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In this lecture, we’ll take a Bayesian view on Combinatorial Auctions, i.e., we’ll assume
that the bidder valuations are drawn from some known probability distributions. This
stochastic assumption will allow us to design truthful approximation mechanisms that are
much simpler (hence more practical) and with much better approximation ratios.

1 Model

There is a set of n bidders and a set [m] of m items. The valuation vi(·) : 2[m] → R≥0 of
the i-th bidder is drawn from some known probability distribution Di

1. That is, player i
receives value vi(S) for receiving the set S of items. We make the standard assumption that
valuation vi of each bidder i is normalized, i.e., vi(∅) = 0, and monotone, i.e., vi(S) ≤ vi(T )
for every S ⊆ T ⊆ [m]. Your optimization problem is to find an allocation, that is a
partition of [m] into S1, . . . , Sn so as to maximize the social welfare,

∑
i vi(Si).

Similar to the last lecture, we don’t know the valuations vi(·) (the distributions Di are
known) and have to design a “truthful” mechanism/algorithm that incentivizes the bidders
to report truthfully. We’ll assume the bidders are quasi-linear, i.e., they want to maximize
their utility which is the difference of their value minus payment. A mechanism is called
truthful if the dominant strategy of each bidder is to reveal their true valuation in response
to given queries (same as Definition 1 from last lecture).

Query access to valuations. Since valuations have size exponential in m, a common
assumption is that valuations are specified via certain queries instead, in particular, value
queries and demand queries. A value query to valuation v on bundle S reveals the value
of v(S). A demand query specifies a price vector p ∈ Rm

≥0 on items and the answer is the
“most demanded” bundle under this pricing, i.e., a bundle S ∈ arg maxS′{v(S′)− p(S′)}.

2 Fixed-Price Auctions

For a price vector p and a set of items M ′ ⊆ M , we define p(M ′) :=
∑

j∈M ′ pj . For an
allocation A = (A1, . . . , An), we sometimes abuse the notation and use A to denote the set
of allocated items.

1We will not worry about how this distribution is specified. For concreteness, you may think that Di is
distributed over a polynomial number of valuation functions.
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2.1 XOS Valuations and Supporting Prices

We are interested in the case when bidders valuations are submodular and hence capture the
notion of “diminishing marginal utility” of items for bidders. A valuation v is submodular
iff v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T ) for any S, T ⊆M .

Submodular functions are a strict subset of XOS valuations also known as fractionally
additive valuations (you’ll prove this in HW-4) that are defined as follows. A valuation a is
additive/linear iff a(S) =

∑
j∈S a({j}) for every bundle S, i.e., valuation of a set is the sum

of item valuations inside the set. A valuation function v is XOS iff there exist t additive
valuations {a1, . . . , at} such that v(S) = maxr∈[t] ar(S) for every S ⊆M . (Note that t could
be arbitrarily large, like exponential in the number of items.) Each ar is referred to as a
clause of v. If a ∈ arg maxr∈[t] ar(S), then a is called a maximizing clause for S and a({j})
is a supporting price of item j in this maximizing clause.

Definition 1 (Supporting prices). We say that an allocation A = (A1, . . . , An) of items
to n bidders with XOS valuation is supported by prices q = (q1, . . . , qm) iff each qj is a
supporting price for item j in the maximizing clause of the bidder i to whom j is allocated,
i.e., j ∈ Ai.

2.2 A Fixed-Price-Auction for XOS Bidders

We use a standard fixed-price auction as a subroutine in our mechanism. For an ordered
set N of bidders, M of items, and a price vector p, FPA(N,M,p) is defined as follows.

FPA(N,M,p)

1. Iterate over the bidders i of the ordered set N in the given order:

(a) Allocate Ai ∈ arg maxS⊆M{vi(S) − p(S)} to bidder i and update M ←
M \Ai.

2. Return the allocation A = (A1, . . . , An).

It is easy to see that FPA can be implemented using one demand query per bidder. Its
truthfulness is also easy to check as bidders have no influence on the pricing mechanism.

The following theorem gives a key property of this auction. It shows that for XOS valuations
there always exist good prices such that running FPA w.r.t. those prices gives a good-
approximation to the welfare.

Theorem 1. Suppose O = (O1, . . . , On) is an allocation with supporting prices q (think of
O being the optimal allocation). Then, setting prices p in the FPA with item j priced at
pj = qj/2 gives an allocation A of total welfare val(A) ≥

∑
j∈M pj =

∑
j∈M qj/2.

Proof. Define Ai = Oi \A for every i ∈ N as the set of items in Oi that are never allocated
by FPA. Bidder i could have chosen Ai in FPA but decided to pick another bundle Ai
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instead. This implies that the utility of the i-th bidder can be lower bounded as

Utility(i) := vi(Ai)− p(Ai) ≥ vi(Ai)− p(Ai). (1)

Since welfare can be viewed as the sum of revenue and utility, we have

val(A) =
n∑

i=1

vi(Ai) = p(A)︸ ︷︷ ︸
Revenue

+
n∑

i=1

(vi(Ai)− p(Ai))︸ ︷︷ ︸
Utility(i)

(1)

≥ p(A) +
n∑

i=1

(vi(Ai)− p(Ai)) ≥ p(A) +
n∑

i=1

(q(Ai)− p(Ai))

since Ai ⊆ Oi. Now using qj = 2pj for all j ∈ A ⊆ O, we get

val(A) ≥ p(A) +

n∑
i=1

p(Ai) = p(O) = 1/2 · q(O),

where the second-last equality uses Oi = Ai ∪A and A ∩A = ∅.

3 Prophet Inequalities for Combinatorial Auctions

Now we return to our model of Bayesian Combinatorial Auction from Section 1 where the
XOS valuation of the i-th bidder is drawn from a known distribution Di. We will design a
simple FPA that gives 2-approximation for this setting.

Formally, for any XOS bidder valuations v = (v1, . . . , vn), let Ov denote the optimal allo-
cation with supporting prices qv. The following is the main result.

Theorem 2 ([1]). If we run FPA with prices p = 1/2 · Ev[qv] then the obtained allocation
A has total total expected welfare E[val(A)] ≥

∑
j∈M pj = 1/2 · Ev[q(Ov)].

This result can also be interpreted as a Prophet Inequality result (as studied in Lecture
13). Consider the following online problem: n bidders arrive one-by-one where the i-th
bidder valuation vi ∼ Di. On arrival of a bidder the goal is to immediately and irrevocably
allocate them a subset Si of the remaining items while trying to maximize the total expected
welfare E[

∑
i vi(Si)]. Now, Theorem 2 says that we can obtain a 2-competitive-ratio for this

problem by letting the bidders choose their favorite set of remaining items at prices p. So,
Theorem 2 is a massive generalization of Theorem 2 from Lecture 13.

Proof of Theorem 2. The proof will again go by viewing the welfare as the sum of revenue
and utility. That is, total welfare

val(A) =

n∑
i=1

vi(Ai) = p(A)︸ ︷︷ ︸
Revenue

+

n∑
i=1

(vi(Ai)− p(Ai))︸ ︷︷ ︸
Utility(i)

. (2)

We will prove lower bounds on both the Revenue and the Utility.



4

Let fj denote the probability that item j is free/unsold by FPA(N,M,p) till the end. This
means that item j gets sold with probability (1− fj), so we get expected Revenue equals

E[p(A)] =
∑
j∈M

(1− fj) · pj . (3)

The following lemma proves a lower bound on total utility in terms of fj .

Lemma 3. The total expected utility
∑n

i=1 Utility(i) ≥
∑

j∈M fj · pj.

Before proving the lemma, we complete the proof of Theorem 2: combining (2) with (3)
and Lemma 3 gives E[val(A)] ≥

∑
j(1− fj) · pj +

∑
j fj · pj =

∑
j∈M pj .

Next, we prove the missing Lemma 3.

Proof of Lemma 3. The main idea in the proof to lower bound utility is to define a set Õi

that bidder i could have bought. To define Õi, we consider the optimal allocation where
every bidder except bidder i draws independent fresh valuations, i.e., consider the optimal
allocation w.r.t. valuations v−i := (ṽ1, . . . , ṽi−1, vi, ṽi+1, ṽn) and let Õi denote the set of

items that bidder i receives in this allocation. Let q
(i)
j denote the supporting prices for

bidder i w.r.t. set Õi. Now we can lower bound

Utility(i) ≥ E
[∑

j

1j is unsold till i · 1j∈Õi
· (q(i)j − pj)

+
]

≥
∑
j

Pr[j is unsold till i] · Ev−i

[
1
j∈Õi

· (q(i)j − pj)
+
]

where we use that q
(i)
j and Õi are independent of whether item j is unsold by the time

bidder i arrives. Now using Pr[j is unsold till i] ≥ Pr[j is free] = fj (i.e., unsold till the
end) and summing over all bidders, we get∑

i

Utility(i) ≥
∑
i,j

fj · Ev−i

[
1
j∈Õi

· (q(i)j − pj)
+
]
≥

∑
i,j

fj · Ev−i

[
1
j∈Õi

· (q(i)j − pj)
]

=
∑
j

fj ·
∑
i

Ev

[
1j∈Oi · (q

(i)
j − pj)

]
,

where the last equality uses the fact that v−i and v are i.i.d.. Finally, using Ev[1j∈Oi ·q
(i)
j ] =

2pj by definition of pj , we get∑
i

Utility(i) ≥
∑
j

fj · (2pj − pj),

which completes the proof of the lemma.
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