
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Lecture 13: Prophet Inequality and Online Contention Resolution

Lecturer: Sahil Singla Last updated: March 4, 2022

In the next few lectures we will work with Stochastic Uncertainty, i.e., where the input
to your algorithm is drawn from some probability distributions. We will assume that the
distributions are known to the algorithm but the exact outcomes/realizations of the random
variables are only gradually revealed. The current lecture is about Prophet Inequalities,
which are online problems with stochastic inputs. En-route we will learn about the technique
of Online Contention Resolution Scheme.

1 Prophet Inequality

We start with the classical single-item Prophet Inequality (PI) problem, which is a stochas-
tic variant of the Online Max Selection from Lecture 8. In this problem we are given1

distributions D1,D2, . . . ,Dn of n independent non-negative random variables (think of val-
ues of n arriving bidders). At the t-th step, the algorithm is revealed random value Xt ∼ Dt
and it has to immediately and irrevocably accept/reject this value. Overall, the algorithm
can accept at most one of these values (think of selling a single item), say it accepts Xτ ,
and the goal of the algorithm is to maximize E[Xτ].

Inspired by our Competitive Ratio framework that we saw earlier for online problems, we
want to maximize the value of our algorithm as compared to the offline optimum. (In the
next lecture we will see another benchmark.) In PI, the offline optimum is the random
variable maxtXt, so we define our benchmark to be E[maxtXt]. Now the competitive ratio
of an online algorithm is the ratio

E[maxtXt]

E[Xτ]
.

What is the smallest possible competitive-ratio achievable by an online algorithm?

1.1 Hardness

We first prove a lower bound on the competitive ratio of any online algorithm.

Lemma 1. No online algorithm can achieve a competitive-ratio which is a constant smaller
than 2.

Proof. Consider n = 2 and following distributions: D1 is a point-mass distribution where
X1 ∼ D1 equals 1 with probability 1; distribution D2 is a weighted-Bernoulli distribution

1We will ignore computational (running-time) aspects today, so it doesn’t matter how the distributions
are given. However, most of the results today can be made poly-time for explicitly given distributions.

1

2

where X2 ∼ D2 takes a large value 1/ε w.p. ε and is 0 otherwise, where ε → 0. We first
calculate the expected offline optimum:

E[max
t
Xt] = ε · 1

ε
+ (1− ε) · 1 = 2− ε.

Next, we observe that every online algorithm has expected value E[Xτ] ≤ 1. This is because
any online algorithm has to decide whether to accept/reject X1 = 1 without looking at the
outcome X2. Thus, the algorithm either accepts X1 = 1 and has Xτ = 1, or if the algorithm
rejects X1 then it can only accept X2 where we have E[X2] = 1 (since X2 is non-zero only
with probability ε). This proves that any online algorithm has E[Xτ] ≤ 1, which means the
competitive ratio is at most (2− ε)/1, which approaches 2 as ε→ 0.

1.2 Fixed-Threshold Algorithm

We will now design an online algorithm that achieves a competitive ratio of 2 for the single-
item PI. The first such result is due to Krengel, Sucheston, and Garling in the late 1970s.
We will instead consider the simple Mean-Threshold algorithm: compute the threshold-
price P := 1

2E[maxtXt] using the given distributions and then select the first Xt ≥ P , i.e.,
accept the first bidder who is willing to pay the price P .

Theorem 2 ([3]). The Mean-Threshold algorithm has a competitive ratio of 2.

Proof. For any random variable X, let X+ denote max{X, 0}. We start by observing a
simple inequality:

E[max
t
Xt] ≤ E[P + (max

t
Xt − P)+] = P + E[max

t
(Xt − P)+]

≤ P + E[
∑
t

(Xt − P)+] = P +
∑
t

E[(Xt − P)+]. (1)

Next, we simplify the expression for the expected value of the Mean-Threshold algorithm.
Let q := Pr[maxtXt ≥ P] = 1 − Pr[∀tXt < P] denote the probability that the algorithm
accepts some value. Since the algorithm only accepts values above P , we can decompose
its value Xτ into value below P and value above P , to get

E[Xτ] =
∑
t

Pr[∀s<tXs < P] · Pr
[
Xt > P | ∀s<tXs < P

]
· E[Xt | Xt > P,∀s<tXs < P]

=
∑
t

Pr[∀s<tXs < P] · Pr
[
Xt > P

]
· E[P + (Xt − P)+ | Xt > P]

since Xt is independent of Xs for s < t. Noticing q =
∑

t Pr[∀s<tXs < P] · Pr
[
Xt > P

]
,

E[Xτ] = q · P +
∑
t

Pr[∀s<tXs < P] · E
[
(Xt − P)+

]
≥ q · P +

∑
t

(1− q) · E[Xt − P]+ (by defn of q)

≥ q · P + (1− q) ·
(
E[max

t
Xt]− P

)
(using (1))

= P,

which completes the proof.

3

1.3 Prophet Inequality Model for Online Packing Problems

The Prophet Inequality problem gives us a powerful way to bypass the Ω(n) hardness for
the Online Max Selection problem from Lecture 8 on Yao’s Minimax by making stochastic
assumptions. Thus, we can view PI as another way of going “beyond the worst-case” for
online problems, akin to the Random-Order model from Lecture 9. We now generalize the
PI problem to the Prophet Inequality model for online packing problems, which has seen
a lot of research in the last decade due to its beyond-the-worst-case nature and due to its
applications in mechanism design (see [2] for further details).

Definition 1 (Prophet Inequality model for Packing). Suppose each element i ∈ V takes a
value Xi ∈ R≥0 independently from some known distribution Di. These values are presented
one-by-one to an online algorithm in an adversarial order. Given a packing feasibility
constraint F ⊆ 2V , the problem is to immediately and irrevocably decide whether to select
the next element i, while always maintaining a feasible solution and maximizing the sum of
the selected values.

A c-competitive prophet inequality for c ≥ 1 means there exists an online algorithm with
expected value at least 1/c times the expected value of an offline algorithm that knows all
values from the beginning. Several packing families admit good PIs: we can be 2-competitive
for Matroids [3], O(1)-competitive for matchings [5], O(k)-competitive for intersection of k
matroids [3], and O(log2 n)-competitive for arbitrary packing constraint F ⊆ 2V [4].

2 Prophet Inequalities via an LP Relaxation

Although we already saw a proof of Theorem 2, the proof seems ad-hoc and it’s not clear
how one would generalize or come-up with it. We will now see a more streamlined way
of designing Prophet Inequalities, which goes back to how we would design an approxima-
tion algorithm for an NP-hard problem (offline): first write a LP/convex relaxation of the
problem and then round the fractional solution.

2.1 LP Relaxation

For simplicity, in the rest of section we will assume that all distributions Dt are weighted-
Bernoulli, i.e., Xt ∼ Dt takes value some known vt ≥ 0 w.p. pt and is 0 otherwise. (In
HW-3 we will see how to extend the results to more general distributions.) Note that the
hardness of ≥ 2-competitive in Lemma 1 continues to hold even for weighted-Bernoulli
random variables, so we cannot hope to do anything better than 2-competitive.

We first write an LP that gives us an upper bound on our benchmark of the expected offline

4

optimum.

max
x

∑
t

xtvt (LP)

s.t. xt ≤ pt ∀t∑
t

xt ≤ 1

xt ≥ 0 ∀t

Let x∗ denote the optimal solution of (LP).

Lemma 3.
∑

t x
∗
t vt ≥ E[maxtXt].

Proof. It suffices to give a feasible solution for (LP) with objective value at least E[maxtXt].
Define qt to be the probability that Xt is non-zero and it achieves the maximum in maxtXt

(assume all vt-s are distinct so that there are no tie-breaks; otherwise you can add a slight
noise to make them distinct). We claim that qt is a feasible solution to (LP). First, see
that 0 ≤ qt ≤ pt since Xt is non-zero with probability at most pt. Next, we have

∑
t qt ≤ 1

since for any outcome there is at most one of the Xt-s that achieves maxtXt. Finally,
observe that

∑
t qtvt = E[maxtXt] because whenever Xt is non-zero and achieves maxtXt,

it contributes exactly vt to the maximum.

Remark: There are examples where the inequality in Lemma 3 can be strict. E.g., suppose
n=2 and X1, X2 are distributed i.i.d. Bernoulli random variables, i.e., Xi = 1 w.p. 1/2 and 0
otherwise. In this example E[max{X1, X2}] = 3/4 but x∗1v1 +x∗2v2 = 1 since x∗1 = x∗2 = 1/2.
We leave as an exercise to design an example where

∑
t x

∗
t vt = e

e−1E[maxtXt] for n→∞.

Given Lemma 3, to design a 2-competitive algorithm it suffices to design an online algorithm
with E[Xτ] ≥ 1

2

∑
t x

∗
t vt. We will design such an algorithm by rounding the fractional

variables x∗ in an online way for our PI problem.

2.2 Online Contention Resolution Scheme

At a high level, the optimal solution x∗ to (LP) indicates how frequently we should be
accepting the random variables: we want to accept the t-th random variable x∗t fraction of
the times when it takes value vt. If there was no constraint on how many random variables
we can accept, this would be easy: take Xt whenever it takes value vt independently with
probability

x∗t
pt

, so that on average we are getting each Xt with probability Pr[Xt = vt] · x
∗
t
pt

=
x∗t while it takes value vt.

In the presence of the constraint that we can only accept at most 1 random variable, a
natural algorithm would be to accept the next Xt whenever it takes value vt independently
with probability

x∗t
pt

, unless we have already accepted something. However, such an algo-
rithm might have a very poor performance: Consider again the example from the proof
of Lemma 1: Consider a PI instance for n=2 where D1 is a point-mass distribution where
X1 ∼ D1 equals 1 with probability 1; distribution D2 is a weighted-Bernoulli distribution
where X2 ∼ D2 takes a large value 1/ε2 w.p. ε and is 0 otherwise, where ε→ 0. (Note that

5

the expected offline optimum is ≈ 1/ε here.) The optimal solution x∗ for this instance has

x∗ = (1− ε, ε). However, an algorithm that always accepts X1 w.p.
x∗1
p1

= 1− ε, reaches X2

without accepting anything at most ε fraction of the times. Hence, this algorithm accepts
X2 while it takes value 1/ε2 at most Pr[Reach X2] ·Pr[X2 = 1/ε2] = ε2 fraction of the times.
Thus its expected value is at most (1− ε) · 1 + ε2 · 1/ε2 = 2− ε� 1/ε, which is the expected
offline optimum.

The last example shows that it does not suffice if we get a few random variables (like X1)
w.p. x∗t and “miss” the others (like X2) by getting them only with a small probability,
since most of the contribution to the expected offline optimum might be coming from those
missed random variables. The idea behind online/offline contention resolution scheme is
precisely how to perform the rounding/selection s.t. on average every element gets selected
by our algorithm a good fraction of the time.

Contention Resolution Schemes (CRSs) are a powerful tool for offline optimization prob-
lems [7]. For a given x ∈ [0, 1]n, let R(x) denote a random set containing each element
i ∈ [n] independently w.p. xi. We say an element i is active if it belongs to R(x).

Definition 2 (Contention resolution scheme for single-item selection2). Given a finite
ground set V with n = |V | and an x ∈ [0, 1]n satisfying

∑
t xt ≤ 1, a c-selectable CRS

(or simply, c-CRS) is a (randomized) mapping π : 2V → 2V satisfying the following three
properties:

(i) π(S) ⊆ S for all S ⊆ V .
(ii) |π(S)| ≤ 1 for all S ⊆ V .

(iii) PrR(x),π[i ∈ π(R(x))] ≥ c · xi for all i ∈ V .

The primary reason why CRS immediately imply a good rounding algorithm is the following
observation.

Observation 1. If f is a monotone linear function then E[f(π(R(x)))] ≥ c ·E[f(R(x))] by
linearity of expectation.

By constructing CRSs for various constraint families of F , Chekuri, Vondrák, and Zen-
klusen [7] give improved approximation algorithms for linear and submodular maximization
problems under knapsack, matroid, matchoid constraints, and their intersections3.

In the above Definition 2 of offline CRS, the algorithm first flips all the random coins to
sample R(x), and then obtains π(R(x)) ⊆ R(x). For our prophet inequality problem, this
randomness is an inherent part of the problem. Feldman, Svensson, and Zenklusen [5]
therefore introduce an OCRS where the random set R(x) is sampled in the same manner,
but whether i ∈ R(x) (or not) is only revealed one-by-one to the algorithm in the order 1 to

2The definition can be easily extended to more general packing constraints by defining PF ⊆ [0, 1]V to
be the convex hull of all indicator vectors of feasible sets, working with x ∈ PF , and replacing Property (ii)
with π(S) ∈ F . E.g., in the case of k-uniform matroids this would mean that x satisfies

∑
i xi ≤ k and we

have to accept at most k elements. For a general matroid this would mean that x belongs to the matroid
polytope and we have to accept an independent set.)

3Some “greedy” properties are also required from the CRS for the guarantees to hold for a submodular
function f [7].

6

n. After each revelation (arrival), the OCRS has to irrevocably decide whether to include
i ∈ R(x) into π(R(x)) (if possible). A c-selectable OCRS (or simply, c-OCRS) is an OCRS
satisfying the above properties (i) to (iii) of a c-CRS.

As a corollary of Lemma 3, the definition of OCRS, and Observation 1 we can prove the
following.

Corollary 4. A c-OCRS for single-item selection implies a 1/c-competitive PI.

Proof. We will prove this result only for weighted-Bernoulli distributions but it holds for
more general distributions (see HW-3). On arrival of the t-th random variable Xt, we

discard it independently with probability 1− x∗t
pt

. Otherwise (i.e., w.p.
x∗t
pt

), if Xt = vt then
we send it to the given c-OCRS as an active element and accept it iff the OCRS accepts
it. Observe that in this construction the probability with which element i is active equals
Pr[i is not discarded] · Pr[Xt = vt] =

x∗t
pt
· pt = x∗t . So, sum of the activation probabilities of

all elements
∑

t x
∗
t ≤ 1 and we can apply the c-OCRS. Since the OCRS guarantees that each

element is selected w.p. ≥ c · x∗i while being active, we get by linearity of expectation that
the expected value of the algorithm ≥

∑
i c ·x∗i vi = c ·LP ∗ ≥ c ·E[maxtXt] by Lemma 3.

In the remaining section we design good OCRS for single-item selection.

A simple 1/4-OCRS. As a warmup, we discuss a simple 1/4-OCRS for a single-item
selection. Given x satisfying

∑
i xi ≤ 1, consider an algorithm that ignores each element

i independently w.p. 1/2, and otherwise selects i only if it is active. Since this algorithm
selects any element i w.p. at most xi/2 (when i is not ignored and is active), by Union
bound the algorithm selects no element till the end w.p. at least 1−

∑
i xi/2 ≥ 1/2. Hence

the algorithm reaches each element i w.p. at least 1/2 without selecting any of the previous
elements. Moreover, it does not ignore i w.p. 1/2, which implies it considers each element
w.p. at least 1/4.

Optimal 1/2-OCRS. An interesting result of Alaei [6] shows that the above 1/4-OCRS
can be improved to a 1/2-OCRS over a rank 1 matroid by “greedily” maximizing the
probability of ignoring the next element i, but considering i w.p. 1/2 on average.

Theorem 5. There exists a 1/2-OCRS for single-item selection.

Since the algorithm selects at most 1 element, the only decision it makes is whether to
accept the next element i if it is active. The main idea is to ignore (i.e., not consider) i with
maximum probability, while satisfying that on average it is considered at least α fraction
of times for some fixed α (we later set α = 1/2). Thus on reaching i, the algorithm selects
i iff it is both considered and is active.

Proof of Theorem 5. For i ∈ [n], let ri denote the probability that the algorithm reaches i,
i.e., it has not selected any of the elements [i−1]. Thus, r1 = 1 and we want rn = α. Let qi
denote the probability that i is considered, conditioned on the event that algorithm reaches
i. The algorithm sets qi s.t. it considers each element w.p. α, i.e.,

ri · qi = α. (2)

7

Since on reaching i the algorithm accepts it only when it is both considered and active,

ri+1 = ri · (1− qixi).

Now using (2), this gives
ri+1 = ri − αxi.

Summing over all i and using r1 = 1, we get

rn = r1 − α
∑

i xi ≥ 1− α.

Finally, using rn = α, we get α ≥ 1/2.

Optimality of 1/2-OCRS We argue that the factors 1/2 is optimal. This follows from
the fact that if there was a better OCRS then we would obtain a better than 2-competitive
PI, which contradicts Lemma 1. For a more direct proof, consider n = 2, with x1 = 1 − ε
and x2 = ε for some ε → 0. Since the OCRS algorithm has to select the first element at
least 1/2 fraction of the times, it can attempt to select the second element at most 1/2+ε/2
fraction of the times.

Notes

Lecture notes partly based on [1, 8].

References

[1] Gupta, Anupam. “Prophets and secretaries”. IPCO Tutorial Notes, 2009.

[2] Feldman, Michal and Kesselheim, Thomas and Singla, Sahil, Tutorial on “Prophet
Inequalities and Implications to Pricing Mechanisms and Online Algorithms”, http:

//www.thomas-kesselheim.de/tutorial-prophet-inequalities, EC, 2021.

[3] Kleinberg, Robert, and Seth Matthew Weinberg. “Matroid prophet inequalities.” Pro-
ceedings of the forty-fourth annual ACM Symposium on Theory of computing. 2012.

[4] Rubinstein, Aviad. “Beyond matroids: Secretary problem and prophet inequality with
general constraints.” Proceedings of the forty-eighth annual ACM Symposium on Theory
of Computing. 2016.

[5] Feldman, Moran, Ola Svensson, and Rico Zenklusen. “Online Contention Resolution
Schemes with Applications to Bayesian Selection Problems.” SIAM Journal on Com-
puting 50.2 (2021): 255-300.

[6] Alaei, Saeed. “Bayesian combinatorial auctions: Expanding single buyer mechanisms to
many buyers.” SIAM Journal on Computing 43.2 (2014): 930-972.

http://www.thomas-kesselheim.de/tutorial-prophet-inequalities
http://www.thomas-kesselheim.de/tutorial-prophet-inequalities

8

[7] Chekuri, Chandra, Jan Vondrák, and Rico Zenklusen. “Submodular function maximiza-
tion via the multilinear relaxation and contention resolution schemes.” SIAM Journal
on Computing 43.6 (2014): 1831-1879.

[8] Lee, Euiwoong, and Sahil Singla. “Optimal online contention resolution schemes via
ex-ante prophet inequalities.” arXiv preprint arXiv:1806.09251 (2018).

	Prophet Inequality
	Hardness
	Fixed-Threshold Algorithm
	Prophet Inequality Model for Online Packing Problems

	Prophet Inequalities via an LP Relaxation
	LP Relaxation
	Online Contention Resolution Scheme

