
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Lecture 17: Stochastic Probing and Adaptivity Gaps using LPs

Lecturer: Sahil Singla Last updated: March 9, 2022

In this lecture we will continue studying Stochastic Optimization problems. We will con-
sider a stochastic problem where the optimal policy is difficult to find (it’s conjectured to
be PSPACE hard to find) but we can use LPs and Rounding techniques to design O(1)-
approximation policies in polytime. A crucial idea will be to understand the difference
between “adaptive” and “non-adaptive” policies.

1 Stochastic Probing: The ProbeMax Problem

Consider the following ProbeMax problem: There are n boxes. Each box contains a prize,
which we only get to know when we open it. Before, we only know the probability distri-
bution the prize is drawn from (which are independent but might be different for different
boxes). We are allowed to open k boxes and we will keep the highest prize that we see in
these boxes. The question is which boxes to open and in which order. More precisely, we
are allowed to adaptively open boxes, i.e., we open a box and then depending on the actual
prize in the box, choose which box to open next and so on.

It is easy to model this problem as a Markov decision process. In the state space, we have to
keep track of which boxes were opened so far and which was the highest prize in these boxes.
Letting X1, . . . , Xn denote the (random) prizes in the boxes and Opened ⊆ {1, . . . , n} the
(possibly random) set of boxes that are opened, the reward is given by

reward = max
i∈Opened

Xi .

In advance, we know the probability distributions of all Xi and we assume that they have
finite support. We write fi,v for Pr [Xi = v].

Example 1. We have three boxes; so n = 3. The first box contains a prize of 24 with
probability 1

2 and 0 otherwise. The second box contains a prize of 30 with probability 1
3 and

0 otherwise. The third box contains a prize of 12 with probability 1. We are allowed to open
two boxes, i.e., k = 2.

Let us first consider the policies that in advance fix which boxes to open. The expected
rewards are depicted in the following table.

Boxes opened Expected prize

1, 2 E [max{X1, X2}] = 1
3 · 30 + 2

3 ·
1
2 · 24 = 18

1, 3 E [max{X1, X3}] = 1
2 · 24 + 1

2 · 12 = 18

2, 3 E [max{X2, X3}] = 1
3 · 30 + 2

3 · 12 = 18
1



2

So the highest expected prize we can achieve using one of these policies is 18. However, we
can do better than this: Open the first box. If it contains a prize, we have 24 for sure. So,
opening the third box does not make any sense at this point and we continue with the second
one. If, however, the first box is empty, we continue with the third box. The expected prize
this way is 1

2(13 · 30 + 2
3 · 24) + 1

2 · 12 = 19.

As we realize in this example, the choice in the second step depends on what we found in
the first box. That is, the optimal policy π∗ is adaptive. Adaptive policies are generally
complicated: We need a huge decision tree to represent them. Even if each Xi can only
take two values, this tree has 2k nodes1.

Our question today is: What if one uses a simpler policy instead? How much worse is a
non-adaptive policy, which will simply open a suitably chosen set of boxes and not adapt
the choices based on the values seen?

For this and similar problems, one can quantify the loss by the so-called adaptivity gap,
which is defined as

maxany policy π∗ V (π∗)

maxnon-adaptive policy π V (π)
.

So, we compare how much more expected reward an adaptive policy can obtain in compar-
ison to a non-adaptive policy.

We have already seen that the adaptivity gap in the example is at least 19
18 ≈ 1.056. Our

goal today will be to show that it is at most 8.2 Our proof will be constructive. We will
design an algorithm to compute a non-adaptive policy π and we will show that no policy
can obtain more than 8-times the reward, adaptive or not.

2 An LP Relaxation

As a first step, we will devise a linear program (LP) such that the expected reward of any
(adaptive) policy is upper-bounded by the optimal solution to the LP. In the following step,
we will then construct a non-adaptive policy from the optimal LP solution. The loss that
we incur in this second step is clearly an upper bound to the adaptivity gap.

To derive the LP, fix any policy π and observe its execution. We define random variables Yi
and Zi,v as follows. Let Yi = 1 if box i is opened, 0 otherwise. Let Zi,v = 1 if box i contains
a prize of v and is selected. Based on this, define yi = E [Yi] and zi,v = E [Zi,v]. Note that
now yi denotes the probability that box i is opened and that zi,v is the probability that box
i contains prize v and it is selected (i.e., this is the prize that is kept eventually).

Example 2. Consider the adaptive policy from Example 1. The first box is always opened,
therefore y1 = 1. The other boxes are opened each with probability 1

2 , so y2 = y3 = 1
2 .

The value of z1,24 is determined as follows. Given that the first box contains prize 24, we
open the second box. With probability 2

3 , it is empty, and we select the 24. So the overall
probability of this happening is z1,24 = 1

2 ·
2
3 = 1

3 .

1It is still possible to obtain approximation schemes for the optimal adaptive policy [1, 2]
2With more careful analyses better bounds can be obtained. The current best known bound is e/(e−1) [3].



3

For z3,12, we observe that a prize of 12 from the third box is always selected if this box is
opened. This happens with probability 1

2 . So, z3,12 = 1
2 .

Finally, for z2,30, we use that a prize of 30 from the second box is selected only if this box is
opened and if it contains the respective prize. This happens with probability 1

2 ·
1
3 = 1

6 . So,
z2,30 = 1

6 .

We now observe some properties of yi and zi,v.

First, observe that the expected reward of the policy is

V (π) = E

∑
i,v

v · Zi,v

 =
∑
i,v

v ·E [Zi,v] =
∑
i,v

vzi,v (1)

by linearity of expectation.

Furthermore, the policy opens at most k boxes, regardless of the random outcomes. There-
fore,

∑
i Yi ≤ k with probability 1. This inequality still holds if we take the expectation on

both sides, giving us ∑
i

yi =
∑
i

E [Yi] = E

[∑
i

Yi

]
≤ k . (2)

By definition, eventually only a single prize of one box is selected. Therefore
∑

i,v Zi,v ≤ 1
with probability 1. This gives us

∑
i,v

zi,v =
∑
i,v

E [Zi,v] = E

∑
i,v

Zi,v

 ≤ 1 . (3)

Finally, recall that Zi,v = 1 if and only if Yi = 1, box i contains prize v, and v is the highest
prize in any opened box. Ignoring this last condition, we get

Pr [Zi,v = 1] ≤ Pr [Yi = 1 and box i contains prize v] .

Note that the two events if box i gets opened and if it contains some prize have to be
independent. Therefore

Pr [Yi = 1 and box i contains prize v] = Pr [Yi = 1] ·Pr [box i contains prize v] = fi,vyi .

So

zi,v = E [Zi,v] = Pr [Zi,v = 1] ≤ Pr [Yi = 1 and box i contains prize v] = fi,vyi . (4)

All of the above expressions are linear in yi and zi,v. Therefore, we may also use them as



4

variables in an LP as follows.

maximize
∑
i,v

v · zi,v (5)

subject to
∑
i

yi ≤ k (6)∑
i,v

zi,v ≤ 1 (7)

zi,v ≤ fi,v · yi for all i, v (8)

zi,v ≥ 0 for all i, v (9)

Lemma 1. The expected reward of any adaptive policy is upper-bounded by the value of the
optimal LP solution.

Proof. We observe that every policy corresponds to an LP solution. The objective function
(5) is the expected reward of the policy by (1). It is feasible because (6) is fulfilled due to
(2), (7) due to (3), and (8) due to (4). So the optimal LP solution can only be better than
the expected reward of the optimal policy.

Note that not every feasible LP solution necessarily corresponds to a feasible policy.

Example 3. Consider the case of two boxes. The first one contains a prize of 2 with
probability 1

2 and is empty otherwise. The second one contains a prize of 1 with probability
1
2 and is empty otherwise. We are allowed to open two boxes. This means, we do not actually
have a choice to make because we can open all boxes. The expected prize is 1

2 ·2+ 1
2 ·

1
2 ·1 = 1.25.

However, it is a feasible LP solution to set y1 = y2 = 1 and z1,2 = z2,1 = 1
2 . The value is

2z1,2 + 1z2,1 = 1.5. The reason is that Constraint (7) only requires us to take not more than
one prize in expectation. The policy described by this LP solution sometimes takes both
prizes and sometimes none. This is not allowed but our LP has no constraint to enforce it.

3 From LP Solutions to Policies

Despite the fact that not all LP solutions correspond to feasible policies, we can derive
feasible ones from them. Clearly, there has to be a loss in this step. Moreover, the policy
that we derive will be non-adaptive. It will only open a (random) set of boxes.

• Solve the LP, get optimal solution (y, z)

• For i from 1 to n, as long as less than k have been opened

– Open box i with probability yi
4

• Keep the highest prize

To analyze this non-adaptive policy, we use the following immediate-decision policy, which
clearly has no larger expected reward.



5

• Solve the LP, get optimal solution (y, z)

• For i from 1 to n, as long as less than k have been opened

– Open box i with probability yi
4

– Observe prize v in this box, select it with probability
zi,v
fi,v ·yi without looking at

further boxes

So, this policy is even stronger than it would need to be. Immediately after seeing the prize
in a box, it decides whether this is the final prize to keep. We can still show the following.

Theorem 2. The immediate-decision policy has expected reward at least 1
8

∑
i,v vzi,v.

As any policy corresponds to a feasible LP solution, this bounds the adaptivity gap by 8.

Proof. Let us again define an indicator random variable Zi,v by setting Zi,v = 1 if box i is
opened, contains value v, and is selected and Zi,v = 0 otherwise. It can happen that the for
loop does not reach iteration i. In these cases Zi,v = 0. Otherwise, for Zi,v, we first have
to open the box and then select the prize inside. Note that reaching iteration i, opening
the box, and selecting it are three independent events: The first one only depends on what
happens in iterations 1, . . . , i − 1, the second one only on the random coin flip if we open
the box, and the third one only on the prize inside the box, which was irrelevant up to this
point. Therefore, we have

Pr [Zi,v = 1 | the for loop reaches iteration i] =
yi
4
· fi,v ·

zi,v
fi,v · yi

=
zi,v
4

.

We will show that Pr [the for loop reaches iteration i] ≥ 1
2 . This then implies

E

∑
i,v

vZi,v

 =
∑
i,v

vE [Zi,v] ≥
∑
i,v

v
1

2

zi,v
4

=
1

8

∑
i,v

vzi,v ,

which proves the claim.

To bound the probability that the for loop reaches iteration i, we use two standard tools
from the analysis of randomized algorithms: Markov’s inequality and Union Bound.

We only have to show that Pr [the for loop does not reach iteration i] ≤ 1
2 . We split this

up into the two events that too many boxes are opened or one box is selected before. By
union bound, we have

Pr [the for loop does not reach iteration i] ≤ Pr [k boxes are opened in iterations 1, . . . i− 1]

+ Pr [a box is selected in iterations 1, . . . , i− 1]

We will show that both probabilities are upper-bounded by 1
4 .

Again, let Yi′ = 1 if box i′ is opened, 0 otherwise. The expected number of boxes of
1, . . . , i− 1 that are opened is

E

[∑
i′<i

Yi′

]
≤
∑
i′<i

yi′

4
≤ k

4
.



6

So, by Markov’s inequality, we have

Pr

[∑
i′<i

Yi′ ≥ k

]
≤

E
[∑

i′<i Yi′
]

k
≤ 1

4
.

This shows the first bound.

The expected number of times one of the boxes 1, . . . , i− 1 is selected is

E

∑
i′<i,v

Zi′,v

 =
∑
i′<i,v

E
[
Zi′,v

]
≤

∑
i′<i,v

zi′,v
4
≤ 1

4
.

Markov’s inequality gives us

Pr

∑
i′<i,v

Zi′,v ≥ 1

 ≤ E
[∑

i′<i,v Zi,v

]
1

≤ 1

4
.

This shows the second bound and completes the proof.

Notes

Lecture based on [4].

References

[1] Hao Fu, Jian Li, and Pan Xu. A PTAS for a Class of Stochastic Dynamic Programs.
International Colloquium on Automata, Languages, and Programming, ICALP 2018.

[2] Danny Segev and Sahil Singla. Efficient Approximation Schemes for Stochastic Probing
and Prophet Problems. Proceedings of the 22nd ACM Conference on Economics and
Computation, EC 2021.

[3] Arash Asadpour, Hamid Nazerzadeh: Maximizing Stochastic Monotone Submodular
Functions. Manag. Sci. 62(8): 2374-2391 (2016)

[4] Class notes by Thomas Kesselheim: https://tcs.cs.uni-bonn.de/doku.php?id=

teaching:ss20:vl-aau

https://tcs.cs.uni-bonn.de/doku.php?id=teaching:ss20:vl-aau
https://tcs.cs.uni-bonn.de/doku.php?id=teaching:ss20:vl-aau

	Stochastic Probing: The ProbeMax Problem
	An LP Relaxation
	From LP Solutions to Policies

