
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Lecture 3: Linear Programs, Rounding, and Duality

Lecturer: Sahil Singla Last updated: January 18, 2022

One of the running themes in this course is the notion of approximate solutions. Of course,
this notion is tossed around a lot in applied work: whenever the exact solution seems hard to
achieve, you do your best and call the resulting solution an approximation. In theoretical
work, approximation has a more precise meaning whereby you prove that the computed
solution is close to the exact or optimum solution in some precise metric. We saw some
earlier examples of approximation in sampling-based algorithms; for instance our hashing-
based estimator for set size. It produces an answer that is w.h.p. within (1 + ε) of the true
answer. Today we will see many other examples of approximation that rely upon linear
programming (LP).

1 Quick Refresher on Linear Programming

A linear program has a set of variables (in the example below, x1, . . . , xn), a linear objective
(in the example below, ~c · ~x), and a system of linear constraints (in the example below,
Aji · ~x ≤ bj , for all j, and xi ≥ 0 for all i). A linear program in “standard form” therefore
takes the following form:

max
∑
i

cixi

s.t.
∑
i

Ajixi ≤ bj , ∀j

xi ≥ 0, ∀i.

Recall that it is OK to have variables which aren’t constrained to be non-negative, equalities
instead of inequalities, min instead of max, etc. (and all such linear programs are equivalent
to one written in standard form — if you’re unfamiliar with LPs, you may want to prove this
as an exercise). Linear programs can be solved in weakly polynomial time via the Ellipsoid
algorithm (which we’ll see later in class) which means the following:

• You are given as input an n-dimensional vector ~c, and an m×n matrix A. Each entry
in ~c and A will be a rational number which can be written as the ratio of two b-bit
integers.

• Therefore, the input is of size poly(n,m, b). A weakly polynomial time algorithm is
just an algorithm which terminates in time poly(n,m, b) (and the Ellipsoid algorithm
is one such algorithm).

• A stronger stance might be to say that the input is really of size poly(n,m), but
you acknowledge that of course doing numerical operations on b-bit integers will take

1

2

time poly(b). A strongly polynomial-time algorithm would be one which performs
poly(n,m) numerical operations (and then the algorithm will also terminate in time
poly(n,m, b), because each operation terminates in time poly(b). A major (major,
major) open problem is whether a strongly poly-time algorithm exists for solving
linear programs. Note that the Ellipsoid algorithm does more numerical operations if
the input numbers have more bits, it’s not just that each operation takes longer.

1.1 Basic Solution

For any given a linear program max cTx such that Ax ≤ b and 0 ≤ xi, there could be
infinitely many optimal solutions. Intuitively, a basic optimal solution is an optimal solution
that is at the “vertex” of the feasible region. Such a solution has the advantage that we
know that several inequalities will be tight.

Formally, consider a linear program in n fractional variables x1, . . . , xn. If the given LP is
feasible and finite, a basic optimal solution is guaranteed to have at least n tight constraints,
i.e., at least n equalities. This has several applications, e.g., we will see one in PSet 1 where
we will use the fact that besides the box constraints (−1 ≤ xi ≤ 1) there are only a small
number k of other constraints; hence a basic solution x∗ will have at least n− k equalities
of the form x∗i = −1 or x∗i = 1, which means there are at least n−k integral variables in x∗.

2 Integer Programs, Bipartite Matching, & Approximation

In discrete optimization problems, we are usually interested in finding 0/1 solutions. Using
LP one can find fractional solutions, where the relevant variables are constrained to take
real values in [0, 1]. Sometimes, we can get lucky: you write an LP relaxation for a problem,
and the LP happens to produce a 0/1 solution. Now, you know that this 0/1 solution is
clearly optimal: not only is it the best 0/1 solution, it’s even the best [0, 1] solution. An
example of this phenomenon is when we use a linear program to find the minimum cut in
a graph (a problem for which we also have non-LP algorithms).

Another important polynomial-time problem that admits a linear program which exactly
solves the integral problem is max-weight bipartite matching. Given a bipartite graph G =
((A,B), E) with edge weights w : E → R≥0 (i.e., the vertices in G can be partitioned into
sets A and B and each edge in E is of the form (a, b) for some vertex a ∈ A and b ∈ B),
the max-weight bipartite matching problem is to find a subset of edges M ⊆ E that do not
share a vertex while maximizing

∑
e∈M w(e). We won’t prove it in class but the optimal

value of the following linear program returns the max-weight matching:

max
∑

(a,b)∈E

w((a, b)) · x(a,b)

0 ≤ x(a,b) ≤ 1 ∀(a, b) ∈ E∑
b:(a,b)∈E x(a,b) ≤ 1 ∀a ∈ A∑
a:(a,b)∈E x(a,b) ≤ 1 ∀b ∈ B.

3

Needless to say, we don’t expect this magic to repeat for NP-hard problems. So the LP
relaxation yields a fractional solution in general and the objective provides an upper/lower
bound on the optimum for a maximization/minimization problem. Then we give a way to
round the fractional solutions to 0/1 solutions. This is accompanied by a mathematical proof
that the new integral solution is approximates the objective, say to within a multiplicative
factor of α. Hence we get an α-approximation algorithm for the Integral problem.

Next we discuss an LP rounding scheme to design approximation algorithms.

3 Deterministic Rounding (Vertex Cover)

First we give an example of the most trivial rounding of fractional solutions to 0/1 solutions:
round variables< 1/2 to 0 and≥ 1/2 to 1. Surprisingly, this is good enough in some settings.

In the weighted vertex cover problem, which is NP-hard, we are given a graph G = (V,E)
and a weight for each node; the nonnegative weight of node i is wi. The goal is to find a
vertex cover, which is a subset S of vertices such that every edge contains at least one vertex
of S. Furthermore, we wish to find such a subset of minimum total weight. Let V Cmin be
this minimum weight. The following is the LP relaxation:

min
∑

iwixi

0 ≤ xi ≤ 1 ∀i
xi + xj ≥ 1 ∀ {i, j} ∈ E.

Let OPTf be the optimum value of this LP. It is no more than V Cmin since every 0/1
solution (including in particular the 0/1 solution of minimum cost) is also an acceptable
fractional solution.

Applying deterministic rounding, we can produce a new set S: every node i with xi ≥ 1/2
is placed in S and every other i is left out of S.

Claim 1: S is a vertex cover.
Reason: For every edge {i, j} we know xi + xj ≥ 1, and thus at least one of the xi’s is at
least 1/2. Hence at least one of i, j must be in S.

Claim 2: The weight of S is at most 2OPTf .
Reason: OPTf =

∑
iwixi, and we are only picking those i’s for which xi ≥ 1/2. 2.

Thus we have constructed a vertex cover whose cost is within a factor 2 of the optimum
cost even though we don’t know the optimum cost per se.

Remark: This 2-approximation was discovered a long time ago, and despite myriad attempts
we still don’t know if it can be improved. Using the so-called PCP Theorems, Dinur and
Safra [1] showed (improving a long line of work) that 1.36-approximation is NP-hard. Khot
and Regev [2] showed that computing a (2− ε)-approximation is UG-hard, which is a new
form of hardness popularized in recent years.

4

4 Randomized Rounding (Set Cover)

In this section we will use LPs to design an approximation algorithm for the NP-hard
Set-Cover problem.

In the min-cost Set Cover problem we are given a universe U := {1, 2, . . . , n} of n elements
and a collection of m subsets S := {S1, . . . , Sm} where

⋃
k Sk = U . We are also given a

cost function c : S → R≥0 that assigns a cost to every subset in S. The goal is to find a
min-cost sub-collection of S such that its union equals U . This problem generalizes Vertex
Cover when the edges of the graph form the universe U and the subsets correspond to the
subset of edges incident on each vertex.

Algorithm. We start by solving the following natural LP relaxation for set cover:

min
∑

k∈{1,...,m}

c(Sk) · xk∑
k:Sk3e

xk ≥ 1 ∀e ∈ {1, . . . , n}

xk ≥ 0 ∀k ∈ {1, . . . ,m}

Let x∗ be an optimal fractional solution to this LP. Our randomized rounding algorithm
selects each set Sk independently with probability min{1 , x∗k · c log n}, where c ≥ 1 is an
appropriately chosen constant. The following is the main theorem.

Theorem 1. The above randomized rounding algorithm returns with Ω(1) probability an
O(log n) approximation feasible solution to the min-cost Set Cover problem.

Proof. Let OPT denote the cost of the optimal integral solution. Since by setting xk = 1
for sets Sk in the optimal solution, and otherwise setting xk = 0, we get a feasible solution
to the LP of cost OPT, we know that the optimal fractional solution x∗ to the LP satisfies∑

k c(Sk)x∗k ≤ OPT .

Since we independently select each set independently w.p. min{1 , x∗k · c log n}, we get a
solution of expected total cost at most c log n ·

∑
k c(Sk)x∗k ≤ c log n ·OPT. Using Markov’s

Inequality, the probability that this random solution has cost more than 4c log nOPT is at
most 1/4. Next, we we argue that with probability at least 3/4 the returned solution is
also feasible for set cover. Hence, with probability at least 3/4 − 1/4 = 1/2 the returned
solution is both feasible and has cost at most 4 log n.

To prove feasibility, we first calculate the probability of any single element e being covered
in the random solution. By LP feasibility,

∑
k:Sk3e x

∗
k ≥ 1. So, if there is a set Sk 3 e with

x∗k ≥ 1/(c log n) then element e will be covered with probability 1 since min{1 , x∗k ·c log n} =
1. On the other hand, if each Sk 3 e has x∗k < 1/(c log n) then we get

∑
k:Sk3e min{1 , x∗k ·

c log n} > c log n. So, by Chernoff bounds and by choosing the constant c sufficiently large,
the probability that e is covered is at least 1− 1/(4n2). Taking a union bound over all the
n elements, we get that w.p. at least 1− 1/(4n) > 3/4 all the elements are covered and we
get a feasible solution, which completes the proof of the theorem.

5

Interestingly, Theorem 1 is tight, i.e., there exist set cover problem instances where no
polytime algorithm can get o(log n) approximation, assuming P 6= NP [3]. On the other
hand, one could hope to do better for some special family of set cover instances. For
instance, in Section 3 we already saw how we can get 2-approximation for the special case
of vertex cover. More generally, the approach in Section 3 can be extended to get an f -
approximation for min-cost Set Cover, where f is the maximum number of sets in which an
element of U appears (in vertex cover, each edge is incident to at most 2 vertices).

5 Weak LP Duality

LP Duality is an extremely useful tool for analyzing structural properties of linear programs.
While there are indeed applications of LP duality to directly design algorithms, it is often
more useful to gain structural insight (such as approximation guarantees, etc.).

Consider a linear program of the form:

max
∑
i

cixi∑
i

Ajixi ≤ bj , ∀j

xi ≥ 0, ∀i.

We’ll call this the primal LP. ~x is called a primal solution, and our goal is to find a
primal solution that maximizes our objective, subject to the feasibility constraints. On
the other hand, instead of thinking about directly searching for good primal solutions, we
could alternatively think about searching for good upper bounds on how good a primal can
possibly be. This is called the dual problem. How can we derive an upper bound on how
good a primal can possibly be?

Consider the following: if we have weights wj ≥ 0 for each inequality j, and take a linear
combination of the feasibility constraints, we may directly conclude that any feasible ~x must
satisfy: ∑

i

(∑
j

wj ·Aji

)
xi ≤

∑
j

wj · bj .

Okay, so we can upper bound some linear function of any feasible ~x, so what? Well, if we
happen to have chosen our wjs so that

∑
j wjAji = ci for all i, now we’re in business! We’ll

have directly shown that
∑

i cixi ≤
∑

j wj · bj . In fact, because xi ≥ 0, even if we only have∑
j wjAji ≥ ci we’re in business, as we’d have:

∑
i

cixi ≤
∑
i

(∑
j

wjAji

)
· xi ≤

∑
j

wj · bj .

Note that the first inequality is only true because xi ≥ 0. So now we can think of the
following “dual” approach: search over all weights wj to find the ones that induce the best

6

upper bound. Note that our search is constrained to find weights such that ci ≤
∑

j wjAji,
so this itself is a linear program:

min
∑
j

wj · bj∑
j

wj ·Aji ≥ ci, ∀i

wj ≥ 0, ∀j.

This is called the dual LP. As an exercise, verify that the dual of the dual LP is itself the
primal. Note that we have already proved that every feasible solution of the dual provides
an upper bound on how good any primal solution can possibly be. Therefore, we have
established what is called weak LP duality:

Theorem 2 (Weak LP Duality). Let LP1 be any maximization LP and LP2 be its dual (a
minimization LP). Then if:

• The optimum of LP1 is unbounded (+∞), then the feasible region of LP2 is empty.

• The optimum of LP1 finite, it is less than or equal to the optimum of LP2, or the
feasible region of LP2 is empty.

Proof. We have already proven the second bullet. To see the first bullet, observe that if the
feasible region of LP2 is non-empty, then we have directly found a finite upper bound on
LP1. So if LP1 is unbounded, LP2 must be empty.

In fact, we will see a stronger claim later. Weak Duality is easy to prove, and it’s good to
remember this intuition. Strong Duality (later) is good to know, but the intuition is largely
captured by the proof of Weak Duality.

5.1 Complementary Slackness

We’ll also want to discuss properties of optimal primal/dual pairs. One useful property is
called complementary slackness. A ~x and ~w are said to satisfy complementary slackness if
they satisfy condition 1) in the theorem statement below.

Theorem 3. Consider a primal LP, LP1 and its dual LP, LP2, and feasible (not necessarily
optimal) solutions ~x for the primal and ~w for the dual. Then the following are equivalent:

1. (wj = 0 OR
∑

iAjixi = bj for all j) AND
(
xi = 0 OR

∑
j Ajiwj = ci for all i

)
.

2.
∑

i cixi =
∑

j wjbj (and therefore both ~x is an optimal primal and ~w is an optimal
dual).

Proof. Note that we can write:

∑
i

ci · xi −
∑
j

wjbj ≤
∑
i

(
∑
j

Aijwj) · xi −
∑
j

wjbj =
∑
j

wj ·

(∑
i

Aijxi − bj

)
.

7

The inequality is because ~w is a feasible solution to LP2. The equality is just rearranging
the order of sums. Let’s now analyze the RHS. Observe that

∑
iAijxi − bj ≤ 0 for all j as

~x is feasible for LP1. Observe also that wj ≥ 0 for all j, as ~w is feasible for LP2. So every
term in the summand multiplies a non-negative number by a non-positive number and is
therefore non-positive. This means that the RHS is zero if and only if for all j,
wj = 0 or

∑
iAijxi − bj = 0.

Now we turn our attention to the inequality. Note that because ci ≤
∑

j Aijwj for all i, the
inequality is strict if and only if there exists an i for which xi > 0 and ci <

∑
j Aijwj . So

the LHS is equal to the middle term if and only if for all i, xi = 0 or ci =
∑

j Aijwj.

Taking the two bold-font claims together, this means that the LHS is equal to zero if and
only if 1) holds. If 1) does not hold, then either the RHS is < 0, or the LHS is less than
the middle term (which is ≤ 0). Finally, observe that 2) holds if and only if the LHS above
is equal to zero.

6 Dual Fitting (Set Cover)

In this section we will see another O(log n) approximation algorithm for the min-cost Set
Cover problem from Section 4 that use weak LP duality. Interestingly, our algorithm will
never solve an LP, it will use an LP and its dual to only analyze the algorithm.

Recall, in min-cost Set Cover we are given a universe U := {1, 2, . . . , n} of n elements and
a collection of m subsets S := {S1, . . . , Sm} where

⋃
k Sk = U . We are also given a cost

function c : S → R≥0 that assigns a cost to every subset in S. The goal is to find a min-cost
subcollection of S such that its union equals U .

Let OPT denote the cost of the optimal solution. We will analyze approximation guarantees
of the Greedy Algorithm in Figure 1. The Greedy Algorithm always returns a valid solution
since we assumed

⋃
k Sk = U . We will prove the following result.

Let A represent uncovered elements and let C represent selected sets.
Initialization: A = U and C = ∅.
While A 6= ∅:

1. Find a set Sk ∈ S that maximizes α =
1

c(Sk)
·
(∣∣∣Sk ∩A∣∣∣) .

2. For each newly covered element e ∈ Sk ∩A, set price(e) = 1/α.

3. Update A← A \ Sk and C ← C ∪ k.

Note that the second step doesn’t affect the algorithm. It will be only used for analysis.

Figure 1: The Greedy Algorithm

Theorem 4. The Greedy Algorithm gives an Hn approximation to the min-cost Set Cover
problem, where Hn := 1 + 1

2 + 1
3 + . . .+ 1

n = Θ(log n).

8

There are several proofs known for this theorem. (You might want to try a direct combi-
natorial proof.) We will use the LP from Section 4 to prove the result. Recall that the
optimal solution to that LP satisfies

∑
k c(Sk)x∗k ≤ OPT.

We will actually never compute x∗ and only use the fact that the LP value gives a lower
bound on OPT. Instead, we compare the Greedy Algorithm to the following dual LP (since
the primal LP was a minimization problem, the dual LP is a maximization problem):

max
∑

e∈{1,...,n}

ye∑
e∈Sk

ye ≤ c(Sk) ∀k ∈ {1, . . . ,m}

ye ≥ 0 ∀e ∈ {1, . . . , n}

By weak-duality, we know that any feasible solution to the dual LP gives a lower bound on∑
k c(Sk)x∗k. Thus, our plan to upper bound the cost of the greedy algorithm is to show a

feasible dual solution
(
ze
)
e∈E which satisfies that the total cost of the Greedy Algorithm∑

k∈C
c(Sk) ≤ Hn ·

∑
e

ze. (1)

This will prove Theorem 4 since by weak-duality
∑

e ze ≤
∑

k c(Sk)x∗k ≤ OPT.

We define ze = Hn · price(e), where recall from Figure 1 that price(e) intuitively denotes
how much element e pays for Sk when it first gets covered. Proving (1) is easy because
the Greedy Algorithm sets an element’s price exactly once, and at that point the algorithm
exactly distributes c(Sk) between the newly covered elements. Thus the algorithm’s total
cost

∑
k∈C c(Sk) =

∑
e price(e) = 1

Hn

∑
e ze.

Next, we prove that
(
ze
)
e∈E is a feasible solution to the dual LP. By definition, ze ≥ 0.

Now consider any set S ∈ S. We want to show
∑

e∈S ze ≤ c(S). Start by renaming the
elements (for analysis) of S to be {e1, e2, . . . , e|S|} in the order they are covered by the
Greedy Algorithm (breaking ties arbitrarily). Observe that whenever an element ei ∈ S
was first covered, the algorithm had the option of selecting S (and may be it even did) at a
cost of c(S) and cover |S| − i+ 1 new elements. Thus, irrespective of which set the Greedy

algorithm actually selects, we know that price(ei) ≤ c(S)
|S|−i+1 . This implies

∑
e∈S

ze =
1

Hn

∑
ei∈S

price(ei) ≤ 1

Hn

∑
ei∈S

c(S)

|S| − i+ 1
= c(S) ·

H|S|

Hn
≤ c(S).

7 Strong LP Duality

In Section 5 we discussed weak duality: using dual solutions as upper bounds on how good
a primal solution could be. In fact, something quite strong is true: there is always a dual
witnessing that the optimal primal is optimal. We’ll give a proof, but note that most of
the intuition (aside from geometry/linear algebra) is provided by Weak Duality. We’ll just

9

discuss the “classic” case, the “partial” case is similar and omitted. First recall the primal
and the dual LPs.

max
∑
i

cixi (LP1)∑
i

Ajixi ≤ bj , ∀j

xi ≥ 0, ∀i.

min
∑
j

wj · bj (LP2)

∑
j

wj ·Aji ≥ ci, ∀i

wj ≥ 0, ∀j.

Theorem 5 (Strong LP Duality). Let LP1 be any maximization LP and LP2 be its dual
(a minimization LP). Then:

• If the optimum of LP1 is unbounded (+∞), the feasible region of LP2 is empty.

• If the feasible region of LP1 is empty, the optimum of LP2 is either unbounded (−∞),
or also infeasible.

• If optimum of LP1 finite, then the optimum of LP2 is also finite, and they are equal.

The key ingredient in the proof will be what’s called the Separating Hyperplane Theorem.

Theorem 6 (Separating Hyperplane Theorem). Let P be a closed, convex region in Rn,
and ~x be a point not in P . Then there exists a ~w such that ~x · ~w > max~y∈P {~y · ~w}.

Proof. Consider the point ~y ∈ P closest to ~x (that is, minimizing ||~x− ~y||2 over all ~y ∈ P .
As distance is a positive continuous function, and P is a closed region, such a ~y exists. Now
consider the vector ~w = ~x− ~y. We claim that the chosen ~w is the desired witness.

Observe first that (~x− ~y) · ~w = ||~w||22 > 0, so indeed ~x · ~w > ~y · ~w. We just need to confirm
that ~y = arg max~z∈P {~z · ~w} and then we’re done.

Assume for contradiction that ~z · ~w > ~y · ~w and ~z ∈ P . Then as P is convex, ~zε =
(1 − ε)~y + ε~z ∈ P as well for all ε > 0. Observe that ||~x − ~zε||22 = ||~x − ~y + ε(~y − ~z)||22 =
||~x−~y||22+2ε(~x−~y)·(~y−~z)+ε2||~y−~z||22 = ||~x−~y||22+2ε~w ·(~y−~z)+ε2||~y−~z||22. By hypothesis,
~w · (~y−~z) < 0, and ||~y−~z||22 is finite, so for sufficiently small ε, we get ||~x−~zε||22 < ||~x−~y||22,
a contradiction.

Now, consider the optimum ~x of LP1. Let S denote the j for which
∑

iAjixi = bj , and
S̄ the constraints for which

∑
iAjixi < bj . We claim that ~c can be written as a convex

combination of the vectors ~Aj , j ∈ S (up to possible scaling).

Lemma 7. Let ~x be the optimum of LP1, and let S denote the j for which
∑

iAjixi = bj.
Then there exist {λj ≥ 0}j∈S such that ci =

∑
j∈S λjAji for all i.

Proof. Assume for contradiction that this were not the case. As the space X of all vectors
~y for which there exists {λj ≥ 0}j∈S such that yi =

∑
j∈S λjAji for all i is clearly closed

and convex, we can apply the separating hyperplane theorem. So there would exist some ~γ
such that ~c · ~γ > max~y∈X{~y · ~γ}. Now consider the vector ~x+ ε~γ.

10

We know that for all j ∈ S,
∑

iAjiγi ≤ 0. If not, then max~y∈X{~y · ~γ} = +∞, because
we could blow up λj . So for all j ∈ S,

∑
iAji(xi + εγi) ≤ bj . Moreover, for all i /∈ S,∑

iAjixi < bj , and
∑

iAjiγi is finite. So there exists a sufficiently small ε so that ~x+ ε~γ is
feasible for LP1.

Finally, observe that max~y∈X{~y · ~γ} ≥ 0, as ~0 ∈ X. So ~c · ~γ > 0, and we have shown that ~x
was not optimal.

Now with the lemma in hand, we want to show a dual whose value matches ~c · ~x. Let
~c =

∑
j∈S λj

~Aj with λj ≥ 0 as guaranteed by the lemma. Set wj = λj for all j ∈ S, and
wj = 0 for all j /∈ S. First, is it clear that ~w is feasible for LP2, as we have explicitly set
wj so that ci =

∑
j wjAij for all i. Now we just need to evaluate its value:

∑
j

bjwj =
∑
j∈S

bjwj +
∑
j /∈S

bj · 0 =
∑
j∈S

(
∑
i

Ajixi)wj =
∑
i

∑
j∈S

Ajiwj

xi =
∑
i

cixi.

So its objective value is exactly the same as LP1.

Notes

The lecture is partly based on COS 521 notes from Princeton University. The proof of
Theorem 6 is adapted from Anupam Gupta’s scribe lecture notes [4].

References

[1] Dinur, I., and Safra, S. (2005). On the hardness of approximating minimum vertex cover.
Annals of mathematics, 439-485.

[2] Khot, S., and Regev, O. (2008). Vertex cover might be hard to approximate to within
2− ε. Journal of Computer and System Sciences, 74(3), 335-349.

[3] Feige, Uriel. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM) 45.4 (1998): 634-652.

[4] https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/

notes/lecture05.pdf

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture05.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture05.pdf

	Quick Refresher on Linear Programming
	Basic Solution

	Integer Programs, Bipartite Matching, & Approximation
	Deterministic Rounding (Vertex Cover)
	Randomized Rounding (Set Cover)
	Weak LP Duality
	Complementary Slackness

	Dual Fitting (Set Cover)
	Strong LP Duality

