
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Lecture 11: Offline and Online Gradient Descent

Lecturer: Sahil Singla Last updated: March 12, 2022

This lecture is about gradient descent, a popular method for continuous optimization (es-
pecially nonlinear optimization).

We start by recalling that allowing nonlinear constraints in optimization leads to NP-hard
problems in general. For instance the following single constraint can be used to force all
variables to be 0/1. ∑

i

x2i (1− xi)2 = 0.

Notice, this constraint is nonconvex. We’ll see in the next lecture that the Ellipsoid method
can solve convex optimization problems efficiently under fairly general conditions. But it is
slow in practice.

Gradient descent is a popular alternative because it is simple and it gives some kind of
meaningful result for both convex and nonconvex optimization. It tries to improve the
function value by moving in a direction related to the gradient (i.e., the first derivative).
For convex optimization it gives the global optimum under fairly general conditions. For
nonconvex optimization it arrives at a local optimum.

Figure 1: For nonconvex functions, a local optimum may be different from the global
optimum

We will first study unconstrained gradient descent where we are simply optimizing a function
f(·). Recall that the function is convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all
x, y and λ ∈ [0, 1].

1 Gradient descent for convex functions: univariate case

The gradient for a univariate function f is simply the derivative: f ′(x). If this is negative,
the value decreases if we increase x a little, and increases if we decrease f . Gradient descent

1

2

consists of evaluating the derivative and moving a small amount to the right (i.e., increase
x) if f ′(x) < 0 and to move to the left otherwise. Thus the basic iteration is x← x−ηf ′(x)
for a tiny η called step size.

The function is convex if between every two points x, y the graph of the function lies below
the line joining (x, f(x)) and (y, f(y)). It need not be differentiable everywhere but when
all derivatives exist we can do the Taylor expansion:

f(x+ η) = f(x) + ηf ′(x) +
η2

2
f ′′(x) +

η3

3!
f ′′′(x) · · · . (1)

If f ′′(x) ≥ 0 for all x then the the function is convex. This is because f ′(x) is an increasing
function of x. The minimum is attained for x where f ′(x) = 0 since f ′(x) is +ve to the
right of it and −ve to the left. Thus moving both left and right of this point increases f
and it never drops. The function is concave if f ′′(x) ≤ 0 for all x; such functions have a
unique maximum.

Examples of convex functions: ax+ b for any a, b ∈ <; exp(ax) for any a ∈ <; xα for x ≥ 0,
α ≥ 1 or α ≤ 0. Another interesting example is the negative entropy: x log x for x ≥ 0.

Examples of concave functions: ax + b for any a, b ∈ <; xα for α ∈ [0, 1] and x ≥ 0; log x
for x ≥ 0.

Figure 2: Concave and Convex Function

To minimize a convex function by gradient descent we start at some x0 and at step i update
xi to xi+1 = xi + ηf ′(x) for some small η < 0. In other words, move in the direction where
f decreases. If we ignore terms that involve η3 or higher, then

f(xi+1) = f(xi) + ηf ′(xi) +
η2

2
f ′′(xi).

and the best value for η (which gives the most reduction in one step) is η = −f ′(x)/2f ′′(x),
which gives

f(xi+1) = f(xi)−
(f ′(xi))

2

2f ′′(xi)
.

Thus the algorithm makes progress so long as f ′′(xi) > 0. Convex functions that satisfy
f ′′(x) > 0 for all x are called strongly convex.

3

The above calculation is the main idea in Newton’s method, which you may have seen in
calculus. Proving convergence requires further assumptions.

2 Convex multivariate functions

A convex function on <n, if it is differentiable, satisfies the following basic inequality, which
says that the function lies “above ”the tangent plane at any point.

f(x+ z) ≥ f(x) + Of(x) · z ∀x, z. (2)

Here Of(x) is the vector of first order derivatives where the ith coordinate is ∂f/∂xi and
called the gradient. Sometimes we restate it equivalently as

f(x)− f(y) ≤ Of(x) · (x− y) ∀x, y (3)

Figure 3: A differentiable convex function lies above the tangent plane f(x)+Of(x) ·(y−x)

If higher derivatives also exist, the multivariate Taylor expansion for an n-variate function
f is

f(x+ y) = f(x) + Of(x) · y + yTO2f(x)y + · · · . (4)

Here O2f(x) denotes the n × n matrix whose i, j entry is ∂2f/∂xi∂xj and it is called the
Hessian. It can be checked that f is convex if the Hessian is positive semidefinite, which

Figure 4: The Hessian

means O2f is symmetric and yTO2fy ≥ 0 for all y ∈ <n.

4

Example 1. The following are some examples of convex functions.

• (Norms). Every `p norm is convex on <n. The reason is that a norm satisfies triangle
inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y.

• (Softmax). f(x) = log(ex1 + ex2 + · · · + exn) is convex on <n. This fact is used in
many applications as an analytic approximation of the max function since

max {x1, . . . , xn} ≤ f(x)+ ≤ max {x1, . . . , xn}+ log n.

Turns out this fact is at the root of the multiplicative weight update method; the al-
gorithm for approximately solving LPs that we saw in HW2 can be seen as doing a
gradient descent on this function, where the xi’s are the slacks of the linear constraints.
(For a linear constraint aT z ≥ b the slack is aT z − b.)

• f(x) = xTAx =
∑

ij Aijxixj where A is positive semidefinite. Its Hessian is A.

Some important examples of concave functions are: geometric mean (
∏n
i=1 xi)

1/n and log-

determinant (defined for X ∈ <n2
as log det(X) where X is interpreted as an n×n matrix).

Many famous inequalities in mathematics (such as Cauchy-Schwartz) are derived using
convex functions. 2

Example 2 (Linear equations with PSD constraint matrix). In linear algebra you learnt
that the method of choice to solve systems of equations Ax = b is Gaussian elimination. In
many practical settings its O(n3) running time may be too high. Instead one does gradient
descent on the function 1

2x
TAx − bTx, whose local optimum satisfies Ax = b (if A is sym-

metric).1 If A is positive semidefinite this function is also convex since the Hessian is A,
and gradient descent will actually find the solution. (Actually in real life these are optimized
using more advanced methods such as conjugate gradient.) Also, if A is diagonal dominant,
a stronger constraint than PSD, then Spielman and Teng (2003) have shown how to solve
this problem in time that is near linear in the number of nonzero entries. This has had
surprising applications to basic algorithmic problems like max-flow.

Example 3 (Least squares). In some settings we are given a set of points a1, a2, . . . , am ∈
<n and some data values b1, b2, . . . , bm taken at these points by some function of interest.
We suspect that the unknown function is a line, except the data values have a little error in
them. One standard technique is to find a least squares fit: a line that minimizes the sum of
squares of the distance to the datapoints to the line. The objective function is min ‖Ax−b‖22
where A ∈ <m×n is the matrix whose rows are the ai’s. (The solution is also the first
singular vector.) This objective is just xTATAx− 2(Ax)T b+ bT b, which is convex.

In the univariate case, gradient descent has a choice of only two directions to move in: right
or left. In n dimensions, it can move in any direction in <n. The most direct analog of the
univariate method is to move diametrically opposite from the gradient.

1To see this, expand the function out as
∑

i,j xixjAij/2−
∑

i bixi =
∑

i xi(−bi + xiAii/2+
∑

j 6=i Aijxj).
So the partial with respect to xi is: −bi +Aiixi +

∑
j 6=i Aijxj , which equals zero if and only if 〈Ai, x〉 = bi.

So all local optima satisfy Ax = b.

5

The most direct analogue of our univariate analysis would be to assume a lowerbound on
yTO2fy for all y (in other words, a lowerbound on the eigenvalues of O2f). In the rest of
lecture we will only assume (2).

3 Gradient Descent for Constrained Optimization

As studied in previous lectures, constrained optimization consists of solving the following
where K is a convex set and f(·) is a convex function.

min f(x) s.t. x ∈ K.

Example 4 (Spam classification via SVMs). This example will run through the entire
lecture. Support Vector Machine is the name in machine learning for an algorithm to learn
linear classifier. Suppose we wish to train the classifier to classify emails as spam/nonspam.
Each email is represented using a vector in <n that gives the frequencies of various words
in it (“bag of words”model). Say a1, a2, . . . , aN are the emails, and for each email there is a
corresponding bit bi ∈ {−1, 1} where bi = 1 means Xi is spam. SVMs use a linear classifier
to separate spam from nonspam. If spam were perfectly identifiable by a linear classfier,
there would be a function W · x such that W · ai ≥ 1 if ai is spam, and W · ai ≤ −1 if not.
In other words,

1− biW · ai ≤ 0 ∀i (5)

Of course, in practice a linear classifier makes errors, so we have to allow for the possibility
that (5) is violated by some ai’s. The obvious thing to try is to find a W that satisfies as
many of the constraints as possible, but that leads to a nonconvex NP-hard problem. (Even
approximating this weakly is NP-hard.) Thus a more robust version of this problem is

min
∑
i

Loss(1−W · (biai)) (6)

‖W‖22 ≤ n (scaling constraint)

where Loss(·) is a function that penalizes unsatisfied constraints according to the amount
by which they are unsatisfied. (Note that W is the vector of variables, and the scaling
constraint gives meaning to the separation of “1 ”in (5) by saying that W is a vector in
the sphere of radius n, which is a convex constraint.) The most obvious loss function would
be to count the number of unsatisfied constraints but that is nonconvex. For this lecture
we focus on convex loss functions; the simplest is the hinge loss: Loss(t) = max {0, t}.
Applying it to 1−W · (biai) insures that correctly classified emails contribute 0 to the loss,
and incorrectly classified emails contribute as much to the loss as the amount by which they
fail the inequality. The function in (6) is convex because the function inside Loss() is linear
and thus convex, and Loss() preserves convexity since it can only lift the value of the linear
function even further.

If x ∈ K is the current point and we use the gradient to step to x − η M x then in general
this new point will not be in K. Thus one needs to do a projection.

6

Definition 1. The projection of a point y on K is x ∈ K that minimizes ‖y − x‖2. (It is
also possible to use other norms than `2 to define projections.)

A projection oracle for the convex body a black box that, for every point y, returns its
projection on K.

Often convex sets used in applications are simple to project to.

Example 5. If K = unit sphere, then the projection of y is y/‖y‖2.

Here is a simple algorithm for solving the constrained optimization problem. The algorithm
only needs to access f via a gradient oracle and K via a projection oracle.

Definition 2 (Gradient Oracle). A gradient oracle for a function f is a black box that,
for every point z, returns Of(z) the gradient valuated at point z. (Notice, this is a linear
function of the form gx where g is the vector of partial derivatives evaluated at z.)

The same value of η will be used throughout.

Let η = D
G
√
T

.

Repeat for i = 0 to T

1. y(i+1) ← x(i) − ηOf(x(i))

2. x(i+1) ← Projection of y(i+1) on K.

At the end output z =
1

T

∑
i x

(i).

Figure 5: Gradient Descent for Constrained Optimization

Theorem 1. Let G denote an upperbound on ‖Of(x)‖2 for any x ∈ K, and let D =
maxx,y∈K ‖x− y‖2 be the diameter of K. The gradient descent algorithm satisfies

f(z)− f(x∗) ≤ 2DG√
T
,

where x∗ is be the point where the optimum is attained. So, if we want f(z) ≤ f(x∗) + ε we

will use T = 4D2G2

ε2
.

Proof. Since x(i) is a projection of y(i) on K, we have (x∗−x(i+1)) · (y(i+1)−x(i+1)) ≤ 0, i.e.,
the vectors form an obtuse angle (can be formally proved using the Separating Hyperplane
theorem). Define potential function Φ(i) := ‖x(i) − x∗‖2. This gives

Φ(i+1) = ‖x(i+1) − x∗‖2 ≤ ‖y(i+1) − x∗‖2

= ‖x(i) − x∗ − ηOf(x(i))‖2

= Φ(i) + η2‖O(f)(x(i))‖2 − 2ηOf(x(i)) · (x(i) − x∗).

7

Reorganizing and using definition of G we obtain:

Of(x(i)) · (x(i) − x∗) ≤ 1

2η
(Φ(i) − Φ(i+1)) +

η

2
G2.

Using (3), we can lowerbound the left hand side by f(x(i))− f(x∗). We conclude that

f(x(i))− f(x∗) ≤ 1

2η
(Φ(i) − Φ(i+1)) +

η

2
G2. (7)

Now sum the previous inequality over i = 0, 1, 2, . . . , T − 1 and use the telescoping cancel-
lations to obtain

T−1∑
i=0

(
f(x(i))− f(x∗)

)
≤ 1

2η
(Φ(0) − Φ(T)) +

Tη

2
|G|2 .

Finally, by convexity f(1
T

∑
i x

(i)) ≤ 1
T

∑
i f(x(i)), so using Φ(0) ≤ D2 and Φ(T) ≥ 0 we

conclude that the point z = 1
T

∑
i x

(i) satisfies

f(z)− f(x∗) ≤ D2

2ηT
+
η

2
G2.

Now set η = D
G
√
T

to get an upperbound on the right hand side of 2DG√
T
. Since T = 4D2G2

ε2

we see that f(z) ≤ f(x∗) + ε.

4 Online Gradient Descent

In online gradient descent we deal with the following scenario. There is a convex set K given
via a projection oracle. For i = 1, 2, . . . , T we are presented at step i a convex function
fi. At step i we have to put forth our guess solution x(i) ∈ K but the catch is that we do
not know the functions that will be presented in future. So our online decisions have to be
made such that if x∗ is the point w that minimizes

∑
i fi(w) (i.e. the point that we would

have chosen in hindsight after all the functions were revealed) then the following quantity
(called regret) should stay small: ∑

i

(
fi(x

(i))− fi(x∗)
)
.

This notion should remind you of multiplicative weights, except here we may have general
convex functions as “payoffs.”

Example 6 (Spam classification against adaptive adversaries). We return to the spam
classification problem of Example 4, with the new twist that this classifier changes over
time, as spammers learn to evade the current classifier. Thus there is no fixed distribution
of spam emails and it is fruitless to train the classifier at one go. It is better to have it
improve and adapt itself as new emails arrive. At step t the optimum classifier ft may not
be known and is presented using a gradient oracle. This function just corresponds to the
term in (6) corresponding to the latest email that was classfied as spam/nonspam. The goal
is to do as well as the best single classfier we would want to use in hindsight.

8

Zinkevich [3] noticed that the analysis of gradient descent applies to this much more general
scenario. Specifically, modify the above gradient descent algoritheorem to this problem by
replacing Of(x(i)) by Ofi(x(i)). This algorithm is called Online Gradient Descent. The
earlier analysis works essentially unchanged, once we realize that the left hand side of (7)
has the regret for trial i. Summing over i gives the total regret on the left side, and the
right hand side is analysed and upperbounded as before. Thus we have shown:

Theorem 2 (Zinkevich 2003 [3]). If D is the diameter of K and G is an upperbound on
the norm of the gradient of any of the presented functions, and η is set to D

G
√
T

then the

regret per step after T steps is at most 2DG√
T
.

4.1 Case Study: Online Shortest Paths

The Online Shortest Paths problem models a commuter trying to find the best path with
fewest traffic delays. The traffic pattern changes from day to day, and she wishes to have
the smallest average delay over many days of experimentation.

We are given a graph G = (V,E) and two nodes s, t. At each time period i, the decision
maker selects one path pi from the set Ps,t of all paths that connect s, t (the choice for the
day’s commute). Then, an adversary independently chooses a weight function wi : E → R
(the traffic delays). The decision maker incurs a loss equal to the weight of the path he or
she chose:

∑
e∈pi wi(e).

The problem of finding the best would be natural to consider this problem in the context
of expert advice. We could think of every element of Ps,t as an expert and apply the
multiplicative weights algorithm we have seen before. There is one major flaw with this
approach: there may be exponentially many paths connecting s, t in terms of the number
of nodes in the graph. So the updates take exponential time and space in each step, and
furthermore the algorithm needs too long to converge to the best solution.

Online gradient descent can solve this problem, once we realize that we can describe the set
of all distributions x over paths Ps,t as a convex set K ∈ Rm, with O(|E|+ |V |) constraints.
Then the decision maker’s expected loss function would be fi(x) = wTi · x. The following
formulation of the problem as a convex polytope allows for efficient algorithms with provable
regret bounds.

∑
e=(s,w),w∈V

xe =
∑

e=(w,t),w∈V

xe = 1 Flow value is 1.

∀w ∈ V,w 6= u, v,
∑
e3w

xe = 0 Flow conservation.

∀e ∈ E, 0 ≤ xe ≤ 1 Capacity constraints.

What is the meaning of the decision maker’s move being a distribution over paths? It just
means a fractional solution. This can be decomposed into a combination of paths as in the
lecture on approximation algorithms. She picks a random path from this distribution; the
expected regret is unchanged.

9

4.2 Case Study: Portfolio Management

Let’s return to the portfolio management problem discussed in context of multiplicative
weights. We are trying to invest in a set of n stocks and maximize our wealth. For
t = 1, 2, . . . , let r(t) be the vector of relative price increase on day t, in other words

r
(t)
i =

Price of stock i on day t

Price of stock i on day t− 1
.

Some thought shows (confirming conventional wisdom) that it can be very suboptimal
to put all money in a single stock. A strategy that works better in practice is Constant
Rebalanced Portfolio (CRP): decide upon a fixed proportion of money to put into each stock,
and buy/sell individual stocks each day to maintain this proportion.

Example 1. Say there are only two assets, stocks and bonds. One CRB strategy is to put
split money equally between these two. Notice what this implies: if an asset’s price falls,
you tend to buy more of it, and if the price rises, you tend to sell it. Thus this strategy
roughly implements the age-old advice to “buy low, sell high.”Concretely, suppose the prices
each day fluctuate as follows.

Stock r(t) Bond r(t)

Day 1 4/3 3/4

Day 2 3/4 4/3

Day 3 4/3 3/4

Day 4 3/4 4/3

...

Note that the prices go up and down by the same ratio on alternate days, so money parked
fully in stocks or fully in bonds earns nothing in the long run. (Aside: This kind of fluc-
tuation is not unusual; it is generally observed that bonds and stocks move in opposite
directions.) And what happens if you split your money equally between these two assets?
Each day it increases by a factor 0.5× (4/3 + 3/4) = 0.5× 25/12 ≈ 1.04. Thus your money
grows exponentially!

Exercise: Modify the price increases in the above example so that keeping all money in stocks
or bonds alone will cause it to drop exponentially, but the 50-50 CRB increases money at
an exponential rate.

CRB uses a fixed split among n assets, but what is this split? Wouldn’t it be great to
have an angel whisper in our ears on day 1 what this magic split is? Online optimization
is precisely such an angel. Suppose the algorithm uses the vector x(t) at time t; the ith
coordinate gives the proportion of money in stock i at the start of the tth day. Then the
algorithm’s wealth increases on t by a factor r(t) · x(t). Thus the goal is to find x(t)’s to
maximize the final wealth, which is ∏

t

r(t) · x(t).

10

Taking logs, this becomes ∑
t

log(r(t) · x(t)) (8)

For any fixed r(1), r(2), . . . this function happens to be concave, but that is fine since we are
interested in maximization. Now we can try to run online gradient descent on this objective.
By Zinkevich’s theorem, the quantity in (8) converges to

∑
t

log(r(t) · x∗) (9)

where x∗ is the best money allocation in hindsight.

This analysis needs to assume very little about the r(t)’s, except a bound on the norm of
the gradient at each step, which translates into a weak condition on price movements. In
the next homework you will apply this simple algorithm on real stock data.

References

[1] Convex Optimization, S. Boyd and L. Vandenberghe. Cambridge University Press.

[2] Introductory Lectures on Convex Optimization: A Basic Course. Y. Nesterov. Springer
2004.

[3] Online Convex Programming and Generalized Infinitesimal Gradient Ascent. M. Zinke-
vich, ICML 2003.

[4] Online convex optimization. Elad Hazan.

[5] Lecture notes on online optimization. Sebastien Bubeck.

[6] Potential-Function Proofs for Gradient Methods. Nikhil Bansal and Anupam Gupta.

	Gradient descent for convex functions: univariate case
	Convex multivariate functions
	Gradient Descent for Constrained Optimization
	Online Gradient Descent
	Case Study: Online Shortest Paths
	Case Study: Portfolio Management

