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1 Preliminaries

Today’s topic is deviation bounds: what is the probability that a random variable deviates
from its mean by a lot? Recall that a random variable X is a mapping from a set of possible
outcomes S to R. We usually think of S as containing numerical quantaties and for now,
that just means scalar numbers. Later in the course, we will consider situations where S
contains vectors or matrices. The expectation or mean is denoted E[X] or sometimes as µ.

E[X]
def
=
∑
s∈S

Pr[X = s] · s

To give an example, consider a random variable X that corresponds to the toss of a fair
coin. X maps the possible outcomes {0, 1} each to 1/2, taking value 0 when the coin lands
on tails, and 1 when the coin lands on heads. In this case, E[X] = 1/2. In many settings
we have a set of n random variables X1, X2, X3, . . . , Xn defined on the same set of possible
outcomes. For example, each Xi might correspond to the toss of a different random coin.

In addition to the expectation, the variance of a random variable is defined as:

Var[X]
def
= E

[
(X − E[X])2

]
.

We will often use µ to denote E[X] and σ2 to denote Var[X].

Here are examples of facts that you might remember from discrete math or other undergrad
classes. We won’t prove them all in class, but it might be a good refresher to re-derive them
yourself or in office hours.

• For any random variables, independent or not, E[
∑

iXi] =
∑

i E[Xi]. This is called
the Linearity of Expectation.

• If X1, X2 are independent random variables (formally, this means that for all a, b
Pr[X1 = a,X2 = b] = Pr[X1 = a] Pr[X2 = b]), then E[X1 ·X2] = E[X1] · E[X2].

• When we say a set of random variables X1, . . . Xn are mutually independent, we mean
that for all a1, . . . , an, Pr[X1 = a1, X2 = a2, . . . Xn = an] =

∏
i Pr[Xi = ai].

• We say that X1, . . . , Xn are pairwise independent random variables if for all Xi, Xj ,
Xi and Xj are independent, but the set of all variables are not necessarily mutually
independent.
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• If X1, . . . , Xn are pairwise independent, then Var [
∑

iXi] =
∑

i Var[Xi].

Exercise: Give an example of three random variables that are not mutually independent,
but are pairwise independent.

1.1 Three progressively stronger tail bounds

As we saw in the past two lectures, and will see again and again in this class, one of our
main goals when analyzing randomized algorithms will be to understand when random
variables behave as expected. In other words, with what probability do they fall close to
their expectation?

Any bound of this form is called a tail bound or concentration inequality. Today we will see
three methods that give progressively stronger bounds, but under progressively stronger as-
sumptions. They are Markov’s inequality, Chebyshev’s inequality, and the Chernoff bound.

2 Markov’s Inequality

The first of a number of inequalities presented today, Markov’s inequality says that any
non-negative random variable X satisfies

Pr (X ≥ kE[X]) ≤ 1

k
.

Note that this is just another way to write the trivial observation that E[X] ≥ k ·Pr[X ≥ k].

Can we give any meaningful upperbound on Pr[X < c · E[X]] where c < 1, in other words
the probability that X is a lot less than its expectation? In general we cannot.

Exercise: For any c < 1, δ < 1, find a distribution where Pr[X < cE[X]] = 1− δ). In other
words, X is very often far below it’s expectation.

However, if we know an upperbound on X then we can make such a statement. If X ≤ z
then for any c < 1 we have:

Pr(X ≤ cE[X]) ≤ z − E[x]

z − cE[x]
.

Sometimes this is also called an averaging argument.

Exercise: Prove this using Markov’s inequality, but on a different random variable.

Example 1. Suppose you took a lot of exams, each scored from 1 to 100. If your average
score was 90 then in at least half the exams you scored at least 80.

Markov’s inequality can sometimes be useful for making quick deductions about random
variables. It also applies to any non-negative random variable. Because arbitrary non-
negative random variables can behave wildly, we shouldn’t hope for a stronger claim to
hold without making some reference to properties of the random variable. We now move
on to Chebyshev’s inequality, which makes use of the variance.
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3 Chebyshev’s Inequality

The variance of a random variable X is one measure (there are others too) of how “spread
out” it is around its mean. The variance is defined as Var[X] = E[(X − E[X])2] = E[X2]−
E[X]2, and we often denote it by σ2. The square root of the variance, σ, is called the
standard deviation.

A more powerful inequality, Chebyshev’s inequality, says

Pr[|X − E[X]| ≥ kσ] ≤ 1

k2
,

Actually, Chebyshev’s inequality is just a special case of Markov’s inequality: by definition,

E
[
|X − E[X]|2

]
= σ2,

and so,

Pr
[
|X − E[X]|2 ≥ k2σ2

]
≤ 1

k2
.

3.1 Example: Load balancing

Recall our setup from Lecture 2. Suppose we have n values, a1, . . . , an, from some universe
|U | and we want to hash these values to a table of size n. This is often call the “balls-into-
bins” problem because we can think about hashing as randomly throwing balls into bins,
and seeing how many balls each bin has. It’s convenient to first analyze the case when the
number of balls equals the number of bins, although this isn’t always the setup.

In the first lecture we weren’t able to obtain bounds on the maximum load of a particular
bin – we just showed that on average the bins weren’t too overloaded. This could be done
using Markov’s inequality.

It turns out that we can get a bound on the maximum load using Chebyshev’s inequal-
ity. Let’s just consider the the first bin and how many balls fall into it. Let Xi =
1[ball i falls into bin 1]. Assume that we are using a pairwise-independent hash function,
so:

E[Xi] =
1

n
.

What’s the variance of Xi?

Var[Xi] = E[X2
i ]− E[Xi]

2 =
1

n
− 1

n2
≤ 1

n
.

Now, let X =
∑n

i=1Xi. X is the total number of balls that land in bin 1 and E[X] = 1.

What’s the variance of X? Since each Xi, Xj are pairwise independent,

Var[X] =

n∑
i=1

Var[Xi] ≤ 1.
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From Chebyshev’s inequality, we therefore have that:

Pr[|X − 1| ≥
√

2n] ≤ 1

2n
.

So bin 1 has load ≤
√

2n+ 1 with probability at least (1− 1
2n), and this exact same bound

holds for all other bins. Thus, by a union bound, every bin has load ≤
√

2n + 1 with
probability 1/2. That’s not bad! For n = 1, 000, 000, we can say that the maximally loaded
bin has . 1400 elements. Shortly, we will see how to get an even tighter bound than O(

√
n).

3.2 Another common use

We won’t give a specific example in class, but it is helpful to mention that Chebyshev’s
inequality can often be used to analyze how well an average of many random variables
concentrates around its expectation. In particular, suppose Y1, Y2, . . . , Yt are i.i.d. (inde-
pendent and identically distributed) random variables, meaning that they have the same
distribution. Suppose each has variance σ2. Then:

Var

(
1

t

∑
i

Yi

)
=
σ2

t
.

In other words, even if each Yi does not concentrate close to its mean, taking an average
quickly improves our variance and gives better concentration via Chebyshev’s inequality.

4 Chernoff bounds

4.1 Motivation

How tight is Chebyshev’s inequality? I suspect many of you have seen this picture before:

If X is distributed as a normal random variable, aka a Gaussian, aka a Bell Curve, and it
has standard deviation σ (i.e. variance σ2), then it is well known that:

Pr (|X − E[X]| ≥ 1σ) ≈ 32%

Pr (|X − E[X]| ≥ 2σ) ≈ 5%

Pr (|X − E[X]| ≥ 3σ) ≈ 1%

Pr (|X − E[X]| ≥ 4σ) ≈ .01%

On the other hand, Chebyshev inequality would predict upper bounds of:

Pr (|X − E[X]| ≥ 1σ) ≤ 100%

Pr (|X − E[X]| ≥ 2σ) ≤ 25%

Pr (|X − E[X]| ≥ 3σ) ≤ 11%

Pr (|X − E[X]| ≥ 4σ) ≤ 6%.
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Figure 1: 68-95-99 rule for Gaussian bell-curve.

It appears that, at least for the common Gaussian distribution, we can obtain much stronger
concentration bounds: the chance of landing outside a given number of standard deviations
falls off very fast. This makes sense if we look at the probability density function, N , of
the Gaussian distribution:

N (x) ∼ e−x2/2σ2
.

The distribution is falling off exponentially in x/σ.

Exercise: For Gaussian X with variance σ2, show that Pr (|X − Ex| ≥ cσ) ≤ O(e−c
2/2).

Why are bounds for Gaussian random variables important in algorithm design?

The Central Limit Theorem says that the sum of n independent random variables (with
bounded mean and variance) converges to the Gaussian distribution, even if those random
variables themselves aren’t Gaussian. For many random variables that appear in random-
ized algorithms, this convergence happens very quickly, meaning that we can analyze the
sum by treating it as a Gaussian random variable.

A well known example is coin tossing. Let X =
∑n

i=1Xi be a random variable which is the
sum of n random variables, X1, . . . , Xn, each being 1 with probability 1/2 and 0 otherwise.
X represents the number of heads that will appear when flipping n fair coins. It is possible
to explicitly compute the distribution of X. As we see in Figure 2, this distribution quickly
begins to look like a Gaussian distribution as n increases.

This concentration to a Gaussian implies that we can get much better bounds on, e.g. coin
tossing processes, than we would via Chebyshev’s inequality. To do a back of the envelope
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(a) Distribution of # of heads after 10
coin flips, compared to a Gaussian.

(b) Distribution of # of heads after 50
coin flips, compared to a Gaussian.

Figure 2: The distribution of the number of heads in a sequence of n coin tosses quickly
converges to a Gaussian distribution, as predicted by the Central Limit Theorem.

calculation, if we flip n coins and all n coin tosses are fair (heads has probability 1/2) then
the Gaussian approximation has mean n/2 and variance n/4. Let X be the number of heads
we see. We can bound Pr(|X − n/2| ≥ kσ) ≤ e−k

2/2. σ = O(
√
n), so if we want to be

within εn of n/2, we need to set k = ε
√
n.

How large do we need to set n to achieve this bound with probability 1/2? We need
n = O(1/ε2). How about with probability 1/n10? We need n = O(log(n)/ε2). In other
words, we pay very little to achieve much higher probability estimates. To give a real
number example, if we flip 1000 coins, the chance of seeing at least 625 heads is less than
5.3× 10−7. These are pretty strong bounds!

4.2 Main Theorem

Of course, for finite n, the sum of n random variables is not necessarily exactly a Gaussian.
That’s where Chernoff bounds come in. They help us quantify this potentially very powerful
Gaussian approximation. It turns out that the CLT converges pretty quickly for sums of
bounded random variables, including binary variables like coins, that we can obtain tail
bounds nearly identical to what we get for a true Gaussian. Any bound of this type we
informally call a “Chernoff bound”.

There are many forms of Chernoff bounds, often under various other names (Chernoff bound,
Bernstein inequality, Hoeffding inequality, etc.). One particularly useful one applies to
random variables bounded between [−1, 1]. To apply it to more general bounded variables,
just scale them to [−1, 1] first.

Theorem 1 (Quantitative version of CLT due to S. Bernstein). Let X1, X2, . . . , Xn be
independent random variables and each Xi ∈ [−1, 1]. Let µi = E[Xi] and σ2i = var[Xi].
Then X =

∑
iXi satisfies

Pr[|X − µ| > kσ] ≤ 2 exp(−k
2

4
),
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where µ =
∑

i µi, variance σ2 =
∑

i σ
2
i , and k ≤ 1

2σ.

This theorem is usually called the Bernstein inequality.

4.3 Simple Application: Coins and statistical polling

Suppose we flip n fair coins again. Let X be the number of heads we see. We can use the
above theorem to formally bound Pr(|X − n/2| ≥ εn) ≤ δ as long as n = O(log(1/δ)/ε2).
In other words, if we want to test whether or not a coin is within ε of fair (i.e. it is heads
and tails, each with probability > 1/2− ε), then we can do so by averaging O(log(1/δ)/ε2),
and our test will only fail with probability δ.

Exercise: Show that Chebyshev’s inequality would predict that the same fairness test
requires O( 1

ε2δ2
) – i.e. it gives an exponentially worse dependence on δ!

More generally, opinion polls and statistical sampling rely on tail bounds. Suppose there
are n arbitrary numbers in [0, 1]. If we pick t of them randomly with replacement then
the sample mean is within an additive ε of the true mean with probability at least 1− δ if
t > Ω( 1

ε2
log 1/δ).

4.4 Proof

Instead of proving Theorem 1, we prove a simpler theorem for binary valued variables which
showcases the basic idea. We’ll give a complete proof of this bound, which will be enough
to prove a pretty powerful hashing application.

Theorem 2. Let X1, X2, . . . , Xn be independent 0/1-valued random variables and let pi =
E[Xi], where 0 < pi < 1. Then the sum X =

∑n
i=1Xi with mean µ =

∑n
i=1 pi satisfies

Pr[X ≥ (1 + ε)µ] ≤ exp(−ε
2µ

3+3ε ).

Remark: It’s actually possible to prove a slightly tighter bound where the right hand side

is exp(−ε
2µ

2+ε ). Additionally, there is an analogous inequality that bounds the probability of
deviation below the mean, Pr[X ≤ (1− ε)µ]. For that bound, the right hand side becomes

exp(−ε
2µ
2 ) On homeworks, you’re free to use any versions of Chernoff bounds that you find

in other course notes (or Wikipedia). There are many variants.

Proof. Surprisingly, this inequality also is proved using the Markov inequality, albeit applied
to a different random variable.

We introduce a positive dummy variable t that we will set to some non-negative value later.
We observe that

E[etX ] = E[et
∑

iXi ] = E[
∏
i

etXi ] =
∏
i

E[etXi ], (1)
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where the last equality holds because the Xi random variables are mutually independent.
Now, because each Xi is 0/1, we have that:

E[etXi ] = (1− pi) + pie
t.

Therefore, ∏
i

E[etXi ] =
∏
i

[1 + pi(e
t − 1)] ≤

∏
i

epi(e
t−1)

= e
∑

i pi(e
t−1) = eµ(e

t−1).

(2)

In the step with an inequality, we used that 1 + x ≤ ex. (This holds for all x – it’s
a surprisingly useful inequality to remember.) Finally, apply Markov’s inequality to the
random variable etX :

Pr[X ≥ (1 + ε)µ] = Pr[etX ≥ et(1+ε)µ] ≤ E[etX ]

et(1+ε)µ
≤ e(e

t−1)µ

et(1+ε)µ
,

using lines (1) and (2) and the fact that t is positive. Since the statement holds for any t,
we can obtain a bound by setting t to any positive value we wish. If we set t = log(1 + ε),
we get:

Pr[X ≥ (1 + ε)µ] ≤ eµ[ε−log(1+ε)(1+ε)].

To see that this bound simplifies to give Theorem 2, we need a quick case argument. Looking
at the Taylor series of log(1 + ε), we have:

log(1 + ε) = ε− ε2

2
+
ε3

3
− ε4

4
+ · · · and

log(1 + ε)(1 + ε) = ε+
ε2

2
− ε3

6
+
ε4

20
− · · ·

For ε ∈ [0, 1], we thus have log(1 + ε)(1 + ε) ≥ ε+ ε2/3. It follows that eµ[ε−log(1+ε)(1+ε)] ≤
e−µε

2/3 ≤ e−µε
2/(3+3ε). On the other hand, when ε > 1, log(1 + ε)(1 + ε) ≥ 1.38ε. It follow

that eµ[ε−log(1+ε)(1+ε)] ≤ e−.38µε ≤ e−µε2/3ε ≤ e−µε2/(3+3ε).

Removing the assumption Xi ∈ {0, 1}: Let µi = E[Xi]. For each i in [n], we define a
new Bernoulli random variable Yi which is 0 with probability 1−µi and is 1 with probability
µi. Now note that the function etXi is convex for any positive value of t. Thus we have
E[etXi ] ≤ E[etYi ] = 1 + µi(e

t − 1) ≤ exp(µi(e
t − 1)), and the above proof goes through even

for the general case where Xi ∈ [0, 1].

5 Load balancing revisited

With our Chernoff bound pf Theorem 2 in place, let’s revisit our “balls-in-bins” analysis.
Using a Chebyshev bound, we were able to bound the max load of n bins after inserting n
balls by O(

√
n). The Chernoff bound will do exponentially better.
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Again, we will analyze things one bin at a time. Let Xi = 1[ball i falls into bin 1] and
let X =

∑n
i=1Xi. µ = EX = 1. To apply Chernoff we will assume fully random hash

functions1. Since µ = 1, from Theorem 2, we have that:

Pr[X ≥ 1 + 6 log n] ≤ e−6 logn/3 ≤ 1

n2
.

So bin 1 gets ≤ 1 + 6 log n balls with probability at least (1− 1/n2). By a union bound, we
conclude that all bins have ≤ 1 + 6 log n with probability 1− 1/n.

This bound of O(log n) on the maximum load of any bin improves exponentially on our
bound of O(

√
n) from Chebyshev. Moreover, it holds with much higher probability. In fact,

we could have succeeded with probability (1 − 1/nc) for any constant c if we just increase
the constant factor on 6 log n a bit.

5.1 Power of Two Choices

The above O(log n) bound is very good, but it turns out that a simple alternative hashing
scheme can do even better. Consider the method you use at the supermarket checkout:
instead of going to a random checkout counter you try to go to the counter with the shortest
line. In the hashing setting this is computationally too expensive: one has to check all n
queues. A much simpler version is the following: when the ball comes in, pick 2 random
bins, and place the ball in the one that has fewer balls. It turns out that this modified rule
ensures that the maximal load drops to O(loglog n), which is a huge improvement. This
called the power of two choices and was first proven in the conference version of [3].

How about 3 choices? 4? d? Surprisingly there’s not much to be gained after 2. The bound
only improves to O(loglog n/ log d) for d choices.

6 Other concentration bounds

Theorem 3 (Bernstein’s inequality [4]). Consider n independent r.v.s X1, X2, . . . , Xn with
Xi −E[Xi] ≤ b for each i. Let Sn := X1 +X2 + . . .+Xn, and let Sn have mean µ variance
σ2. Then for any non-negative β we have

Upper tail : Pr[Sn ≥ µ(1 + β)] ≤ exp

(
− β2µ

2σ2/µ+ 2βb/3

)
.

Theorem 4 (McDiarmid’s inequality [4]). Consider n independent r.v.s X1, X2, . . . , Xn

with Xi taking values in a set Ai for each i. Suppose a real valued function f is defined on∏
Ai satisfying |f(x)− f(x′)| ≤ ci whenever x and x′ differ only in the ith coordinate. Let

1It’s actually possible to prove Chernoff bounds using O(logn)-wise independence, which is much better
than full independence, but not as simple as the 2-wise independence we assume for our Chebyshev bound.
See this work on improving over O(logn) independence in [1] or the recent work considering “power of two
choices” like methods [2].
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µ be the expected value of the random variable f(X). Then for any non-negative β we have

Upper tail : Pr[f(X) ≥ µ(1 + β)] ≤ exp

(
−2µ2β2∑

i c
2
i

)
Lower tail : Pr[f(X) ≤ µ(1− β)] ≤ exp

(
−2µ2β2∑

i c
2
i

)
.

Theorem 5 (Philips and Nelson [5] show moment bounds are tighter than Chernoff-Ho-
effding bounds). Consider n independent random variables X1, X2, . . . , Xn, each with mean
0. Let Sn =

∑
Xi. Then

Pr[Sn ≥ λ] ≤ min
k≥0

E[Xk]

λk
≤ inf

t≥0

E[etX ]

etλ

Theorem 6 (Matrix Chernoff bounds). Consider n independent matrices X1, X2, . . . , Xn

of dimension d. Moreover, for each i we have Xi is symmetric and I � Xi � 0 (i.e.,
eigenvalues are between 0 and 1). Let µmin = λmin(

∑
E[Xi]) and µmax = λmax(

∑
E[Xi]),

then

Pr
[
λmax

(∑
Xi

)
≥ µmax + γ

]
≤ d exp

(
− γ2

2µmax + γ

)
.

In some applications the random variables are not independent, but have limited influence
on the overall function. We can still give concentration bounds if the random variables form
a martingale.

Theorem 7 (Hoeffding-Azuma inequality [4]). Let c1, c2, . . . , cn be n constants, and let
Y1, Y2, . . . , Yn be a martingale difference sequence with |Yi| ≤ ci for each i. Then for t ≥ 0,

Pr

[∣∣∑
i

Yi
∣∣ ≥ t] ≤ 2 exp

(
− t2

2
∑

i c
2
i

)
.

Notes

The lecture is partly based on COS 521 notes from Princeton University and 15-859 notes
from CMU.
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