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Today we will study one of the major success stories of Online Computation in Learning
Theory. Let’s start by a motivating example.

1 Motivating example: Prediction from Expert Advice

Now we briefly illustrate the general idea in a simple and concrete setting. This is known
as the Prediction from Expert Advice problem.

Imagine the process of picking good times to invest in a stock. For simplicity, assume that
there is a single stock of interest, and its daily price movement is modeled as a sequence of
binary events: up/down. (Below, this will be generalized to allow non-binary events.) Each
morning we try to predict whether the price will go up or down that day; if our prediction
happens to be wrong we lose a dollar that day, and if it’s correct, we lose nothing.

The stock movements can be arbitrary and even adversarial1. To balance out this pessimistic
assumption, we assume that while making our predictions, we are allowed to watch the
predictions of n “experts”. These experts could be arbitrarily correlated, and they may or
may not know what they are talking about.

What’s the best guarantee you might hope for in this setting? You could, for instance, ask
for a prediction that is correct at every single round. But OK, this is ridiculous to ask
for. Maybe all the experts are wrong, or maybe they all know nothing. The next strongest
guarantee you might hope for is a prediction that is correct at every round that at least one
expert is correct. In other words, you want to be as good as the best expert every single
round. But some quick thought shows that this is again a ridiculous guarantee to hope for:
maybe the experts all know nothing and just guess randomly. Then surely one of them will
happen to be correct every round, but you can’t possibly expect to know the right answer
with no information.

Instead, what you can ask for is that on average over T rounds, your average performance
is at least as good as the best expert’s average performance over T rounds. That is, there
may be numerous rounds where some expert is correct and you are wrong. But if there’s a
single expert who’s correct 70% of the time, then you are also correct (almost) 70% of the
time, but the rounds in which you’re correct could be the same or different.

So the algorithm’s goal is to limit its cumulative losses (i.e., bad predictions) to roughly
the same as the best of these experts. This difference between the algorithm’s total loss and
the best expert is known as regret. At first sight getting a small regret seems an impossible

1Note that finance experts have studied stock movements for over a century and fitted all kinds of
stochastic models to them. But we are doing computer science here, and we will see that this adversarial
view will help us apply the same idea to a variety of other settings.
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goal, since it is not known until the end of the sequence who the best expert was, whereas
the algorithm is required to make predictions all along.

For example, the first algorithm one thinks of is to compute each day’s up/down prediction
by going with the majority opinion among the experts that day. But this algorithm doesn’t
work because a majority of experts may be consistently wrong on every single day, while
some single expert in this crowd happens to be right every time. In fact, we leave as
an exercise to show that every deterministic algorithm incurs Ω(T ) regret for some input
sequence. However, randomization will come to our rescue in the next section.

2 The Hedge Algorithm for Full-Feedback

The hedge algorithm corrects the trivial algorithm by maintaining a weighting of the ex-
perts. Initially all have equal weight. As time goes on, some experts are seen as making
more wrong predictions than others, and the algorithm decreases their weight proportion-
ately. The algorithm’s prediction for each day is computed by by choosing a random expert
proportional to its weight for that day.

Formally, let m(t) = (m1
(t),m2

(t), . . . ,mn
(t)) ∈ [0, 1]n denote the costs of n actions. Starting

with wi
(1) := 1, in round t the algorithm takes exactly one of the n actions with probability

proportional to its weight. The algorithm then receives the feedback m(t) and updates its
weights using the exponential function given in (1).

Hedge algorithm

Initialization: Fix an η ≤ 1
2 . For each decision i, associate the weight wi

(t) := 1.
For t = 1, 2, . . . , T :

1. Choose decision i with probability proportional to its weight wi
(t). I.e., use the dis-

tribution over decisions p(t) = {w1
(t)/Φ(t), . . . , wn

(t)/Φ(t)} where Φ(t) =
∑

iwi
(t).

2. Observe the costs of the decisions m(t).

3. Penalize the costly decisions by updating their weights as follows: for every decision
i, set

wi
(t+1) = wi

(t) · exp(−ηmi
(t)) (update rule). (1)

Figure 1: The Hedge algorithm.

Theorem 1. The expected regret of Hedge is bounded by
√

2T lnn.

The following lemma will immediately prove the theorem.

Lemma 2. For any cost vectors m(t) ∈ Rn
≥0, the Hedge algorithm satisfies∑

t

m(t) · p(t) −
∑
t

mi
(t) ≤ η

2

∑
t

(m(t))2 · p(t) +
lnn

η
,
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where (m(t))2 denotes an n-dimensional vector with i-th entry (mi
(t))2.

Remark: The proof of Lemma 2 only requires non-negative costs, and not the fact that the
costs are bounded by 1. This additional power will be crucial in the next section on Bandit
feedback.

Proof of Theorem 1. Since mi
(t) ≤ 1 and 1 · p ≤ 1, we get from Lemma 2 that∑

t

m(t) · p(t) −
∑
t

mi
(t) ≤ η

2
T +

lnn

η
.

Setting η =
√

2 lnn
T completes the proof of Theorem 1.

Next, we prove the main lemma.

Proof of Lemma 2. Consider the total weight function W (t) =
∑

iwi
(t) which starts with

W (1) = n. The proof will proceed by obtaining a lower and an upper bound on W (T ).

For the lower bound, we know W (T+1) ≥ wi
(T ). A simple induction shows that wi

(t) =
exp(−η

∑
s<tmi

(s)), so we get

exp
(
− η

∑
t

mi
(t)
)
≤W (T+1). (2)

The upper bound on W (T+1) will require the following two inequalities, which we leave as
an exercise:

exp(−x) ≤ 1− x+ x2/2 ∀x ≥ 0 and

exp(x) ≥ 1 + x ∀x.

Let us now write W (t+1) in terms of W (t). Recall that pi
(t) = wi

(t)

W (t) , so

W (t+1) =
∑
i

wi
(t) exp(−ηmi

(t))

≤
∑
i

wi
(t) ·

(
1− ηmi

(t) +
η2

2
(mi

(t))2
)

= W (t) − ηW (t)
∑
i

pi
(t)mi

(t) +
η2

2
W (t)

∑
i

pi
(t)(mi

(t))2

≤W (t) · exp
(
− ηm(t) · p(t) +

η2

2
(m(t))2 · p(t)

)
.

Applying this inequality recursively, we get

W (T+1) ≤W (1) · exp
(
− η

∑
t

m(t) · p(t) +
η2

2

∑
t

(m(t))2 · p(t)
)
.
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Using W (1) = n and combining this with the lower bound in (2) gives

exp(−η
∑
t

mi
(t)) ≤ n · exp

(
− η

∑
t

m(t) · p(t) +
η2

2

∑
t

(m(t))2 · p(t)
)
.

Taking logs finishes the proof of the lemma.

There are several known extensions of the setup in Theorem 1. For example, in the next
lecture we will consider a setting with an infinite number of actions but with more structured
(convex) cost functions. See the survey [1] for more applications.

3 The Exp3 Algorithm for Partial/Bandit Feedback

Till now we have worked with in the full-feedback model whereby in round t the algorithm
receives the full cost vector m(t) as its feedback. For several applications, however, it’s not
possible to receive the entire cost vector, but only mi

(t) for the action i that is played in
round t. This model is known as the Bandit feedback model. The name comes from slot
machines in a casino where the gambler has to decide which of the n slot machines to play
in round t. Here the gambler only receives feedback for the played machine and no feedback
from the other machines.

Exp3 algorithm

Initialization: Fix an η ≤ 1
2 . For each decision i, associate the weight wi

(t) := 1.
For t = 1, 2, . . . , T :

1. Choose decision i with probability proportional to its weight wi
(t). I.e., use the dis-

tribution over decisions p(t) = {w1
(t)/Φ(t), . . . , wn

(t)/Φ(t)} where Φ(t) =
∑

iwi
(t).

2. Observe the cost mi
(t) of decision i. Define a surrogate cost vector of the decisions

m̃(t) where m̃i
(t) = mi

(t)

pi(t)
and 0 otherwise. I.e., only the i-th entry of m̃(t) is non-zero.

3. Penalize the costly decisions by updating their weights as follows: for every decision
i, set

wi
(t+1) = wi

(t) · exp(−ηm̃i
(t)) (update rule). (3)

Figure 2: The Exp3 algorithm.

Theorem 3. The expected regret of Exp3 is bounded by
√

2Tn lnn.

This result may seem surprising that even with such limited feedback an algorithm exists
with o(T ) regret (for small n). The idea of the algorithm is to still play the Hedge algorithm
but on surrogate m̃(t) costs (since m(t) is unknown). The crucial property of m̃(t) is that
in expectation it equals m(t).

Remark: The algorithm in Figure 2 is a simpler variant of the original Exp3 algorithm in
[2] due to Stoltz [3].



5

Proof. The proof of this theorem relies on the analysis of Hedge in Section 2. In particular,
since m̃i

(t) ≥ 0 the analysis of Hedge in Lemma 2 (we don’t need m̃i
(t) ≤ 1 as remarked

there) can be repeated to give

E
[∑

t

m̃(t) · p(t) −
∑
t

m̃i
(t)
]
≤ E

[η
2

∑
t

(m̃(t))2 · p(t)
]

+
lnn

η
. (4)

The LHS of (4) can be simplified to equal the expected regret of the algorithm, i.e.,∑
t

E≤t−1

[
Et

[
m̃(t) · p(t)

]
−
∑
t

Et

[
m̃i

(t)
]]

=
∑
t

E≤t−1

[
m(t) · p(t) −

∑
t

mi
(t)
]
.

This is because Et[m̃
(t) · p(t)] = Et[m̃

(t)] · p(t) = m(t) as after fixing the algorithm’s distri-
bution p(t) for round t, we draw m̃(t) independently. (In the literature, such a property is
often written as m̃(t) gives an unbiased estimator of m(t).)

Now we simplify the RHS of (4). Observe that

E[m̃i
(t))2] = pi

(t)
(mi

(t)

pi(t)

)2
=

(mi
(t))2

pi(t)
,

which gives

E[(m̃(t))2 · p(t)] =
∑
i

(mi
(t))2 ≤ n.

Substituting this in (4), the total expected regret of the algorithm can be bounded as

E[
∑
t

m̃(t) · p(t)]−
∑
t

mi
(t) ≤ η

2

∑
t

n+
lnn

η
.

Choosing η =
√

2 lnn
T completes the proof of the theorem.

The dependence of Theorem 3 on n is polynomial, unlike the Hedge algorithm for full-
feedback where the dependence was logarithmic. This makes a big difference in how broadly
this result can be applied. Indeed, it’s still an active area of research (see the book [4]) to
understand when can we obtain o(T ) regret even with an exponentially large n (we will see
one such example of Bandit Convex Optimization in a later lecture).

Notes

The lecture is partly based on COS 521 notes from Princeton.
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