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1 Introduction

To clarify, we won’t learn how to play Starcraft, Poker, or Settlers of Catan.

Game theory is a field where we want to study how “rational” (payoff maximizing) decision
making agents interact with each other. The difference between “games” and just ordinary
“decisions” is the following: when you decide what to eat for breakfast, your payoff doesn’t
depend on what anyone else in the world does. If you like apples a lot, you might get payoff
10. If you don’t like bananas as much, you might get payoff 5. So you should eat apples.

When you decide how to vote, your payoff depends on how you vote, but also on how others
vote. This is what makes voting a “game” instead of just a “decision.” The goal of this
section is to think a little bit about how to reason about playing games.

Game Theory is an enormous field, and we’ll only touch on the basics. We’ll start with
settings where it is “easier” to predict rational behavior. But keep in mind that rational
is not synonymous with smart or what happens in practice. We’ll discuss this informally
through class, on Piazza, etc.

2 General Games

2.1 Setup

A game has n players, who each have m strategies. Each player has a payoff function, pi(·)
which takes as input strategies from each player and outputs a payoff. So pi : [m]n → R.
The collection of payoff functions is sometimes called the payoff matrix. All the examples
we’ll see this week involve n = 2 players, but you should try to process the definitions and
notation more generally.

2.2 Example: Rock-Paper-Scissors

You and a friend are playing a game where there are 3 actions: (a) rock, (b) paper, or (c)
scissor. You both simultaneously select an action. If both play the same action then it is a
tie, and you both end with a 0 payoff. Otherwise, we have rock beats scissor, scissor beats
paper, and paper beats rock. So whoever plays the beating action gets 1 payoff and the
other gets −1 payoff. This payoff can be represented using the following matrix.

Definition 1 (Simultaneous Game). There are n players where each has m strategies (ac-
tions). Each player has a payoff function pi : {1, 2, . . . ,m}n → R that takes as input the
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strategies of all the m players and returns their payoff/utility. We usually let si denote the
strategy of player i and let s−i denote the strategies of all players except i.

This week we will focus on n = 2 players case, where the payoffs can be written as a m×m
matrix where the (s, t) entry contains (p1(s1, s2), p2(s1, s2)), i.e., the payoff of the first and
second player for actions s1 and s2, respectively.

Rock Paper Scissor
Rock (0, 0) (−1, 1) (1,−1)
Paper (1,−1) (0, 0) (−1, 1)
Scissor (−1, 1) (1,−1) (0, 0)

3 Dominant Strategies

Example (Prisoner’s Dilemma). You and your partner in crime are suspected of rob-
bing a bank. Fortunately for you, there’s not much in the way of concrete evidence. Unfor-
tunately for you, the police understand Game Theory, put you in separate rooms and give
you the opportunity to confess.

• If both deny, you each go to jail for a year.

• If one confesses but the other denies, the confessor goes free and the other gets twenty
years.

• If you both confess, you both get ten years.

The table below describes the payoff that you and your partner will get, as a function of
both of your decisions. The number on the left denotes the payoff to the “row player”
(who chooses Confess or Deny row), and the number on the right denotes the payoff to the
“column player” (who chooses Confess or Deny column).

Confess Deny
Confess (−10,−10) (0,−20)
Deny (−20, 0) (−1,−1)

So now let’s think: if your partner is going to confess, what decision gives you the highest
payoff? You should also confess and get ten versus twenty years. What if your partner’s
going to stay silent? Then you should confess and get zero versus one year. So no matter
what, it’s better for you to confess. We say that confessing dominates denying.

Definition 2 (Dominant Strategy). We say that strategy a strongly dominates strategy b
for player i if no matter what strategies the other players use, i receives strictly higher
payoff using a than using b. We say that it weakly dominates b if i receives higher payoff
using a than using b always, and there is at least one strategy profile s−i such that i receives
strictly higher payoff using a against s−i than using b. We say that a is a (strongly/weakly)
dominant strategy if a (strongly/weakly) dominates all other strategies. Note that if a
strongly dominates b, then a also weakly dominates b (and that if a is strongly dominant,
then a is also weakly dominant).
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If every player in the game has a dominant strategy, it seems reasonable to expect them
to play it — no matter what the other players do, you’re better off playing the dominant
strategy. Note the connection to incentive compatibility from previous lectures: incentive
compatibility is essentially saying that telling the truth is a dominant strategy.

Finding dominant strategies is straight-forward (but not always “easy”) - just take any two
strategies and compare their performance against every possibility. Recall every time we
proved that a voting-rule/matching-algorithm was incentive compatible: we needed to show
that telling the truth outperformed any lie no matter what the other players did.

Note: to prove that strategy a weakly dominates strategy b, one needs to prove
both (i) the payoff of using a is always at least as good as using b and (ii) there
exists a strategy such that the payoff from a is strictly better than using b. In
most lectures after the “pure game theory” sections, we will focus on just (i)
as (ii) is often tedious. Despite the fact that we’ll often omit this portion of
the proof, property (ii) is important as otherwise games could have multiple
dominant strategies.

4 Nash Equilibrium

Last section, we saw games with dominated strategies, where it was straight-forward to
define “rational” behavior (Prisoner’s Dilemma). We also saw games where dominated
strategies could be iteratively deleted (Traveler’s Dilemma). In general, games need not
have this property. There was also a lot of discussion about whether being rational was
“smart.”

Consider the following “parking game:” You park your car on campus, and can pay or not
pay the meter. The university can hire inspectors or not. The idea is that the university
suffers if you park without paying the meter because there will be no available parking. At
least if they catch you, the cost is marginally offset by the ticket.

• If you pay the meter, then your payoff is 0 no matter what.

• If you don’t pay, your payoff is 10 if the university doesn’t inspect, and -90 if they do
(heavy fine).

• If the university doesn’t inspect, their payoff is 0 if you pay the meter, and -10 if you
don’t (because no one will be able to find parking).

• If they do inspect, their payoff is -1 if you pay the meter (waste of everyone’s time),
and -6 if you don’t (-1 for paying the inspector, -10 for you parking excessively long,
but +5 for your ticket revenue).

Inspect Not Inspect
Pay (0,−1) (0, 0)
Not Pay (−90,−6) (10,−10)
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Let’s try to reason through how the players might behave. If the driver always pays the
meter, what should the university do? They should not inspect because it will just be a
waste of time. But if the university never inspects, what should the driver do? They should
not pay, because they’ll never get caught. Let’s try to make this formal.

Note: In lecture, we’ll give this definition without referencing mixed strategies
first. Then motivate mixed strategies, then update the definition. We also only
gave the definition for two players for easier notation.

Definition 3 (Best Response). We say that a (possibly mixed) strategy s is a best response
for player i to the (possibly mixed) strategy profile ~s−i if s maximizes pi(s;~s−i) over all
possible (possibly randomized) strategies s.

Definition 4 (Nash Equilibrium). A strategy profile is a Nash Equilibrium if for every i,
si is a best response to ~s−i.

This seems like a sensible way to predict behavior: if I’m best responding to you, and
you’re best responding to me, neither of us has any incentive to change our behavior.1

Unfortunately, the parking game doesn’t yet admit a Nash equilibrium: the best response
to pay is don’t inspect, but the best response to don’t inspect is not pay. The best response
to don’t pay is inspect, but the best response to inspect is pay. So we need to update our
definitions slightly to allow players to sometimes play randomly.

Definition 5 (Mixed Strategy). A mixed strategy is a distribution over pure strategies.
For example, player i could choose to play each of their strategies s with probability xi(s).
We can refer now to a strategy for player i as a vector ~xi (which has a coordinate xi(s) for
all strategies s). We also need to define what player i’s payoff is when players are using
mixed strategies.

Player i’s payoff is just the expectation of pi(~s), when each player j independently samples
sj according to ~xj. Expanding the math, we also get that player i’s payoff when players use
the strategy vectors ~xj is:

pi(~x) := Esj←~xj , ∀j [pi(~s)] =
∑
~s

∏
j

xj(sj) · pi(~s).

The above formula is just computing the expected payoff of pi(~s) when sj is drawn indepen-
dently from ~xj, by summing over all ~s, of the probability that we wind up with exactly ~s,
times the payoff that i gets in this case.

Observation 1. Observe that the expected payoff for strategy ~xi for player i when all other
players are using ~x−i is exactly: ∑

`

xi(`) · pi(`; ~x−i).

1But this is certainly not a university prediction. In fact, there are many issues with Nash equilibria that
we won’t cover in class, but feel free to ask about them in class, on Piazza, office hours, etc.
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That is, the payoff for player i for using ~xi when all other players use ~x−i just sums over
all strategies ` for player i, of xi(`) times the payoff that player i gets for using s` against
~x−i.

Proof. To see this, we just expand:∑
`

xi(`) · pi(`; ~x−i) =
∑
`

xi(`) ·
∑
~s−i

∏
j 6=i

xj(sj) · pi(`;~s−i)

=
∑
~s

∏
j

xj(sj) · pi(~s).

The first line follows by just expanding the definition of pi(`; ~x−i) (the payoff of using `
against ~x−i). The second line just observes that first summing over all `, and then taking
a product over the remaining ~s−i is the same as just directly summing over all ~s.

Observation 2. Note that mixed strategies are also strategies, so the definitions regarding
dominant strategies still apply. For instance, it could be the case that on a large game no
pure strategy dominates any other, but a mixture of two may dominate some strategies.
This allows rational players to discard them and make progress towards finding rational
strategies.

The idea is that if the parker always pays the meter, then the university can just not inspect.
If the parker never pays the meter, the university will surely inspect. If instead the parker
sometimes pays the meter, the university may be happy to either inspect or not inspect.
Let’s now update our definition of best response to accommodate mixed strategies, and
observe the following:

Observation 3. For all s−i, there is always a pure strategy that is a best response. A
mixed strategy is a best response if and only if it plays only pure best responses with non-
zero probability.

Proof. To see this, recall from Observation 1 that the payoff i gets by playing ~xi is a
weighted average of the payoff that i gets by playing each of their pure strategies. Because
a weighted average is clearly never more than the maximum, we see that no mixed strategy
can be strictly better than the best pure strategy. So there is always a pure best response.
Also, if the mixed strategy is ever not playing a pure best response, it must yield expected
payoff strictly lower than that pure best response (and be suboptimal), because it will be a
non-zero weighted average of values all of which are at most the best pure strategy, and at
least one of which is strictly less.

In the parking game, let’s consider the following strategies: you pay the meter with prob-
ability 0.8, and the university inspects with probability 0.1. Then given that you pay the
meter with probability 0.8, the university achieves expected payoff −2 by not inspecting
(−10 ·0.2), or expected payoff −2 by inspecting (−1 ·0.8+−6 ·0.2). So both strategies are a
best response. You get payoff 0 for paying the meter, and 0 for not (10 · 0.9 +−90 · 0.1). So
both strategies are a best response. Therefore, both players are best responding and we’ve
found a Nash equilibrium. What’s interesting about Nash equilibria is that they always
exist (but we won’t prove it in this class).
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Theorem 1 (Nash [2]). For all finite n,m, every game with n players and m strategies has
at least one (possibly mixed) Nash equilibrium.

We won’t prove the theorem here, since it requires several non-trivial steps. If you are
interested then [5] presents a clear proof based on combinatorial Sperner’s Lemma and
Brouwer’s Fixed Point Theorem.

There’s not really consensus within any community as to when you should expect players
to behave according to a Nash equilibrium. One barrier is that no one knows any natural
dynamics that are known to converge to Nash equilibria. In particular, it’s widely believed
that finding a Nash equilibrium requires time exponential in m, even for two-player games.
There’s a formal statement for this, but it involves a complexity class besides just P and
NP so we won’t get into it (Formally, finding a Nash in a two-player m-action game is
PPAD-complete).

For this class, we won’t stress about whether Nash is predictive or not of behavior - it’s still
an extremely useful analytical concept and has been the driving force behind Game Theory
since Nash’s discovery - he won the 1994 Nobel prize for his theorem.

5 Extended Form Games - Subgame Perfect Equilibria

Extended form games are a special case of general games that have a natural time/sequential
aspect to them. Consider for instance any board game: you could lock in your entire strategy
at the very start and refuse to change it (this would be the game in its “normal-form,” but
the nature of the game allows for you to refine decisions later on).

Consider the following example, which is actually one of the early uses of Game Theory in
policy (especially during e.g. the cold war). Say two countries, A and B both have nukes.
A is considering an aggressive action. If A attacks, B can choose either to retaliate or back
down (B has no action if A maintains peace).

• If A attacks and B retaliates, both receive payoff −L (think of L = ∞) because the
world is destroyed.

• If A attacks and B backs down, A receives payoff +1 and B receives payoff −1.

• If A stays peaceful, then no matter what B does each receives payoff 0.

To be extra clear, A has two strategies in this game “attack” or “maintain peace.” B has
two strategies in this game, which we will call “retaliate” and “back down.” The semantic
meaning of “retaliate” is “if A chooses to attack, B will retaliate. If A maintains peace,
then nothing.” The semantic meaning of “back down” is “if A chooses to attack, B will
back down. If A maintains peace, then nothing.”

This is a two-player two action game, and it has two pure Nash equilibria: A can remain
peaceful and B can “retaliate,” and both are best responding (if A deviates, then the world
explodes. B’s action doesn’t matter because A is peaceful). Also, A can escalate and B can
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back down. Which one seems more reasonable to you, taking the sequential nature of the
game into account?

Well, if you’re B, and A has already attacked, you’re faced with a pretty clear decision to
either just accept it or blow up the world. So while it really sucks, you’re most likely going
to accept it. So A can reason that the “threat to retaliate” isn’t credible because it doesn’t
benefit B. So the first Nash equilibrium is perhaps unreasonable, and the latter one is more
likely to arise. This is called subgame perfect.

Definition 6 (Subgame Perfect Equilibrium). An extensive form game consists of a tree.
Every non-leaf node of the tree is associated with a single player, who chooses actions at
that node. Each action points to a different child. Each leaf node contains a payoff for each
player.

A pure strategy for a player i selects a pure action for every node where player i might
act. A (mixed) complete strategy is a distribution over pure strategies. A Nash equilibrium
is then defined as before.

A Nash equilibrium is subgame perfect if for every possible subtree, the induced strategies
on that subtree are a Nash equilibrium.

So for example, we might draw the War Game as having a root labeled with player A, and
two edges coming out (Attack and Peace). The Peace edge points to a leaf with payoffs (0,0).
The Attack edge points to a node labeled with player B, which itself has two edges coming
out labeled Retaliate and Back Down. The Retaliate edge points to a leaf with payoffs
(-L, -L). The Back Down edge points to a leaf with payoffs (1,-1). The Nash equilibrium
where B threatens to Retaliate and A maintains Peace is not subgame perfect, because if we
restrict attention to the game which starts at the node labeled B, it is not a best response
for B to Retaliate. That is, the game which starts at B just requires B to choose whether
to blow up the world or accept minor defeat, and it is not a best response for B to blow up
the world. The Nash equilibrium where B Backs Down and A Attacks is subgame perfect,
because no matter which node we start the game at, this is a Nash equilibrium.

Important note: Recall above that the definition of a strategy for a player requires a
list of what action to perform at every node where they act. This is necessary even for
paths which aren’t actually played in order for players to reason about what “would have”
happened if they acted differently.

5.1 Centipede Game

Let’s consider another game, called the Centipede game: The game will last 100 rounds.
Initially, there is 4 dollars in the pot in round 0, when player 1 acts. Players alternate
taking turns between push and take. If a player takes from the pot, they get half of the pot
(rounded down) plus two. If they push, they increase the size of the pot by one, but now
the other player gets to act. On turn 100, player 1 must take.

So the payoff structure looks like this: If the first turn that a player takes is i, then that
player gets payoff bi/2c + 4. The other player gets payoff bi/2c. Let’s try to reason about
a possible subgame perfect equilibrium.
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Starting in the last round (100), player 1 has to take, so they would get payoff 54, and
player 2 would get payoff 50. In round 99, player 2 could then push and get payoff 50, or
take and get payoff 53. So any subgame perfect equilibrium must have player 2 take at
round 99. Now back to 98, player 1 could take and get payoff 53, or push and get payoff 50
when player 2 takes. So any subgame perfect equilibrium must have player 1 take at round
98.

Reasoning all the way backwards, we see that at round i, the acting player may take and
get payoff bi/2c+ 4, or push and get payoff b(i + 1)/2c when the opposing player takes in
round i + 1. So going all the way back to round 0 we see that the only subgame perfect
equilibrium is for every player to take at every round, and player 1 gets payoff 4, player 2
gets payoff 0, even though clearly both would be happier at essentially any later round.

Lemma 2. The only subgame perfect equilibrium in the Centipede game is where each player
takes in every round in which they act.

Proof. We prove this by backwards induction (and in fact, the SPNE of any game can be
found by backwards induction). We claim, starting from i = 100, that any subgame-perfect
equilibrium must have the acting player take at round j for all j ≥ i.

The base case is i = 100, where the acting player must take by definition.

Now assume for inductive hypothesis that the claim holds for i+ 1, and we will prove it for
i.

As the acting player has switched in between i and i + 1, and the other player will take
during round i+ 1 in any SPNE, this means that player i will get payoff b(i+ 1)/2c if they
push, or payoff bi/2c+ 4 > b(i+ 1)/2c if they take. Therefore, in any potential equilibrium
where the active player takes in round i + 1, the active player must also take in round i
to possibly be best responding in the subgame which starts at round i. By the inductive
hypothesis, all SPNE must have the active player take in round i + 1, and therefore all
SPNE must also have the active player take in round i.

Note that in order to complete this reasoning, we needed to reference the subgame starting
at round i — we couldn’t have done this reasoning exactly for Nash which are not subgame
perfect.

Notes

This lecture is based on COS 445 notes from Princeton University [4].
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