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In this course we will focus on designing algorithms, especially for problems where the
algorithm’s input is “uncertain”, i.e., the input is not entirely known. Since algorithm
design is often for an optimization problem, in the first few lectures we will study classical
discrete and continuous optimization problems, and then in the later lectures we will explore
these problems for uncertain inputs. This lecture is to recall the commonly studied discrete
optimization problems.

1 What is Discrete/Combinatorial Optimization?

Given a finite set of ground elements V , a family of constraints F ⊆ 2V , and an objective
function f : 2V → R, the combinatorial/discrete optimization problem is to select a feasible
set S ⊆ V , i.e. S ∈ F , while trying to maximize (or minimize) the objective f(S):

max /min f(S) subject to S ∈ F .

Since the number of subsets of V is finite, it is possible to run an algorithm that evaluates
f at every feasible subset to find the optimal solution. However, such an approach is not
computationally efficient as the number of subsets is exponential in n := |V |.
In general getting a poly(n) running time algorithms for the above optimization problem is
impossible because both F and f might have an exponential description. One natural way
around this is to have an “implicit” description of F and f which has a polynomial size
representation. E.g., in an additive/linear function we are given some weights w ∈ R|V| and
the objective f(S) :=

∑
e∈S we for every S ⊆ V . Some examples of implicit constraints are

cardinality where for a given integer k we have F := {S : |S| ≤ k} and matching constraints
where for a given graph G a subset of edges is feasible if they form a matching.

In this lecture we also consider several combinatorial functions and constraints that do not
always have a polynomial size description (even implicit) but given access to an “oracle” they
can be efficiently optimized. The most common oracles are “independence” and “value”
oracles: For any set S ⊆ V , an independence oracle for F returns if S is feasible (i.e., S ∈ F)
and a value oracle for f tells returns the value f(S). Now our goal is to design efficient
algorithms that only make poly(|V |) calls to these oracles.

It turns out that for an arbitrary F or f one can still not design efficient algorithms given
oracle access, so we will need to make further assumptions on their structure. But before
discussing these common combinatorial constrains and functions, we take a brief detour and
introduce the other protagonist of this course, Uncertainty.
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2 What is Optimization under Uncertainty?

Consider the simplest “single-item” discrete optimization problem: given weights we ∈ R≥0
for each element e, the goal is to select the element with the highest weight. This is a trivial
problem when the weights are known (pick the highest), however, the problem already
becomes non-trivial when the weights are “uncertain” as we discuss below.

There are several ways of modeling input uncertainty, and often the application dictates the
best model. The uncertainty models studied in this course can be broadly classified into
three categories: online, stochastic, and strategic. We next briefly describe each of these
categories, giving a concrete scenario where we might encounter the single-item problem.

1. Online. The input to the algorithm is revealed one-by-one and it has to make deci-
sions without knowing the future. E.g., consider a scenario where you own a diamond
(item) that you are trying to sell. A sequence of n buyers arrive, each with a different
value for your item. On arrival, buyer e makes a take-it-or-leave-it offer for your item,
(i.e., reveal we). Your goal is to immediately decide whether to sell your item, while
trying to maximize the value that you get for your item. The benefit of declining the
early bids is that you might get a better bid later, but then you also risk selling your
item at a lower price later.

2. Stochastic. The input is unknown but it is drawn from a known probability distri-
bution, and the goal is to maximize the expected reward. E.g., suppose you want to
purchase a house. You have some estimates on the value of every available house in
the market, say based on its location and size (i.e., probability distribution on we).
However, to find the exact value of a site (house) you have to hire a house inspector
and pay her a price. Your goal is to simultaneously maximize the value of the best
site that you find and to minimize the total inspection price that you pay. One simple
strategy is to inspect every potential site to find the best one, but this strategy incurs
a large inspection price. Another strategy is to only inspect the most promising site,
but this site might have a value much smaller than the maximum value site. What is
the optimal inspection strategy?

3. Strategic. The input is distributed between different agents who may misreport their
input to maximize their personal gain. E.g., suppose the government wants to auction
a resource (like spectrum or mining-license) and give it to a company/agent e that
has the best technology since that would add the most value we to the society. One
option for the government is to ask each agent how much they value the resource (i.e.,
their bid) and then allocate it to the highest bidder, charging the winner their bid.
However, this algorithm might lead to unexpected outcomes since the agents would
misreport their bids to get the resource at the cheapest possible price.

We will be discussing each of the above uncertainties in detail during the semester (roughly
3 weeks on each topic). But for the next couple of weeks, we will study some optimization
algorithms for settings where the input is entirely given.
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3 Combinatorial Constraints

The most common families of constraints are packing and covering constraints. Some exam-
ples packing constraints are cardinality, acyclic subgraphs, matroids, matchings, knapsack,
and orienteering. Some examples of covering constraints are spanning/connected graphs,
vertex/set cover, Steiner tree, and facility location.

Definition 1 (Downward-closed or packing constraints). An independence family F ⊆ 2V

is called downward-closed if A ∈ F and B ⊆ A implies B ∈ F . Some examples are:

• Matroid (V,F): The elements of F satisfy the matroid exchange axiom: for all pairs of
sets I, J ∈ F such that |I| < |J |, there exists an element x ∈ J such that I ∪{x} ∈ F .
Elements of F are called independent sets. E.g., uniform matroid F = {S : |S| ≤ k}
and partition matroid F = {S : |S ∩Ai| ≤ ai} for a given partition {A1, A2, . . .} of V .

• Intersection of matroids: If there exist two matroids M1 = (V,F1) and M2 = (V,F2)
such F = F1 ∩ F2. E.g., bipartite matching is intersection of two partition matroids.

• Knapsack: Given w ∈ Rn
≥0 and a knapsack size B > 0, set S ∈ F iff

∑
i∈S wi ≤ B.

• Orienteering: Given a metric (V,E, d), a budget B > 0, and a root r ∈ V , set S ⊆ V
is in F iff there is a walk starting at r of length at most B that visits all nodes in S.

• k-extendible system: If for every A ⊆ B ∈ F and e ∈ T where A ∪ {e} ∈ F , we have
that there is a set Z ⊆ B \A such that |Z| ≤ k and B \Z ∪ {e} ∈ F . These are more
general than intersection of matroids; e.g., a 2-extendible system captures matching
in general graphs.

Matroid
Matroid

Intersection

k-extend
system

Packing

Knapsack Orienteering

Figure 1: Hierarchy of packing constraints.

We now define and give some examples of covering constraints.

Definition 2 (Upward-closed or covering constraints). An independence family F ⊆ 2V is
called downward-closed if A ∈ F and B ⊇ A implies B ∈ F . Some examples are:
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• Matroid Basis: Given a matroid, set S is feasible iff it contains a matroid basis. E.g.,
size constraint F = {S : |S| ≥ k}.

• Set Cover: Suppose for every i ∈ V we are guven a set Ti ⊆ [n]. Now a set S ⊆ V is
feasible iff

⋃
i∈S Ti ⊇ [n].

• Uncapacitated Facility Location: Given a graph G = (V,E) with metric (V, d),
Clients ⊆ V , and facility opening costs X : V → R≥, open facilities at some loca-
tions I ⊆ V to minimize the sum of facility opening costs and the connection costs to
Clients, i.e., ∑

i∈I
Xi +

∑
j∈Clients

min
i∈I

d(j, i).

• Steiner Tree: Given a graph G = (V,E) with some edge costs c : E → R and a subset
of nodes S ⊆ V . The goal is to find a tree T ⊆ E that connects all the nodes in S (it
may or may not connect nodes in V \ S) of minimum cost

∑
e∈T ce.

We stress that there are important families of constraints that are not packing/covering
constraints, e.g. mixed packing-covering constraints, but we won’t discuss them here.

4 Combinatorial Functions

We denote the ground set by V , with n = |V |. A function f : 2V → R is monotone
if f(S) ≤ f(T ) for all S ⊆ T ⊆ X. The most common class of objective functions are
additive.

Definition 3 (Additive/Linear function). Given a vector c ∈ R|V|, we define f(S) := cᵀ ·1S

for any S ⊆ V , where 1S is a vector of dimension |V | that contains 1 for i ∈ S and 0
otherwise.

Next we consider more general functions that often do not have a polynomial size descrip-
tion, but given value oracle access can be optimized for several constraint families.

Definition 4 (Combinatorial functions). A function f : 2V → R is

• Additive/Linear function Given a vector c ∈ R|V|, we define f(S) := cᵀ · 1S for
any S ⊆ V , where 1S is a vector of dimension |V | that contains 1 for i ∈ S and 0
otherwise.

• Submodular if for every S, T ⊆ V it satisfies

f(S ∩ T ) + f(S ∪ T ) ≤ f(S) + f(T ).

E.g., max value function, number of distinct items, matroid rank function, coverage
function, cut function, entropy, and log determinant.
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• Monotone XOS (Fractionally subadditive) if it can be written as the maximum of
additive functions: i.e., there are vectors ci ∈ Rn

≥0 for i ∈ {1 . . .W} such that

f(S) :=
W

max
i=1

(
cᵀi · 1S

)
=

W
max
i=1

(∑
j∈S

ci(j)
)
.

An alternative characterization due to Feige [1], which motivates the name fractionally
subadditive: a function is XOS if f(T ) ≤

∑
i αif(Si) for all αi ≥ 0 and χT =∑

i αiχSi. The width of an XOS function is the smallest number W such that f can
be written as the maximum over W linear functions.

E.g., maximum-weight matching, rank of intersection of k matroids, knapsack, longest
increasing subsequence, and largest independent set in a graph.

• Subadditive if for every S, T ⊆ V it satisfies

f(S ∪ T ) ≤ f(S) + f(T ).

E.g., Set cover, Steiner tree, facility location, multiway cut, TSP, and makespan.

Additive

Submodular

XOS

Subadditive

Figure 2: Hierarchy of monotone combinatorial functions.

Although the above combinatorial functions capture many natural problems, we stress that
there are many interesting classes of functions beyond these classes. We list a few such
functions below, but they will not be discussed in much detail in this lecture.

• k-median or k-center for a set of vertices in a metric.

• Maximum flow from s to t: a subadditive function over paths but not edges.

• Largest connected component.

• Some scheduling objectives like sum of job completion times.

5 Greedy Algorithms

Algorithm design for discrete optimization problems is a vast field which is still an active
field of research. We refer the interested readers to books such as [3, 4]. In this section we
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study one of the most basic optimization algorithms, the Greedy Algorithm, where we want
to maximize an objective function f subject to a packing constraint F . In this iterative
algorithm we select the element with the highest “marginal” value in each iteration.

Algorithm 1 Greedy Algorithm

1: Start with A0 = ∅.
2: for steps i = 1, 2, . . . , |V | do
3: Let ei = arg maxe∈V \Ai−1 & Ai−1∪e∈F{f(A ∪ e)− f(A)}, where ties are broken arbi-

trarily. If no such element exists then return Return Ai−1.
4: Ai = Ai−1 ∪ ei.

One of the major reasons why matroid constraints are interesting is because for linear ob-
jective functions they precisely capture the constraint family for which the greedy algorithm
returns the optimum solution. We will prove the following theorem in Homework 1.

Theorem 1. For the linear function f(S) :=
∑

e∈S we, where we is the non-negative weight
of element e ∈ V , the greedy algorithm finds the max-weight feasible set if and only if F is a
matroid (i.e., the algorithm succeeds whenever F is a matroid. Also, if F is not a matroid,
then there are instances of weights for which the algorithm fails).

Beyond linear functions, the greedy algorithm also has good performance guarantees for
submodular objectives.

Theorem 2 ([2]). For any monotone1 submodular function f : 2V → R≥0 and cardinality
constraint k (i.e., set size at most k), the greedy algorithm returns a solution with value at
least (1− 1/e) times the optimum.

Proof. Let OPT ⊆ V denote the set of k elements selected by an optimal solution. We
start by observing that for cardinality constraint the greedy algorithm selects new elements
for exactly the first k iterations/steps, and then returns Ak. The heart of the proof is the
following claim which gives a lower on the increase in algorithm’s value in each step.

Claim 3. For i ≤ k, in the i-th iteration we have

f(Ai)− f(Ai−1) ≥
1

k
(f(OPT)− f(Ai−1)) .

Proof of Claim 3. Observe that in this iteration i the algorithm could have selected any of
the elements in the set OPT \Ai−1. Since on adding this entire set to Ai−1 the algorithm’s
value increases by f(OPT ∪ Ai−1) − f(Ai−1) ≥ f(OPT) − f(Ai−1), we get that the best
element in this set gives a marginal value that is at least the average gain (formally, this
uses that submodular functions are subadditive):

1

|OPT \Ai−1|

(
f(OPT)− f(Ai−1)

)
≥ 1

k

(
f(OPT)− f(Ai−1)

)
.

Since ei gives a marginal value that is at least the marginal value of the best element in
OPT \Ai−1, this proves the claim.

1That is, f(A) ≤ f(B) for any A ⊆ B.
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Given Claim 3, the proof of the theorem follows from a simple calculation. The claim gives:

f(Ai) ≥
1

k
f(OPT) +

(
1− 1

k

)
· f(Ai−1)

≥ 1

k
f(OPT) +

(
1− 1

k

)
·
(1

k
f(OPT) +

(
1− 1

k

)
· f(Ai−2)

)
,

and so on. Simplifying and using f(A0) ≥ 0, we get

f(Ak) ≥ 1

k
f(OPT) ·

(
1 +

(
1− 1

k

)
+
(

1− 1

k

)2
+ . . .+

(
1− 1

k

)k−1)
= f(OPT) ·

(
1−

(
1− 1

k

)k)
≥ f(OPT) ·

(
1− 1

e

)
,

where the last inequality uses (1− 1/k) ≤ e−1/k.

Interestingly, this factor 1−1/e is tight for submodular maximization subject to a cardinality
constraint: it is known that given value oracle access to f , no (randomized) algorithm
that makes polynomial number of queries to this oracle can obtain an approximation ratio
1− 1/e+ Ω(1).

There are many other interesting results that are known about greedy algorithms; you might
want to prove the following:

Exercise. For non-negative linear function maximization subject to intersection of k ma-
troids (or even k-extendible system), the greedy algorithm gives a k-approximation.

Exercise. For non-negative monotone submodular maximization subject to a matroid
constraint, the greedy algorithm gives a 2-approximation.

For the latter problem of monotone submodular maximization subject to a matroid con-
straint, a remarkable result shows that it’s even possible to obtain an e/(e−1)-approximation
in polynomial time (which is unimprovable even for cardinality constraint). This algorithm
is roughly based on a “continuous” version of the greedy algorithm; see [5] for details.
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