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1 Nonatomic Routing Games

A non-atomic routing game has the following setup:

• A directed graph, G.

• Uncountably many, infinitesimally small players.

• For each player, a source node s and a destination t ∈ G. Denote by rst the total
mass of players who want to travel from s to t.

• Each edge e ∈ G has a cost function, ce(·). ce(x) denotes the time it takes when x
units of traffic want to traverse edge e.

For any s, t such that rst > 0, we’ll assume there exists at least one path from s to t. Let
Pst denote the set of all such paths, and we’ll let fp denote the mass of players who choose
to take path p to get from s to t. Finally, we can now define the game:

• Every player chooses a path from their source to their destination.

• Let fe =
∑

p|e∈p fp, this is the total mass of traffic using edge e.

• The cost of taking edge e is ce(fe).

• The delay for a player taking path p is
∑

e∈P ce(fe).

• The total delay is
∑

e fece(fe) (note that this equals
∑

p fp
∑

e∈p ce(fe)).

We say that a flow is optimal for (G,~r, c) if it has minimal total delay over all flows that
send rst flow from s to t (for all s, t). We say that a flow is in equilibrium if no player
can gain from deviating. Note that because players are non-atomic, they can switch paths
without affecting the cost of that path. So a flow is in equilibrium iff:

∀s, t, and p, p′ ∈ Pst, fp > 0 =⇒
∑
e∈p

ce(fe) ≤
∑
e∈p′

ce(fe). (1)

Above, note that if the condition is violated, then there is some player currently choosing
to take path p even though p′ has lower cost. Let’s look at some examples:
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Example 1: Pigou’s Example There are two nodes, s and t, with two edges between
them: one has c(x) = 1 for all x, the other has c(x) = x for all x. rst = 1.

• What’s the optimal flow for this example? We can write an optimization: minimize
(1 − x) · 1 + x · x = x2 − x + 1 (if we send x flow along the bottom edge and 1 − x
along the first edge, this is the total cost). This is minimized at x = 1/2 for a total
delay of 3/4.

• What is an equilibrium flow for this example? Send no flow along the top edge, and
all traffic along the bottom edge. The total delay is 1.

• Are there any other equilibria? No. If < 1 flow uses the bottom edge, then the cost
of the bottom edge is < 1, but there is positive flow on the top edge which costs 1.

The Price of Anarchy of an example denotes the ratio between the cost of the worst possible
equilibrium and the optimal outcome. So by bullet two above, the Price of Anarchy of
Pigou’s example is at least 4/3. By bullet three, there are no other equilibria, so in fact the
price of anarchy is exactly 4/3.

Theorem 1. [Roughgarden and Tardos 01] For any G,~r, and c such that for all e, ce(x) =
ax+ b (for some real constants a, b ≥ 0), the price of anarchy is at most 4/3.

2 Analyzing the Worst Case for Pigou Example

In this section we show that the worst-possible price of anarchy for the Pigou example with
linear costs is 4/3. In the next section we will show that Pigou example are actually the
worst possible graphs, so price of anarchy for linear cost functions is always at most 4/3 for
any graph.

Below, a Pigou Example is a two-node, two-edge graph where r units of traffic want to go
from s to t, the top edge has a constant cost equal to c(rst), and the bottom edge has cost
function c(x).

Note that, for a given c, r, it’s an equilibrium to send all r units of traffic along the bottom
edge, which induces total cost r · c(r). The optimal flow sends some y along the bottom
edge and r − y along the top edge, which induces total cost rc(r)− yc(r) + yc(y).

The price of anarchy for a class C of cost functions over the Pigou example is defined as:

α(C) := sup
c∈C,r≥0,y≥0

r · c(r)
(r − y) · c(r) + y · c(y)

. (2)

Notice that in the above definition y could potentially be greater than r. This makes little
sense intuitively but will be crucial in our application in the next section.

Lemma 2. For the class C of affine cost functions ce(x) = ax+ b (for some real constants
a, b ≥ 0), we have α(C) = 4/3.
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Proof. Consider any cost function c ∈ C where c(x) = ax + b for some a, b. We first argue
that if y > r then the RHS of (2) is at most 1. This is because

r · c(r)
(r − y) · c(r) + y · c(y)

≤ r · c(r)
(r − y) · c(r) + y · c(r)

≤ 1,

where the first inequality uses that c(x) is monotone and the denominator is non-negative.

So from now we assume y ≤ r. After substituting c(x) = ax+ b, the RHS of (2) simplifies
to:

ar2 + br

ar2 + br − yar − yb+ yb+ ay2
=

ar2 + br

ar2 − yar + ay2 + br
= 1 +

yar − ay2

ar2 − yar + ay2 + br
.

Now let’s make a quick observation: if we want to make this as big as possible (to find
the worst possible example), we want to set b = 0, because increasing b only increases the
denominator (and not the numerator). Once we set b = 0, note that the a cancels in both
the numerator and denominator, and we can take some derivatives to see that y = r/2

maximizes the term. Plugging back in we get 1 + r2/2−r2/4
r2−r2/2+r2/4

= 4/3.

So we already have an example with PoA 4/3, and the above proof shows that we can never
do worse with linear cost functions.

3 Why does Pigou Example give the worst graph?

We prove that the Pigou example gives us a bound on the price of anarchy of all graphs.

Proposition 3. For all classes of cost functions C that contains all constant functions, the
example with the worst possible price of anarchy, over all graphs, and all routing demands
with cost functions in C is a Pigou example.

It says that actually we don’t need to reason about arbitrary graphs, etc. to find the worst
possible setting, we only need to consider Pigou examples, which are much easier to reason
about. The proof of this proposition will need the following lemma which intuitively says
that if we fix the costs of edges to be given by an equilibrium flow, then every other flow
that meets the demand pays a cost at least that of the equilibrium flow.

Lemma 4 (Variational Inequality). Let f, g be two flows for demand ~r. Moreover, let f be
an equilibrium flow. Then∑

e

fe · ce(fe) ≤
∑
e

ge · ce(fe) ⇐⇒
∑
e

(ge − fe) · ce(fe) ≥ 0.

Proof. Consider demand rst from s to t. Suppose Lst is the cost of the shortest path from
s to t after we fix edge costs to be ce(fe). We know from (1) that every path p from s to t
(i.e., p ∈ Pst) with fp > 0 has cost cp(f) = Lst, and every other path p ∈ Pst has to pay at
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least Lst. Since g to also sends rst flow from s to t (i.e.,
∑

p∈Pst
fp =

∑
p∈Pst

gp = rst), we
get ∑

e

ge · ce(fe) =
∑
p∈Pst

gp · cp(f) ≥
∑
p∈Pst

gp · Lst = rst · Lst

=
∑
p∈Pst

fp · Lst =
∑
p∈Pst

fp · cp(f) =
∑
e

fe · ce(fe),

which completes the proof.

Now we prove Proposition 3.

Proof of Proposition 3. For a given a graph G, costs c, and demand r, let f∗ denote the
optimal flow and let f be an equilibrium flow. Now (2) for r = fe and y = f∗e tells us that

α(C) ≥ fe · ce(fe)
(fe − f∗e ) · ce(fe) + f∗e · ce(f∗e )

=⇒ (fe − f∗e ) · ce(fe) + f∗e · ce(f∗e ) ≥ fe · ce(fe)
α(C)

.

After rearranging, we can use this to lower bound the cost of the optimal flow as:∑
e

f∗e · ce(f∗e ) ≥
∑
e

(fe · ce(fe)
α(C)

− (fe − f∗e ) · ce(fe)
)
≥

∑
e

fe · ce(fe)
α(C)

,

where the last inequality uses Lemma 4 for g = f∗.

Finally, putting Lemma 2 and Proposition 3 together proves Theorem 1.

Note that the above also provides a bound on how bad Braess’ paradox can be: Let G be the
original graph (before adding edges) and G′ be the graph after some edges are added. Let
ceq(G) denotes the cost at the worst possible equilibrium for graph G, and copt(G) denote
the cost of optimally routing. Then by Theorem 1, we know that ceq(G

′) ≤ 4/3 · copt(G′).
We also know that copt(G

′) ≤ copt(G) (this is simply because G′ has additional edges that
we’re free to ignore if we want). Finally, we have copt(G) ≤ ceq(G) simply because copt is
the cost of the best solution, and ceq is the cost of some solution. So chaining everything
together we get that ceq(G

′) ≤ 4/3 · copt(G′) ≤ 4/3 · copt(G) ≤ 4/3 · ceq(G), meaning that
the equilibrium can’t get worse by more than a factor of 4/3 by adding edges.

4 Resource Augmentation Bounds

In the rest of lecture, we’ll prove a related result on what’s called resource augmentation.
Here, we’ll ask questions like “what’s better, routing flow f meeting demand ~r in equilib-
rium, or routing flow g meeting demand 2~r optimally?” You can alternatively view this as
making the following choice as a network administrator to improve traffic flow:

• Route flow centrally.

• Upgrade all links so that cnew(x) = cold(x/2)/2 (mathematically this is the same as
dividing all demanded flow by 2).
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It turns out that the second option is always better for any example, even when the costs
are not affine functions (but are non-decreasing)!

Lemma 5. Consider any equilibrium flow f in network G with costs c with ~r demanded
flow. Also, consider the optimal flow g for the same G, c, but with 2~r demanded flow. Then∑

e

fe · ce(fe) ≤
∑
e

ge · ce(ge).

Proof. Consider any equilibrium flow f in the former case, and let fe denote the flow sent
along edge e. Consider any optimal flow g in the second case, and let ge denote the flow
sent along edge e. Here’s the high-level idea: some edges will have less flow than in g than
they did in f . These edges might be super cheap (even zero cost), and this flow might get
routed basically for free. However, these edges together cannot possibly carry very much
flow (in particular, they can’t carry more than the original ~r). The remaining flow must go
on edges that are at least as expensive in g as they are in f , and therefore the total cost is
at least what it was in f . Now to make it formal:

We’ll consider an intermediate graph, G′, where the the cost functions are c′e(x) = ce(fe),
and the demand is still 2~r. Observe that the optimal flow in G′ has cost at least twice∑

e fece(fe). Why? This is using the variational inequality (Lemma 4) as g/2 exactly meets
demand ~r: ∑

e

fe · ce(fe) ≤
∑
e

ge/2 · ce(fe).

Okay, but the problem is that we used these make-believe edge costs, and we have no idea
how they compare to the real edge costs. So we need to show that actually g doesn’t do
much better when we substitute the real costs for these make-believe costs.

Now, we want to try and show that switching from the “fake costs” c′e(x) to the real costs
ce(x) doesn’t save us more than Lst for any s-t path. There are two kinds of edges to
consider: those for which ge ≥ fe, and those for which ge < fe. In G′, we estimate the cost
of g as:

2
∑
e

fece(fe) ≤
∑
e,fe

gece(fe) =
∑

e,fe≤ge

gece(fe) +
∑

e,fe>ge

gece(fe)

≤
∑

e,fe≤ge

gece(ge) +
∑
e

fece(fe)

≤
∑

e,fe≤ge

gece(ge) +
∑
e

fece(fe) +
∑

e,fe>ge

gece(ge).

The first inequality is exactly what we proved in the first paragraph: that when using the
“fake costs” ce(fe) instead of ce(ge), the cost of g is at least twice the cost of f . The second
inequality makes two observations. The first is that when fe ≤ ge, ce(fe) ≤ ce(ge) because
ce(·) is monotone non-decreasing. The second is that whenever ge < fe, we certainly have
gece(fe) ≤ fece(fe). The last inequality only adds another non-negative sum where we sum
over all e (instead of just e such that fe > ge).



6

Finally, we can conclude the theorem statement immediately from rearranging the first and
last inequality to get: ∑

e

fece(fe) ≤
∑
e

gece(ge).

Again, the high-level takeaway from the proof is the following: there are some edges where
ge ≥ fe. On these edges, it’s at least as expensive to send flow in g as it is in f , which
means g is expensive. On the other hand, there might be some edges where ge < fe, and
these edges might be very cheap. But because these edges have so little flow on them, they
can’t actually be routing very much of the total flow.

The high-level takeaway from this entire section is that price of anarchy bounds can be used
to guide design and not just prove approximation guarantees.

Notes

This lecture is based on COS 445 notes from Princeton University [2].
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