.e., if we find the assignment and
the prices using this greedy approximation algorithm):

• Initialize Si = ∅ for all bidders i.

• For j = 1 to m, let bidder ij := argmaxi{vi(Si∪{j})− vi(Si)} be the bidder who
gets the most marginal benefit from item j. Award item j to bidder i (update
Si := Si ∪ {j}) and continue.

(Recall that in HW-1 we proved that for submodular bidders this greedy algorithm
gives a 2-approximation to the optimal welfare. But there we assumed that the vi(·)
functions were given to us, instead of being reported by bidders.)

Specifically, prove that VCG with this algorithm is not Dominant Strategy Truthful:
provide two valuations v1(·), v2(·) over two items such that bidder 1 is strictly better
off by lying to the VCG mechanism that uses the above approximation algorithm
when their value is v1(·) and bidder 2 reports v2(·).
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§2 (Fixed-Price-Auctions) In this problem we want to use Fixed-Price-Auctions (FPAs)
from Lecture 19 to design a truthful approximation algorithm for Combinatorial Auc-
tions with XOS bidders (without any Bayesian assumptions).

(a) (Robustness) Consider n bidders with XOS valuations. Suppose O is an allo-
cation with supporting prices q ∈ Rm

≥0. Let A ⊆ [m] be a subset of items j

with δqj ≤ pj ≤ 1
2qj . Prove that the Fixed-Price-Auction with prices p gives

welfare at least δ · q(A). (Thus, FPAs are robust to knowing supporting prices
approximately, and that too for only a subset of the items.)

(Hint: Modify the proof from Lecture 19 where we proved this statement for
A = [m] and δ = 1/2.)

(b) (Randomized FPA) Suppose we are given the value of the optimal total welfare
OPT (just the total value, not the allocations or the supporting item prices).
Consider the following set of O(logm) candidate prices C := {OPT,OPT/2,
OPT/22, . . . ,OPT/(22 logm)}. Consider running a Fixed-Price-Auction where
each item j independently chooses its price uniformly at random in the set C.
Prove that the expected welfare of this Fixed-Price-Auction gives an O(logm)-
approximation.

§3 (XOS contains Submodular) Prove that any monotone submodular function f over m
items with f(∅) = 0 can written as an XOS function (max over non-negative linear
functions).

(Hint: Design a non-negative linear function aS(·) : 2[m] → R≥0 for every subset
S ⊆ [m] of items such that aS(1S) = f(S) and aS(1T ) ≤ f(T ) for every T ⊆ [m].
Now prove that the XOS function maxS{aS(·)} equals submodular function f(·).)

§4 (Two Player Minimax Theorem) We say that a two player game with each player
having m pure strategies is Zero-Sum if the sum of the payoffs is zero, i.e., for each
(s1, s2) ∈ [m]× [m] we have p1(s1, s2) = −p2(s1, s2) = −A(s1, s2) where A ∈ Rn×n is a
given payoff matrix. Let ∆ := {x ∈ [0, 1]m with ‖x‖1 = 1} denote the m-dimensional
simplex. In this problem we will prove the minimax theorem where the x-player is
trying to minimize and the y-player is trying to maximize to show

min
x∈∆

max
y∈∆

∑
ij

xiyjAij = max
y∈∆

min
x∈∆

∑
ij

xiyjAij . (1)

(a) Prove that the RHS ≤ LHS in (1) by arguing that for the x-player playing second
only helps in minimizing the value. (Alternatively, this can be thought of as for
the y-player playing second only helps in maximizing the value.)

(b) Next, we use Online Learning to prove the other direction of (1), which would
show that in a 2-player zero-sum games it doesn’t matter whether you go first
or second against a “smart” opponent.

Assume that matrix A ∈ [−1, 1]n×n after rescaling. Consider an Experts problem
setup (Lecture 10) where in round t ∈ {1, . . . , T} an Online Learning algorithm
decides to play y(t) ∈ ∆ and receives the best-response reward from player-x,

i.e., the reward is minx(t)∈∆

∑
ij x

(t)
i Aijy

(t)
j .
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(i) Prove that
∑

t

∑
ij x

(t)
i Aijy

(t)
j is at most T times the RHS of (1).

(ii) If R denotes the average regret for the Experts problem when the per-step
costs are in [−1, 1], prove that∑

t

∑
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x
(t)
i Aijy

(t)
j ≥ max

y∈∆

∑
t

∑
ij

x
(t)
i Aijyj − TR.

(iii) Deduce from the above two parts that in (1) we have RHS ≥ LHS −R.
Since the average regret R tends to 0 with the number of rounds T , we have
equality in (1).

§5 (PoA for Max-Cost) Consider the non-atomic flow problem from Lecture 21. Imagine
there is a single source s and a single destination t, and there is 1 unit of traffic flowing
between them. Suppose the edge costs are affine (i.e., ce(xe) = aexe + be for some
ae, be ∈ R≥0) and each participant takes their greedy shortest path. In this problem
we will prove the Price of Anarchy (PoA) for the max-cost objective (i.e., the ratio of
the max-cost for equilibrium flow to that of the max-cost for the optimal flow), where
max-cost means the maximum total cost of any path taken by some participant.

(a) Show a graph where the PoA becomes 4/3 for the max-time objective.

(Hint: We have seen this graph in class.)

(b) Prove that the PoA for max-time is at most 4/3.

Extra Credit:

§6 (extra credit) In Problem 2(b), remove the assumption that the value of OPT is
known. In other words, if we have n XOS-bidders with unknown valuations over m
items (we don’t even know any distributions on their valuations), design an O(logm)-
approximation Truthful mechanism.

(Hint: Randomly discard half the bidders: use these discarded bidders to get an
approximate value of OPT without assigning them any items. Note that you can ask
discarded bidders their valuations since they don’t have any incentive to misreport.
Now run the Fixed-Price-Auction on the remaining bidders. You need to handle the
corner case separately where one bidder contributes nearly the entire value of OPT.)


