
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Lecture 12: Stochastic and Bandit Gradient Descent

Lecturer: Sahil Singla Last updated: February 20, 2022

1 Stochastic Gradient Descent

Stochastic gradient descent is a variant of the Gradient Descent algorithm in Section 3 of
the last lecture, which works with convex functions presented using an even weaker notion:
an expected gradient oracle. Given a point z, this oracle returns a linear function gx + c
that is drawn from a probability distribution Dz such that the expectation Eg,c∈Dz [gx+c] is
exactly the gradient of f at z. Such a distribution Dz is often called an unbiased estimator
of the gradient.

Example 1 (Spam classification using SGD). Returning to the spam classification problem
from last lecture, we see that the Loss function is a sum of many similar terms. If we
randomly pick a single term and compute just its gradient (which is very quick to do!) then
by linearity of expectations, the expectation of this gradient is just the true gradient. Thus
the expected gradient oracle may be a much faster computation than the gradient oracle (a
million times faster if the number of email examples is a million!). In fact this setting is
not atypical; often the convex function of interest is a sum of many similar terms.

Stochastic gradient descent can be analysed using Online Gradient Descent (OGD) from
last lecture. Let gi be the gradient at step i. Then we use the function gi · x, which is
a linear function and hence convex, as fi in the i-th step of OGD from last lecture. Let

z =
1

T

∑T
i=1 x

(i). Let x∗ be the point in K where f attains its minimum value.

Theorem 1. E[f(z)] ≤ f(x∗) +
2DG√
T

, where D is the diameter as before and G is an

upperbound of the norm of any gradient vector ever output by the oracle.

Proof.

E[f(z)− f(x∗)] ≤ 1

T
E[
∑
i

(f(x(i))− f(x∗))] by convexity of f

≤ 1

T

∑
i

E[Of(x(i)) · (x(i) − x∗)] using defn of convexity

=
1

T

∑
i

E[gi · (x(i) − x∗)] since expected gradient is the true gradient

=
1

T

∑
i

E[fi(x
(i)) − fi(x∗)] defn. of fi

=
1

T
E[
∑
i

(fi(x
(i))− fi(x∗)]

1

2

and the theorem now follows since the expression in the E[·] is just the regret, which is always
upperbounded by the quantity given in Zinkevich’s theorem, so the same upperbound holds
also for the expectation.

Note that in Theorem 1 we assumed that G is a bound on the norm of any gradient vector
outputted, and not on the gradient of the original function f . For SGD applications like
Spam Classification where we pick a random term and compute its gradient, we need to
scale this computed gradient by the number of terms to get the same expectation as the
true gradient, which increases the bound on the norm of the gradient vector. This is where
SGD pays over standard Gradient Descent: each iteration in SGD is cheaper but you may
need more iterations.

2 Bandit Gradient Descent

Let’s recall the setup of Online Gradient Descent (OGD). There is a convex set K given via
a projection oracle. For i = 1, 2, . . . , T we are presented at step i a convex function fi. At
step i we have to put forth our guess solution x(i) ∈ K but the catch is that we do not know
the functions that will be presented in future. So our online decisions have to be made such
that if x∗ is the point w that minimizes

∑
i fi(w) (i.e. the point that we would have chosen

in hindsight after all the functions were revealed) then the following quantity (called regret)
should stay small:

∑
i

(
fi(x

(i))− fi(x∗)
)
.

In the last lecture we saw Online Gradient Descent which gets regret O(DG
√
T), where in

each step i we take a towards the negative gradient of fi. This is possible since after we
play x(i), the function fi is revealed so we can compute its gradient. What if instead of
getting the entire function fi, the algorithm gets a Bandit feedback where it is only revealed
the incurred scalar payoff/cost fi(x

(i)), so we cannot compute the gradient?

The setup for Bandit Gradient Descent (BGD) is the same as the setup for OGD, except
that the algorithm only receives fi(x

(i)) as feedback after choosing x(i), instead of receiving
the entire function fi. The goal is to still minimize the regret:∑

i

(
fi(x

(i))− fi(x∗)
)
.

In the rest of the lecture, we will see how to use SGD to obtain o(T) regret for BGD.

To keep things simple, we will assume that K contains a unit-ball centered at origin and
that |fi(x)| ≤ 1 for all i and all x ∈ K. These assumptions can be relaxed; see [1, 2] details.
The main result is the following:

Theorem 2 (Flaxman-Kalai-McMahan [1]). There is an online algorithm for Bandit Con-
vex Optimization with regret O(T 3/4 ·DG

√
n).

3

2.1 Gradient Descent without a Gradient

Recall that for a function g : R → R, its gradient at any point x ∈ R can be computed by
taking

lim
ε→0

g(x+ ε)− g(x− ε)
2ε

.

The main intuition on which Theorem 2 relies is that one way of obtaining an unbiased
estimate of g′(x) given only access to the value of g(·) at a single point w is to choose
randomly choose w = x + δε, where δ = +1 with probability 1/2 and δ = −1 otherwise.
We now have

1

ε
Eδ[δ · g(w)] =

1

2ε

(
g(x+ ε)− g(x− ε)

)
,

which equals g′(x) as ε → 0. Thus, we have managed to get an unbiased estimator of the
gradient using a single-sample from the function.

Next, we will generalize the above idea to higher dimensions.

Lemma 3. Consider any differentiable function f : Rn → R. Let v denote a uniformly-
random n-dimensional vector on the surface of a sphere of radius 1. Then,

lim
ε→0

n

ε
Ev
[
v · f(x+ εv)

]
= Of(x).

We will not prove this lemma since a formal proof uses Stokes’ theorem, but the intuition
is the same as in the 1-d case. Roughly, the factor of d comes because we are in any of the
d axis directions only 1/d fraction of the time.

Since for our discrete algorithm we cannot choose ε→ 0, we work with a slight perturbation
of the original function f . For any fixed ε > 0, define a “smoothed” approximation of f as

f̂(x) := Ev
[
f(x+ εv)

]
.

The idea is that f̂(x) pretty much behaves the same as the function f(x), but has the
advantage that it satisfies

n

ε
Ev
[
v · f(x+ εv)

]
= Of̂(x). (1)

2.2 Flaxman-Kalai-McMahan Algorithm

To prove Theorem 2, in each step of OGD we will play a small perturbation w(i) of x(i),
and then use the feedback with Lemma 3 to perform the OGD step in expectation. The
formal algorithm is described in Figure 1, where we project on to a slight rescaling K1−ε of
the convex body K to ensure that we play a feasible point w(i) even after we perturb x(i)—a
point x ∈ K1−ε iff x(1 + ε) ∈ K.

We first observe that using (1), we have

Evi [y
(i+1)] = x(i) − ηn

ε
Evi [vi · f(w(i))] = x(i) − ηOf̂(x(i))

4

Let η = D
G
√
T
ε
n and ε = 1

T 1/4

√
n.

Repeat for i = 0 to T

1. Choose a unit vector vi in Rn.

2. Play w(i) = x(i) + εvi and observe fi(w
(i)).

3. Let y(i+1) ← x(i) − η nε vi · f(w(i)).

4. x(i+1) ← Projection of y(i+1) on K1−ε.

Figure 1: Flaxman-Kalai-McMahan Algorithm

Thus, our algorithm in Figure 1 can be viewed as performing the Stochastic Gradient Decent
algorithm on the function f̂ and the convex body K1−ε. Notice that if the gradient of f has
norm at most G, then the gradient of any output vector has norm at most G′ = Gn/ε. So,
by the online variant of Theorem 1, we get for η = D

G′
√
T

that∑
i

E[f̂i(x
(i))]− min

z∈K1−ε

∑
i

f̂i(z) ≤ O(DG′
√
T) = O(DGn

√
T/ε).

Since we are only playing points inside K1−ε, instead of K, this incurs an error of at most
εDG per time step as the gradient is bounded by G and the distance moved is at most εD.
Moreover, the difference between f̂(x) and f(x) is bounded by at most εG since f̂ is formed
by taking a convex combination of points at distance at most ε from x. Hence, we have∑

i

E[fi(x
(i))]−

∑
i

fi(x
∗) ≤ O

(
εDGT + εGT

)
+O(DGn

√
T/ε),

which proves Theorem 2.

Remark: It’s also known that one can achieve O
(
poly(nGD)

√
T
)

regret for Bandit Convex

Optimization. The first efficient algorithm obtaining such
√
T dependency was given in [2].

Notes

Section 1 is based on COS 521 notes from Princeton.

References

[1] Online convex optimization in the bandit setting: gradient descent without a gradient,
Flaxman, Abraham D., Adam Tauman Kalai, and H. Brendan McMahan. Proceedings
of ACM-SIAM Symposium on Discrete algorithms. 2005.

5

[2] Kernel-based methods for bandit convex optimization. Bubeck, Sébastien, Yin Tat Lee,
and Ronen Eldan. Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing. 2017.

[3] Online Convex Programming and Generalized Infinitesimal Gradient Ascent. M. Zinke-
vich, ICML 2003.

[4] Online convex optimization. Elad Hazan.

[5] Lecture notes on online optimization. Sebastien Bubeck.

	Stochastic Gradient Descent
	Bandit Gradient Descent
	Gradient Descent without a Gradient
	Flaxman-Kalai-McMahan Algorithm

